Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-11T02:50:37.110Z Has data issue: false hasContentIssue false

11 - Characterizations of exchangeable partitions and random discrete distributions by deletion properties

Published online by Cambridge University Press:  07 September 2011

Alexander Gnedin
Affiliation:
University of Utrecht
Chris Haulk
Affiliation:
University of California at Berkeley
Jim Pitman
Affiliation:
University of California at Berkeley
N. H. Bingham
Affiliation:
Imperial College, London
C. M. Goldie
Affiliation:
University of Sussex
Get access

Summary

Abstract

We prove a long-standing conjecture which characterizes the Ewens—Pitman two-parameter family of exchangeable random partitions, plus a short list of limit and exceptional cases, by the following property: for each n = 2, 3, …, if one of n individuals is chosen uniformly at random, independently of the random partition πn of these individuals into various types, and all individuals of the same type as the chosen individual are deleted, then for each r > 0, given that r individuals remain, these individuals are partitioned according to for some sequence of random partitions which does not depend on n. An analogous result characterizes the associated Poisson—Dirichlet family of random discrete distributions by an independence property related to random deletion of a frequency chosen by a size-biased pick. We also survey the regenerative properties of members of the two-parameter family, and settle a question regarding the explicit arrangement of intervals with lengths given by the terms of the Poisson–Dirichlet random sequence into the interval partition induced by the range of a homogeneous neutral-to-the right process.

AMS subject classification (MSC2010) 60C05, 60G09, 05A18

Introduction

Kingman introduced the concept of a partition structure, that is a family of probability distributions for random partitions πn of a positive integer n, with a sampling consistency property as n varies.

Type
Chapter
Information
Probability and Mathematical Genetics
Papers in Honour of Sir John Kingman
, pp. 264 - 298
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×