Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-15T09:29:58.386Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  23 February 2018

Garry Willgoose
Affiliation:
University of Newcastle, New South Wales
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abrahams, A. D. (1984), Channel networks: A geomorphological perspective, Water Resources Research, 20(2), 161168.CrossRefGoogle Scholar
Abrahams, A. D., and Parsons, A. J. (1990), Determining the mean depth of overland flow in field studies of flow hydraulics, Water Resources Research, 26(3), 501503.CrossRefGoogle Scholar
Abrahams, A. D., and Parsons, A. J. (1991a), Relation between sediment yield and gradient on debris covered hillslopes, Walnut Gulch, Arizona, Bulletin of the Geological Society of America, 103, 11091113.2.3.CO;2>CrossRefGoogle Scholar
Abrahams, A. D., and Parsons, A. J. (1991b), Resistance to overland flow on desert pavements and its implications for sediment transport modeling, Water Resources Research, 27(8), 18271836.CrossRefGoogle Scholar
Abrahams, A. D., and Parsons, A. J. (1994), Hydraulics of interrill overland flow on stone-covered desert surfaces, Catena, 23(1–2), 111140.CrossRefGoogle Scholar
Adams, W. A. (1973), The effect of organic matter on the bulk and true densities of some uncultivated Podzolic soils, European Journal of Soil Science, 24(1), 1017, doi:10.1111/j.1365-2389.1973.tb00737.x.CrossRefGoogle Scholar
Ahad, T., Kanth, T. A., and Nabi, S. (2015), Soil bulk density as related to texture, organic matter content and porosity in Kandi soils of District Kupwara (Kashmir Valley), India, International Journal of Scientific Research, 4(1), 198200.Google Scholar
Ahnert, F. (1976), Brief description of a comprehensive three-dimensional process-response model for landform development, Zeitschrift für Geomorphologie N.F. Supplement, 25, 2949.Google Scholar
Ahnert, F. (1977), Some comments on the quantitative formulation of geomorphological process in a theoretical model, Earth Surface Processes, 2, 191201.CrossRefGoogle Scholar
Ahr, S. W., Nordt, L. C., and Forman, S. L. (2013), Soil genesis, optical dating, and geoarchaeological evaluation of two upland Alfisol pedons within the Tertiary Gulf Coastal Plain, Geoderma, 192, 211226, doi:10.1016/j.geoderma.2012.08.016.CrossRefGoogle Scholar
Albrecht, R. I., Goodman, S. J., Buechler, D. E., Blakeslee, R. J., and Christian, H. J. (2016), Where are the lightning hotspots on Earth?, Bulletin of the American Meteorological Society, 97(11), 20152068, doi:10.1175/BAMS-D-14-00193.1.CrossRefGoogle Scholar
Alley, R. B. (2014), The two-mile time machine: Ice cores, abrupt climate change, and our future, Princeton University Press, Princeton, NJ.Google Scholar
Alpert, P. (1986), Mesoscale indexing of the distribution of orographic precipitation over high mountains, Journal of Climate and Applied Meteorology, 25(4), 532545, doi:10.1175/1520-0450(1986)025<0532:MIOTDO>2.0.CO;2.2.0.CO;2>CrossRefGoogle Scholar
Amundson, R. (1994), Towards the quantitative modeling of pedogenesis – A review – Comment – Functional vs mechanistic theories: The paradox of paradigms, Geoderma, 63(3–4), 299302.CrossRefGoogle Scholar
Amundson, R. (2001), The carbon budget in soils, Annual Review of Earth and Planetary Sciences, 29, 535562, doi:10.1146/annurev.earth.29.1.535.CrossRefGoogle Scholar
Ancey, C. (2007), Plasticity and geophysical flows: A review, Journal of Non-Newtonian Fluid Mechanics, 142, 435, doi:10.1016/j.jnnfm.2006.05.005.CrossRefGoogle Scholar
Anders, A. M., and Nesbitt, S. W. (2015), Altitudinal precipitation gradients in the tropics from Tropical Rainfall Measuring Mission (TRMM) precipitation radar, Journal of Hydrometeorology, 16(1), 441448, doi:10.1175/JHM-D-14-0178.1.CrossRefGoogle Scholar
Anderson, R. S. (2002), Modeling the tor-dotted crests, bedrock edges, and parabolic profiles of high alpine surfaces of the Wind River Range, Wyoming, Geomorphology, 46, 3558.CrossRefGoogle Scholar
Anderson, R. S. (2015), Particle trajectories on hillslopes: Implications for particle age and 10Be structure, Journal of Geophysical Research (Earth Surface), 120, 16261644, doi:10.1002/2015JF003479.CrossRefGoogle Scholar
Anderson, R. S., and Anderson, S. P. (2010), Geomorphology: The mechanics and chemistry of landscapes, Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Anderson, S. P., Dietrich, W. E., and Brimhall, G. H. (2002), Weathering profiles, mass-balance analysis, and rates of solute loss: Linkages between weathering and erosion in a small, steep catchment, Geological Society of America Bulletin, 114(9), 11431158, doi:10.1130/0016-7606(2002)114<1143:WPMBAA>2.0.CO;2.2.0.CO;2>CrossRefGoogle Scholar
Andrews, D. J., and Bucknam, R. C. (1987), Fitting degradation of shoreline scarps by a nonlinear diffusion model, Journal of Geophysical Research (Solid Earth), 92(B12), 1285712867, doi:10.1029/JB092iB12p12857.CrossRefGoogle Scholar
Angers, D. A., et al. (1997), Impact of tillage practices on organic carbon and nitrogen storage in cool, humid soils of eastern Canada, Soil and Tillage Research, 41(3–4), 191201, doi:10.1016/S0167-1987(96)01100-2.CrossRefGoogle Scholar
Argus, D. F., and Peltier, W. R. (2010), Constraining models of postglacial rebound using space geodesy: A detailed assessment of model ICE-5G (VM2) and its relatives, Geophysical Journal International, 181(2), 697723, doi:10.1111/j.1365-246X.2010.04562.x.Google Scholar
