Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-10T00:41:35.528Z Has data issue: false hasContentIssue false
This chapter is part of a book that is no longer available to purchase from Cambridge Core

5 - Balls, Bins, and Random Graphs

Michael Mitzenmacher
Affiliation:
Harvard University, Massachusetts
Eli Upfal
Affiliation:
Brown University, Rhode Island
Get access

Summary

In this chapter, we focus on one of the most basic of random processes: m balls are thrown randomly into n bins, each ball landing in a bin chosen independently and uniformly at random. We use the techniques we have developed previously to analyze this process and develop a new approach based on what is known as the Poisson approximation. We demonstrate several applications of this model, including a more sophisticated analysis of the coupon collector's problem and an analysis of the Bloom filter data structure. After introducing a closely related model of random graphs, we show an efficient algorithm for finding a Hamiltonian cycle on a random graph with sufficiently many edges. Even though finding a Hamiltonian cycle is NP-hard in general, our result shows that, for a randomly chosen graph, the problem is solvable in polynomial time with high probability.

Example: The Birthday Paradox

Sitting in lecture, you notice that there are 30 people in the room. Is it more likely that some two people in the room share the same birthday or that no two people in the room share the same birthday?

We can model this problem by assuming that the birthday of each person is a random day from a 365-day year, chosen independently and uniformly at random for each person. This is obviously a simplification; for example, we assume that a person's birthday is equally likely to be any day of the year, we avoid the issue of leap years, and we ignore the possibility of twins! As a model, however, it has the virtue of being easy to understand and analyze.

Type
Chapter
Information
Probability and Computing
Randomized Algorithms and Probabilistic Analysis
, pp. 90 - 125
Publisher: Cambridge University Press
Print publication year: 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×