Arshad, M. A., Franzluebbers, A. J., and Azooz, R. H. (1999), Components of surface soil structure under conventional and no-tillage in northwestern Canada, Soil Tillage Research, 53(1), 4147, doi:10.1016/S0167-1987(99)00075-6.CrossRefGoogle Scholar
Asteriou, P., Saraglou, H., and Tsimbaos, G. (2012), Geotechnical and kinematic parameters affecting the coefficients of restitution for rock fall analysis, International Journal of Rock Mechanics & Mining Sciences, 54, 103113, doi:10.1016/j.ijrmms.2012.05.029.CrossRefGoogle Scholar
Astete, C. E., Constant, W. D., Thibodeaux, L. J., Seals, R. K., and Delim, H. M. (2015), Bioturbation-driven particle transport in surface soil: The biodiffusion coefficient mobility parameter, Soil Science, 180(1), 29, doi:10.1097/SS.0000000000000109.CrossRefGoogle Scholar
Avirmed, O., Burke, I. C., Mobley, M. L., Lauenroth, W. K., and Schlaepfer, D. R. (2014), Natural recovery of soil organic matter in 30–90-year-old abandoned oil and gas wells in sagebrush steppe, Ecosphere, 5(3), 113, doi:10.1890/ES13-00272.1.CrossRefGoogle Scholar
Azooz, R. H., and Arshad, M. A. (1996), Soil infiltration and hydraulic conductivity under long-term no-tillage and conventional tillage systems, Canadian Journal of Soil Science, 76(2), 143152.CrossRefGoogle Scholar
Baartman, J. E. M., Temme, A. J. A. M., Schoorl, J. M., Braakhekke, M. H., and Veldkamp, T. (2012), Did tillage erosion play a role in millennial scale landscape development?, Earth Surface Processes and Landforms, 37(15), 16151626, doi:10.1002/esp.3262.CrossRefGoogle Scholar
Baartman, J. E. M., Temme, A. J. A. M., Veldkamp, T., Jetten, V. G., and Schoorl, J. M. (2013), Exploring the role of rainfall variability and extreme events in long-term landscape development, Catena, 109, 2538, doi:10.1016/j.catena.2013.05.003.CrossRefGoogle Scholar
Bagnold, R. A. (1936), The movement of desert sand, Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences , 157(892), 594620.Google Scholar
Bak, P., Tang, C., and Wiesenfeld, K. (1988), Scale invariant spatial and temporal fluctuations in complex systems, in Random fluctuations and pattern growth: Experiments and models, edited by Stanley, H. E. and Ostrowsky, N., pp. 329335, Kluwer, Berlin.CrossRefGoogle Scholar
Baker, V. R. (2008), Planetary landscape systems: A limitless frontier, Earth Surface Processes and Landforms, 33, 13411353, doi:10.1002/esp.1713.CrossRefGoogle Scholar
Baker, V. R. (2009), The Channeled Scabland: A retrospective, Annual Review of Earth and Planetary Sciences, 37, 393411, doi:10.1146/annurev.earth.061008.134726.CrossRefGoogle Scholar
Baldwin, J. A., Whipple, K. X., and Tucker, G. E. (2003), Implications of the shear stress river incision model for the timescale of postorogenic decay of topography, Journal of Geophysical Research (Solid Earth), 108(B3), art. no. 2158, doi:10.1029/2001JB000550.Google Scholar
Balmforth, N. J., Craster, R. V., Rust, A. C., and Sassi, R. (2007), Viscoplastic flow over an inclined surface, Journal of Non-Newtonian Fluid Mechanics, 142, 219243, doi:10.1016/j.jnnfm.2006.07.013.CrossRefGoogle Scholar
Barman, A. K., Varadachari, C., and Ghosh, K. (1992), Weathering of silicate minerals by organic-acids. 1. Nature of cation solubilization, Geoderma, 53(1–2), 4563.CrossRefGoogle Scholar
Barreto, L., Schoorl, J. M., Kok, K., Veldkamp, T., and Hass, A. (2013), Modelling potential landscape sediment delivery due to projected soybean expansion: A scenario study of the Balsas sub-basin, Cerrado, Maranhao state, Brazil, Journal of Environmental Management, 115, 270277, doi:10.1016/j.jenvman.2012.11.017.CrossRefGoogle ScholarPubMed
Barshad, I. (1959), Factors affecting clay formation, Clays and Clay Minerals, 6, 110132.CrossRefGoogle Scholar
Barzegar, A. R., Yousefi, A., and Daryashenas, A. (2002), The effect of addition of different amounts and types of organic materials on soil physical properties and yield of wheat, Plant and Soil, 247(2), 295301, doi:10.1023/A:1021561628045.CrossRefGoogle Scholar
Bazin, L., et al. (2013), An optimized multi-proxy, multi-site Antarctic ice and gas orbital chronology (AICC2012): 120–800 ka, Climate of the Past, 9, 17151731, doi:10.5194/cp-9-1715-2013.CrossRefGoogle Scholar
Beal, L. K., Huber, D. P., Godsey, S. E., Nawotniak, S. K., and Lohse, K. A. (2016), Controls on ecohydrologic properties in desert ecosystems: Differences in soil age and volcanic morphology, Geoderma, 271, 3241, doi:10.1016/j.geoderma.2016.01.030.CrossRefGoogle Scholar
Bell, J. R. W., and Willgoose, G. R. (1998), Monitoring of gully erosion at ERA Ranger Uranium Mine, Northern Territory, Australia, Internal Report 274, Environmental Research Institute of the Supervising Scientist, Jabiru, NT.Google Scholar
Bellugi, D., Milledge, D. G., Dietrich, W. E., McKean, J., Perron, J. T., Sudderth, E. B., and Kazian, B. (2015a), A spectral clustering search algorithm for predicting shallow landslide size and location, Journal of Geophysical Research (Earth Surface), 120, 300324, doi:10.1002/2014JF003137.CrossRefGoogle Scholar
Bellugi, D., Milledge, D. G., Dietrich, W. E., Perron, J. T., and McKean, J. (2015b), Predicting shallow landslide size and location across a natural landscape: Application of a spectral clustering search algorithm, Journal of Geophysical Research (Earth Surface), 120, 25522585, doi:10.1002/2015JF003520.CrossRefGoogle Scholar
Bercovici, D. (2003), The generation of plate tectonics from mantle convection, Earth and Planetary Science Letters, 205(3–4), 107121, doi:10.1016/S0012-821X(02)01009-9.CrossRefGoogle Scholar
Bergeron, T. (1961), Preliminary results of ‘Project Pluvius’, vol. 53, pp. 226–237. International Association of Hydrological Sciences Publication, Gentbrugge.Google Scholar
Bernoux, M., Cerri, C. C., Neill, C., and de Moraes, J. F. L. (1998), The use of stable carbon isotopes for estimating soil organic matter turnover rates, Geoderma, 82(1–3), 4358.CrossRefGoogle Scholar
Beven, K. J. (1996), Equifinality and uncertainty in geomorphological modelling, in The scientific nature of geomorphology: Proceedings of the 27th Binghampton Symposium in geomorphology, 27–29 September, 1996, edited by Rhoads, B. L. and Thorn, C. E., pp. 289313, Wiley, Chichester, UK.Google Scholar
Beven, K. J. (2000), Uniqueness of place and process representations in hydrological modelling, Hydrology and Earth System Sciences, 4(2), 203213.CrossRefGoogle Scholar
Beven, K. J. (2012), Rainfall-runoff modelling: The primer, 2nd ed., Wiley-Blackwell, Chichester, UK.CrossRefGoogle Scholar
Beven, K. J., and Binley, A. M. (1992), The future of distributed models: Model calibration and uncertainty prediction, Hydrological Processes, 6, 279298.CrossRefGoogle Scholar
Beven, K. J., and Germann, K. (1982), Macropores and water-flow in soils, Water Resources Research, 18(5), 13111325, doi:10.1029/WR018i005p01311.CrossRefGoogle Scholar
Beven, K. J., and Germann, K. (2013), Macropores and water flow in soils revisited, Water Resources Research, 49(6), 30713092, doi:10.1002/wrcr.20156.CrossRefGoogle Scholar
Billings, S. A., Buddemeier, R. W., deB Richter, D., Van Oost, K., and Bohling, G. (2010), A simple method for estimating the influence of eroding soil profiles on atmospheric CO2, Global Biogeochemal Cycles, 24, GB2001, doi:10.1029/2009GB003560.Google Scholar
Birkeland, P. W. (1990), Soil-geomorphic research – A selective overview, Geomorphology, 3(3–4), 207224, doi:10.1016/0169-555X(90)90004-A.CrossRefGoogle Scholar
Bisdom, E. B. A., Stoops, G., Delvigne, J., Curmi, P., and Altemuller, H.-J. (1982), Micromorphology of weathering Biotite and its secondary products, Pedologie, 32(2), 225252.Google Scholar
Bishop, P. (2007), Long-term landscape evolution: Linking tectonics and surface processes, Earth Surface Processes and Landforms, 32, 329365, doi:10.1002/esp.1493.CrossRefGoogle Scholar
Boardman, J., Parsons, A. J., Holland, R., Holmes, P. J., and Washington, R. (2003), Development of badlands and gullies in the Sneeuberg, Great Karoo, South Africa, Catena, 50(2–4), 165184.CrossRefGoogle Scholar
Bodí, M. B., Martin, D. A., Balfour, V. N., Santín, C., Doerr, S. H., Pereira, P., Cerdà, A., and Mataix-Sorda, J. (2014), Wildland fire ash: Production, composition and eco-hydro-geomorphic effects, Earth-Science Reviews, 130, 103127, doi:10.1016/j.earscirev.2013.12.007.CrossRefGoogle Scholar
Boillat, J. L., and Graf, W. H. (1982), Settling velocity of spherical particles in turbulent media, Journal of Hydraulic Research, 20, 395413.CrossRefGoogle Scholar
Bondeau, A., et al. (2007), Modelling the role of agriculture for the 20th century global terrestrial carbon balance, Global Change Biology, 13, 679706, doi:10.1111/j.1365-2486.2006.01305.x.CrossRefGoogle Scholar
Borga, M., Fontana, G. D., and Cazorzi, F. (2002), Analysis of topographic and climatic control on rainfall-triggered shallow landsliding using a quasi-dynamic wetness index, Journal of Hydrology, 268, 5671.CrossRefGoogle Scholar
Bourrier, F. (2008), Modélisation de l’impact d’un bloc rocheux sur un terrain naturel, application à la trajectographie des chutes de blocs, PhD thesis, Institut National Polytechnique de Grenoble, Grenoble.Google Scholar
Bourrier, F., Dorren, L. K. A., Nicot, F., Berger, F., and Darve, F. (2009), Toward objective rockfall trajectory simulation using a stochastic impact model, Geomorphology, 110, 6879, doi:10.1016/j.geomorph.2009.03.017.CrossRefGoogle Scholar
Bovy, B., Braun, J., and Demoulin, A. (2016), A new numerical framework for simulating the control of weather and climate on the evolution of soil-mantled hillslopes, Geomorphology, 263, 99112, doi:10.1016/j.geomorph.2016.03.016.CrossRefGoogle Scholar
Bowman, D. M. J. S., Boggs, G. S., and Prior, L. D. (2008), Fire maintains an Acacia aneura shrubland – Triodia grassland mosaic in central Australia, Journal of Arid Environments, 72, 3447, doi:10.1016/j.jaridenv.2007.04.001.CrossRefGoogle Scholar
Bradford, S. A., and Torkzaban, S. (2008), Colloid transport and retention in unsaturated porous media: A review of interface-, collector-, and pore-scale processes and models, Vadose Zone Journal, 7(2), 667681, doi:10.2136/vzj2007.0092.CrossRefGoogle Scholar
Brantley, S. L., and Lebedeva, M. I. (2011), Learning to read the chemistry of regolith to understand the Critical Zone, Annual Review of Earth and Planetary Sciences, 39, 387416, doi:10.1146/annurev-earth-040809-152321.CrossRefGoogle Scholar
Bras, R. L., and Rodriguez-Iturbe, I. (1985), Random functions and hydrology, Addison-Wesley, New York.Google Scholar
Braun, J., Heimsath, A. M., and Chappell, J. (2001), Sediment transport mechanisms on soil-mantled hillslopes, Geology, 29(8), 683686.2.0.CO;2>CrossRefGoogle Scholar
Braun, J., Mercier, J., Guillocheau, F., and Robin, C. (2016), A simple model for regolith formation by chemical weathering, Journal of Geophysical Research (Earth Surface), 121, 21402171, doi:10.1002/2016JF003914.CrossRefGoogle Scholar
Braun, J., and Robert, X. (2005), Constraints on the rate of post-orogenic erosional decay from low-temperature thermochronological data: Application to the Dabie Shan, China, Earth Surface Processes and Landforms, 30, 12031225, doi:10.1002/esp.1271.CrossRefGoogle Scholar
Braun, J., and Sambridge, M. (1997), Modelling landscape evolution on geological time scales: A new method based on irregular spatial discretization, Basin Research, 9(1), 2752.CrossRefGoogle Scholar
Braun, J., and van der Beek, P. (2004), Evolution of passive margin escarpments: What can we learn from low-temperature thermochronology?, Journal of Geophysical Research (Earth Surface), 109(F4), F04009.Google Scholar
Brimhall, G. H., Chadwick, O. A., Lewis, C. J., Compston, W., Williams, I. S., Danti, K. J., Dietrich, W. E., Power, M. E., Hendricks, D. M., and Bratt, J. (1992), Deformational mass transport and invasive processes in soil evolution, Science, 255(5045), 695702.CrossRefGoogle ScholarPubMed
Brimhall, G. H., and Dietrich, W. E. (1987), Constitutive mass balance relations between chemical composition, volume, density, porosity, and strain in metasomatic hydrochemical systems: Results on weathering and pedogenesis, Geochimica Cosmochimica Acta, 51, 567587.CrossRefGoogle Scholar
Brimhall, G. H., Lewis, C. J., Ford, C., Bratt, J., Taylor, G., and Warin, O. (1991), Quantitative geochemical approach to pedogenesis – Importance of parent material reduction, volumetric expansion, and Eolian influx in Lateritization, Geoderma, 51(1–4), 5191.CrossRefGoogle Scholar
Brocard, G. Y., Willenbring, J. K., Miller, T. E., and Scatena, F. N. (2016), Relict landscape resistance to dissection by upstream migrating knickpoints, Journal of Geophysical Research (Earth Surface), 121, 11821203, doi:10.1002/2015JF003678.CrossRefGoogle Scholar
Brooks, R. J., Semenov, M. A., and Jamieson, P. D. (2001), Simplifying Sirius: Sensitivity analysis and development of a meta-model for wheat yield prediction, European Journal of Agronomics, 14, 4360.CrossRefGoogle Scholar
Brunetti, M. T., Guzzetti, F., and Rossi, M. (2009), Probability distributions of landslide volumes, Nonlinear Processes in Geophysics, 16(2), 179188.CrossRefGoogle Scholar
Buck, W. R. (1993), Effect of lithospheric thickness on the formation of high- and low-angle normal faults, Geology, 21(10), 933936, doi:10.1130/0091-7613(1993) 021<0933:EOLTOT> 2.3.CO;2.2.3.CO;2>CrossRefGoogle Scholar
Bufe, A., Paola, C., and Burbank, D. W. (2016), Fluvial bevelling of topography controlled by lateral channel mobility and uplift rate, Nature Geoscience, 9(9), 706710, doi:10.1038/ngeo2773.CrossRefGoogle Scholar
Bull, L. J., and Kirkby, M. J. (1997), Gully processes and modelling, Progress in Physical Geography, 21(3), 354374, doi:10.1177/030913339702100302.CrossRefGoogle Scholar
Bull, L. J., and Kirkby, M. J. (2002), Channel heads and channel extension, in Dryland rivers: Hydrology and geomorphology of semi-arid channels, edited by Bull, L. J. and Kirkby, M. J., pp. 263298, Wiley, Chichester, UK.Google Scholar
Burke, B. C., Heimsath, A. M., and White, A. F. (2007), Coupling chemical weathering with soil production across soil-mantled landscapes, Earth Surface Processes and Landforms, 32, 853873, doi:10.1002/esp.1443.CrossRefGoogle Scholar
Burnett, S. A., Hattey, J. A., Johnson, J. E., Swann, A. L., Moore, D. I., and Collins, S. L. (2012), Effects of fire on belowground biomass in Chihuahuan desert grassland, Ecosphere, 3(11), 107, doi:10.1890/ES12-00248.1.CrossRefGoogle Scholar
Burr, D. M., et al. (2013), Fluvial features on Titan: Insights from morphology and modeling, Geological Society of America Bulletin, 125(3–4), 299321, doi:10.1130/B30612.1.CrossRefGoogle Scholar
Burroughs, E. R., and Thomas, B. R. (1977), Declining root strength in Douglas-Fir after felling as a factor in slope stability, Rep. INT-190, US Department of Agriculture, Ogden, Utah.Google Scholar
Buss, H. L., Sak, P. B., Webb, S. M., and Brantley, S. L. (2008), Weathering of the Rio Blanco quartz diorite, Luquillo Mountains, Puerto Rico: Coupling oxidation, dissolution, and fracturing, Geochimica Cosmochimica Acta, 72, 44884507, doi:10.1016/j.gca.2008.06.020.CrossRefGoogle Scholar
Buzzi, O., Giacomini, A., and Spadari, M. (2012), Laboratory investigation of high values of restitution coefficients, Rock Mechanics and Rock Engineering, 45, 3543, doi:10.1007/s00603-011-0183-0.CrossRefGoogle Scholar
Byrne, K. A., and Kiely, G. (2008), Evaluation of models (PaSim, RothC, CENTURY and DNDC) for simulation of grassland carbon cycling at plot, field and regional scale, Environment Protection Agency, Wexford, Ireland.Google Scholar
Cagnoli, B., and Manga, M. (2003), Pumice-pumice collisions and the effect of the impact angle, Geophysical Research Letters, 30(12), 1636, doi:10.1029/2003GL017421.CrossRefGoogle Scholar
Campbell, C. S., Cleary, P. W., and Hopkins, M. (1995), Large-scale landslide simulations: Global deformation, velocities and basal friction, Journal of Geophysical Research (Solid Earth), 100(B5), 82678283, doi:10.1029/94JB00937.CrossRefGoogle Scholar
Camporeale, C., Perucca, E., Ridolfi, L., and Gurnell, A. M. (2013), Modelling the interactions between river morphodynamics and riparian vegetation, Reviews of Geophysics, 51, 379414, doi:10.1002/rog.20014.CrossRefGoogle Scholar
Canadell, J. G., Jackson, R. B., Ehleringer, J. R., Mooney, H. A., Sala, O. E., and Schulze, E. D. (1996), Maximum rooting depth of vegetation types at the global scale, Oecologia, 108(4), 583595, doi:10.1007/BF00329030.CrossRefGoogle ScholarPubMed
Canales, J. B., Ito, G., Detrick, R. S., and Sinton, J. (2002), Crustal thickness along the western Galapagos Spreading Center and the compensation of the Galapagos hotspot swell, Earth and Planetary Science Letters, 203, 311327.CrossRefGoogle Scholar
Carson, M. A., and Kirkby, M. J. (1972), Hillslope form and process, Cambridge University Press, London.Google Scholar
Cawson, J. G., Sheridan, G. J., Smith, H. G., and Lane, P. N. J. (2012), Surface runoff and erosion after prescribed burning and the effect of different fire regimes in forests and shrublands: A review, International Journal of Wildland Fire, 21, 857872, doi:10.1071/WF11160.CrossRefGoogle Scholar
Celia, M. A., and Gray, W. G. (1991), Numerical methods for differential equations: Fundamental concepts for scientific & engineering applications, Prentice-Hall, New York.Google Scholar
Cerdà, A., and Doerr, S. H. (2005), Influence of vegetation recovery on soil hydrology and erodibility following fire: An 11-year investigation, International Journal of Wildland Fire, 14, 423437, doi:10.1071/WF05044.CrossRefGoogle Scholar
Certini, G. (2005), Effects of fire on properties of forest soils: A review, Oecologia, 143, 110, doi:10.1007/S00442-0041788-8.CrossRefGoogle ScholarPubMed
Certini, G., Scalenghe, R., and Woods, W. I. (2013), The impact of warfare on the soil environment, Earth-Science Reviews, 127, 115, doi:10.1016/j.earscirev.2013.08.009.CrossRefGoogle Scholar
Chadwick, O. A., Brimhall, G. H., and Hendricks, D. M. (1990), From a black to a gray box: A mass balance interpretation of pedogenesis, Geomorphology, 3, 369390.CrossRefGoogle Scholar
Chase, C. G. (1992), Fluvial landsculpting and the fractal dimension of topography, Geomorphology, 5(1/2), 3957, doi:10.1016/0169-555X(92)90057-U.CrossRefGoogle Scholar
Chatanantavet, P., and Parker, G. (2009), Physically based modeling of bedrock incision by abrasion, plucking, and macroabrasion, Journal of Geophysical Research (Earth Surface), 114, F04018, doi:10.1029/2008JF001044.Google Scholar
Chatanantavet, P., and Parker, G. (2011), Quantitative testing of model of bedrock channel incision by plucking and macroabrasion, Journal of Hydraulic Division – ASCE, 137(11), 13111317, doi:10.1061/(ASCE)HY.1943-7900.0000421.CrossRefGoogle Scholar
Chau, K. T., Wong, R. H. C., and Wu, J. J. (2002), Coefficient of restitution and rotational motions of rockfall impacts, International Journal of Rock Mechanics & Mining Sciences, 39, 6977, doi:10.1016/S1365-1609(02)00016–3.CrossRefGoogle Scholar
Chen, A., Darbon, J., and Morel, J.-M. (2014), Landscape evolution models: A review of their fundamental equations, Geomorphology, 219, 6886, doi:10.1016/j.geomorph.2014.04.037.CrossRefGoogle Scholar
Chen, M., Willgoose, G. R., and Saco, P. M. (2015), Evaluation of the hydrology of the IBIS land surface model in a semi-arid catchment, Hydrological Processes, 29, 653670, doi:10.1002/hyp.10156.CrossRefGoogle Scholar
Cheng, D.-L., and Niklas, K. J. (2007), Above- and below-ground biomass relationships across 1534 forested communities, Annals of Botany, 99, 95102, doi:10.1093/aob/mcl206.CrossRefGoogle ScholarPubMed
Chia, E. K., Bassett, M., Nimmo, D. G., Leonard, S. W. J., Ritchie, E. G., Clarke, M. F., and Bennett, A. F. (2015), Fire severity and fire-induced landscape heterogeneity affect arboreal mammals in fire-prone forests, Ecosphere, 6(10), 190.CrossRefGoogle Scholar
Chien-Yuan, C., Fan-Chieh, Y., Sheng-Chi, L., and Kei-Wai, C. (2007), Discussion of landslide self-organized criticality and the initiation of debris flow, Earth Surface Processes and Landforms, 32(2), 197209, doi:10.1002/esp.1400.CrossRefGoogle Scholar
Chigara, M., and Oyama, T. (1999), Mechanism and effect of chemical weathering of sedimentary rocks, Engineering Geology, 55(1), 314, doi:10.1016/S0013-7952(99)00102-7.CrossRefGoogle Scholar
Chowdhury, A. F. M. K. (2017), Development and evaluation of stochastic rainfall models for urban water security assessment, PhD Thesis, University of Newcastle, Callaghan, Australia.CrossRefGoogle Scholar
Chowdhury, A. F. M. K., Lockart, N., Willgoose, G. R., Kuczera, G., Kiem, A. S., and Parana Manage, N. (2018), Development and evaluation of a stochastic daily rainfall model with long term variability, Hydrology and Earth System Sciences, doi:10.5194/hess-2017-84.CrossRefGoogle Scholar
Claessens, L., Heuvelink, G. B. M., Schoorl, J. M., and Veldkamp, A. (2005), DEM resolution effects on shallow landslide hazard and soil redistribution modelling, Earth Surface Processes and Landforms, 30, 461477, doi:10.1002/esp.1155.CrossRefGoogle Scholar
Clarke, L. E. (2015), Experimental alluvial fans: Advances in understanding of fan dynamics and processes, Geomorphology, 244, 135145, doi:10.1016/j.geomorph.2015.04.013.CrossRefGoogle Scholar
Clarke, R. H. (1979), Reservoir properties of conglomerates and conglomerate sandstones, American Association of Petroleum Geologists Bulletin, 63, 799809.Google Scholar
Cohen, S. (2010), Spatial description of soil properties through landscape-pedogenesis modelling, PhD thesis, University of Newcastle, Callaghan, Australia.Google Scholar
Cohen, S., Willgoose, G. R., and Hancock, G. R. (2008), A methodology for calculating the spatial distribution of the area-slope equation and the hypsometric integral within a catchment, Journal of Geophysical Research (Earth Surface), 113, F03027, doi:10.1029/2007JF000820.Google Scholar
Cohen, S., Willgoose, G. R., and Hancock, G. R. (2009), The mARM spatially distributed soil evolution model: A computationally efficient modeling framework and analysis of hillslope soil surface organization, Journal of Geophysical Research (Earth Surface), 114, F03001, doi:10.1029/2008JF001214.Google Scholar
Cohen, S., Willgoose, G. R., and Hancock, G. R. (2010), The mARM3D spatially distributed soil evolution model: Three-dimensional model framework and analysis of hillslope and landform responses, Journal of Geophysical Research (Earth Surface), 115, F04013, doi:10.1029/2009JF001536.Google Scholar
Cohen, S., Willgoose, G. R., and Hancock, G. R. (2013), Soil response to late-Quaternary climatic oscillations, new insights based on numerical simulations, Quaternary Research, 79(3), 452457, doi:10.1016/j.yqres.2013.01.001.CrossRefGoogle Scholar
Cohen, S., Svoray, T., Sela, S., Hancock, G. R., and Willgoose, G. R. (2015), The effect of sediment-transport, weathering and aeolian mechanisms on soil evolution, Journal of Geophysical Research (Earth Surface), 120(2), 260274, doi:10.1002/2014JF003186.CrossRefGoogle Scholar
Cohen, S., Svoray, T., Sela, S., Hancock, G. R., and Willgoose, G. R. (2016), Soilscape evolution of aeolian-dominated hillslopes during the Holocene: Investigation of sediment transport mechanisms and climatic-anthropogenic drivers, Earth Surface Dynamics, 5, 101112, doi:10.5194/esurf-5-101-2017.CrossRefGoogle Scholar
Coleman, K., and Jenkinson, D. S. (2014), RothC – A model for the turnover of carbon in soil. Model description and users guide, Rothamsted Research, UK.Google Scholar
Coleman, K., Jenkinson, D. S., Crocker, G. J., Grace, P. R., Klir, J., Korschens, M., Poulton, P. R., and Richter, D. D. (1997), Simulating trends in soil organic carbon in long-term experiments using RothC-26.3, Geoderma, 81(1–2), 2944.CrossRefGoogle Scholar
Collins, D. B. G., and Bras, R. L. (2008), Climatic control of sediment yield in dry lands following climate and land cover change, Water Resources Research, 44, W10405, doi:10.1029/2007WR006474.CrossRefGoogle Scholar
Collins, D. B. G., and Bras, R. L. (2010), Climatic and ecological controls of equilibrium drainage density, relief, and channel concavity in dry lands, Water Resources Research, 46, W04508, doi:10.1029/2009WR008615.CrossRefGoogle Scholar
Collins, D. B. G., Bras, R. L., and Tucker, G. E. (2004), Modeling the effects of vegetation-erosion coupling on landscape evolution, Journal of Geophysical Research (Earth Surface), 109(F3), F03004.Google Scholar
Collins, K. M., Price, O. F., and Penman, T. D. (2015), Spatial patterns of wildfire ignitions in south-eastern Australia, International Journal of Wildland Fire, 24, 10981108, doi:10.1071/WF15054.CrossRefGoogle Scholar
Conrad, C. P., and Lithgow-Bertelloni, C. (2002), How mantle slabs drive plate tectonics, Science, 298(5591), 207209.CrossRefGoogle ScholarPubMed
Corti, G., Agnelli, A., Certini, G., and Ugolini, F. C. (2001), The soil skeleton as a tool for disentangling pedogenetic history: A case study in Tuscany, central Italy, Quaternary International, 78, 3344, doi:10.1016/S1040-6182(00)00113-0.CrossRefGoogle Scholar
Coulthard, T. J. (2001), Landscape evolution models: A software review, Hydrological Processes, 15(1), 165173.CrossRefGoogle Scholar
Coulthard, T. J., Hicks, D. M., and Van De Wiel, M. J. (2007), Cellular modelling of river catchments and reaches: Advantages, limitations and prospects, Geomorphology, 90, 192207, doi:10.1016/j.geomorph.2006.10.030.CrossRefGoogle Scholar
Coulthard, T. J., Macklin, M. G., and Kirkby, M. J. (2002), A cellular model of Holocene upland river basin and alluvial fan evolution, Earth Surface Processes and Landforms, 27(3), 269288.CrossRefGoogle Scholar
Coulthard, T. J., and Skinner, C. J. (2016), The sensitivity of landscape evolution models to spatial and temporal rainfall resolution, Earth Surface Dynamics, 4, 757771, doi:10.5194/esurf-4-757-2016.CrossRefGoogle Scholar
Coventry, R. J., Moss, A. J., and Verster, E. (1988), Thin surface soil layers attributable to rain-flow transportation on low-angle slopes: An example from semi-arid tropical Queensland, Australia, Earth Surface Processes and Landforms, 13, 421430.CrossRefGoogle Scholar
Cox, N. R. (1980), On the relationship between bedrock lowering and regolith thickness, Earth Surface Processes, 5(3), 271274, doi:10.1002/esp.3760050305.CrossRefGoogle Scholar
Cramer, W., and Field, C. B. (1999), Comparing global models of terrestrial net primary productivity (NPP): Introduction, Global Change Biology, 5(Suppl. 1), 34.Google Scholar
Crave, A., and Davy, P. (2001), A stochastic ‘‘precipiton’’ model for simulating erosion/sedimentation dynamics, Computers & Geosciences, 27(7), 815827, doi:10.1016/S0098-3004(00)00167-9.CrossRefGoogle Scholar
Culling, W. E. H. (1960), Analytical theory of erosion, Journal of Geology, 68(3), 336344.CrossRefGoogle Scholar
Culling, W. E. H. (1963), Soil creep and the development of hillside slopes, Journal of Geology, 71(2), 127161.CrossRefGoogle Scholar
Cundall, P. A., and Strack, O. D. L. (1979), A discrete numerical model for granular assemblies, Geotechnique, 29(1), 4765, doi:10.1680/geot.1979.29.1.47.CrossRefGoogle Scholar
Dagbovie, A. S., and Sheratt, J. A. (2014), Pattern selection and hysteresis in the Rietkerk model for banded vegetation in semi-arid environments, Journal of the Royal Society Interface, 11, 20140465, doi:10.1098/rsif.2014.0465.CrossRefGoogle ScholarPubMed
Dahlen, F. A. (1990), Critical taper model of fold-and-thrust belts and accretionary wedges, Annual Review of Earth and Planetary Sciences, 18, 5599, doi:10.1146/annurev.earth.18.1.55.CrossRefGoogle Scholar
Daily, J. W., and Harleman, D. R. F. (1966), Fluid dynamics, Addison-Wesley, Reading, MA.Google Scholar
Davidson, E. A., Belk, E., and Boone, R. D. (1998), Soil water content and temperature as independent or confounded factors controlling soil respiration in a temperate mixed hardwood forest, Global Change Biology, 4(2), 217227, doi:10.1046/j.1365-2486.1998.00128.x.CrossRefGoogle Scholar
Davidson, E. A., and Janssens, I. A. (2006), Temperature sensitivity of soil carbon decomposition and feedbacks to climate change, Nature, 440(7081), 165173, doi:10.1038/nature04514.CrossRefGoogle ScholarPubMed
Davis, W. M. (1899), The geographical cycle, Geographical Journal, 14, 481504.CrossRefGoogle Scholar
Davy, P., and Lague, D. (2009), Fluvial erosion/transport equation of landscape evolution models revisited, Journal of Geophysical Research (Earth Surface), 114, F03007, doi:10.1029/2008JF001146.Google Scholar
DeBano, L. F. (2000), The role of fire and soil heating on water repellency in wildland environments: A review, Journal of Hydrology, 231–232, 195206.CrossRefGoogle Scholar
De Marco, A., Gentile, A. E., Arena, C., and De Santo, A. V. (2005), Organic matter, nutrient content, and biological activity in burned and unburned soils of a Mediterranean maquis area of southern Italy, International Journal of Wildland Fire, 14, 365377, doi:10.1071/WF05030.CrossRefGoogle Scholar
Dennison, P. E., Brewer, S. C., Arnold, J. D., and Moritz, M. A. (2014), Large wildfire trends in the western United States, 1984–2011, Geophysical Research Letters, 41, 29282933, doi:10.1002/2014GL059576.CrossRefGoogle Scholar
DeNovio, N. M., Saiers, J. E., and Ryan, J. N. (2004), Colloid movement in unsaturated porous media: Recent advances and future directions, Vadose Zone Journal, 3(2), 338251, doi:10.2113/3.2.338.CrossRefGoogle Scholar
Dessert, C., Dupre, B., Gaillardet, J., François, L. M., and Allegre, C. J. (2003), Basalt weathering laws and the impact of basalt weathering on the global carbon cycle, Chemical Geology, 202, 257273, doi:10.1016/j.chemgeo.2002.10.001.CrossRefGoogle Scholar
de Vries, H., Becker, T., and Eckhardt, B. (1994), Power law distribution of discharge in ideal networks, Water Resources Research, 30(12), 35413543.CrossRefGoogle Scholar
de Vries, W., van Grinsven, J. J. M., van Breemen, N., Leeters, E. E. J. M., and Jansen, P. C. (1995), Impacts of acid deposition on concentrations and fluxes of solutes in acid sandy forest soils in the Netherlands, Geoderma, 67(1–2), 1743, doi:10.1016/0016-7061(94)00056-G.CrossRefGoogle Scholar
Dewitte, O., Daoudi, M., Bosco, C., and Van Der Eeckhaut, M. (2015), Predicting the susceptibility to gully initiation in data-poor regions, Geomorphology, 228, 101115, doi:10.1016/j.geomorph.2014.08.010.CrossRefGoogle Scholar
Dialynas, Y. G., Bastola, S., Bras, R. L., Billings, S. A., Markewitz, D., and Richter, D. D. (2016), Topographic variability and the influence of soil erosion on the carbon cycle, Global Biogeochemical Cycle, 30, doi:10.1002/2015GB005302.CrossRefGoogle Scholar
Dietrich, W. E. (1982), Settling velocity of natural particles, Water Resources Research, 18(6), 16151626, doi:10.1029/WR018i006p01615.CrossRefGoogle Scholar
Dietrich, W. E., and Montgomery, D. R. (1998), SHALSTAB: A digital terrain model for mapping shallow landslide potential, National Council for Air and Stream Improvement.Google Scholar
Dietrich, W. E., and Perron, J. T. (2006), The search for a topographic signature of life, Nature, 439(7075), 411418.CrossRefGoogle ScholarPubMed
Dietrich, W. E., Reiss, R., Hsu, M. L., and Montgomery, D. R. (1995), A process based model for colluvial soil depth and shallow landsliding using digital elevation data, Hydrological Processes, 9(3/4), 383400, doi:10.1002/hyp.3360090311.CrossRefGoogle Scholar
Dietrich, W. E., and Whiting, P. (1989), Boundary shear stress and sediment transport in river meanders of sand and gravel, in River Meandering, edited by Ikeda, S. and Parker, G., pp. 140, American Geophysical Union, Washington, DC.Google Scholar
Dietrich, W. E., Wilson, C. J., Montgomery, D. R., McKean, J., and Bauer, R. A. (1992), Erosion thresholds and land surface morphology, Geology, 20, 675679.2.3.CO;2>CrossRefGoogle Scholar
Dietrich, W. E., Wilson, C. J., Montgomery, D. R., and McKean, J. (1993), Analysis of erosion thresholds, channel networks, and landscape morphology using a digital terrain model, Journal of Geology, 101(2), 259278.CrossRefGoogle Scholar
Dijkstra, J. J., Meeussen, J. C. L., and Comans, R. N. J. (2004), Leaching of heavy metals from contaminated soils: An experimental and modeling study, Environmental Science & Technology, 38(16), 43904395, doi:10.1021/es049885v.CrossRefGoogle ScholarPubMed
Doetterl, S., Berhe, A. A., Nadeu, E., Wang, Z., Sommer, M., and Fiener, P. (2016), Erosion, deposition and soil carbon: A review of process-level controls, experimental tools and models to address C cycling in dynamic landscapes, Earth-Science Reviews, 154, 102122, doi:10.1016/j.earscirev.2015.12.005.CrossRefGoogle Scholar
Dorren, L. K. A. (2003), A review of rockfall mechanics and modelling approaches, Progress in Physical Geography, 27(1), 6987.CrossRefGoogle Scholar
Dorren, L. K. A., Berger, F., le Hir, C., Mermin, E., and Tardif, P. (2005), Mechanisms, effects and management implications of rockfall in forests, Forest Ecology and Management, 215, 183195, doi:10.1016/j.foreco.2005.05.012.CrossRefGoogle Scholar
Dorren, L. K. A., Berger, F., and Putters, U. S. (2006), Real-size experiments and 3-D simulation of rockfall on forested and non-forested slopes, Natural Hazards and Earth System Sciences, 6, 145153.CrossRefGoogle Scholar
Driscoll, N. W., and Karner, G. D. (1994), Flexural deformation due to Amazon fan loading: A feedback mechanism affecting sediment delivery to margins, Geology, 22, 10151018, doi:10.1130/0091-7613(1994) 022<1015:FDDTAF> 2.3.CO;2.2.3.CO;2>CrossRefGoogle Scholar
Dunai, T. J. (2010), Cosmogenic nuclides: Principles, concepts and applications in the earth surface sciences, Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Dunkerley, D. L. (1997), Banded vegetation: Development under uniform rainfall from a simple cellular automaton model, Plant Ecology, 129, 103111.CrossRefGoogle Scholar
Dunkerley, D. L. (2000), Hydrologic effects of dryland shrubs: Defining the spatial extent of modified soil water uptake rates at an Australian desert site, Journal of Arid Environments, 45, 159172, doi:10.1006/jare.2000.0636.CrossRefGoogle Scholar
Dunkerley, D. L. (2002), Infiltration rates and soil moisture in a groved mulga community near Alice Springs, arid central Australia: Evidence for complex internal rainwater redistribution in a runoff–runon landscape, Journal of Arid Environments, 51(2), 199219, doi:10.1006/jare.2001.0941.CrossRefGoogle Scholar
Dunkerley, D. L., and Brown, K. J. (1995), Runoff and runon areas in a patterned chenopod shrubland, arid western New South Wales, Australia: Characteristics and origin, Journal of Arid Environments, 30(1), 4155.CrossRefGoogle Scholar
Dunkerley, D. L., and Brown, K. J. (1999), Banded vegetation near Broken Hill, Australia: Significance of surface roughness and soil physical properties, Catena, 37(1–2), 7588.CrossRefGoogle Scholar
Dunne, T., Malmon, D. V., and Dunne, K. B. J. (2016), Limits on the morphogenetic role of rain splash transport in hillslope evolution, Journal of Geophysical Research (Earth Surface), 121, doi:10.1002/2015JF003737.Google Scholar
Dunne, T., Malmon, D. V., and Mudd, S. M. (2010), A rain splash transport equation assimilating field and laboratory measurements, Journal of Geophysical Research (Earth Surface), 115, F01001, doi:10.1029/2009JF001302.Google Scholar
Durda, D. D., Bottke, W. F., Enke, B. L., Merline, W. J., Asphaug, E., Richardson, D. C., and Leinhardt, Z. M. (2004), The formation of asteroid satellites in large impacts: Results from numerical simulations, Icarus, 170(1), 243257.CrossRefGoogle Scholar
Durda, D. D., Bottke, W. F., Nesvorny, D., Enke, B. L., Merline, W. J., Asphaug, E., and Richardson, D. C. (2007), Size–frequency distributions of fragments from SPH/N-body simulations of asteroid impacts: Comparison with observed asteroid families, Icarus, 186(2), 498516.CrossRefGoogle Scholar
Durda, D. D., Movshovitz, N., Richardson, D. C., Asphaug, E., Morgan, A., Rawlings, A. R., and Vest, C. (2011), Experimental determination of the coefficient of restitution for meter-scale granite spheres, Icarus, 211(1), 849855.CrossRefGoogle Scholar
Eagleson, P. S. (2002), Ecohydrology: Darwinian expression of vegetation form and function, Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Einstein, H. A. (1950), The bed-load function for sediment transportation in open channel flows, Technical Bulletin 1026, US Department of Agriculture, Washington, DC.Google Scholar
Elias, E. A., Cichota, R., Torriani, H. H., and de Jong van Lier, Q. (2004), Analytical soil-temperature model: Correction for temporal variation of daily amplitude, Soil Science Society of America Journal, 68, 784788, doi:10.2136/sssaj2004.7840.Google Scholar
Enquist, B. J., and Niklas, K. J. (2002), Global allocation rules for patterns of biomass partitioning in seed plants, Science, 295(5559), 15171520.CrossRefGoogle ScholarPubMed
Eppes, M. C., and Griffing, D. (2010), Granular disintegration of marble in nature: A thermal-mechanical origin for a grus and corestone landscape, Geomorphology, 117, 170180, doi:10.1016/j.geomorph.2009.11.028.CrossRefGoogle Scholar
Espinoza, J. C., Chavez, S., Ronchail, J., Junquas, C., Takahashi, K., and Lavado, W. (2015), Rainfall hotspots over the southern tropical Andes: Spatial distribution, rainfall intensity, and relations with large-scale atmospheric circulation, Water Resources Research, 51, 34593475, doi:10.1002/2014WR016273.CrossRefGoogle Scholar
Espirito-Santo, F. D. B., et al. (2014), Size and frequency of natural forest disturbances and the Amazon forest carbon balance, Nature Communications, 5, 16, doi:10.1038/ncomms4434.CrossRefGoogle ScholarPubMed
Evans, K. G., and Loch, R. J. (1996), Using the RUSLE to identify factors controlling erosion rates of mine spoils, Land Degradation and Development, 7, 267277.3.0.CO;2-E>CrossRefGoogle Scholar
Evans, K. G., Saynor, M. J., and Willgoose, G. R. (1996), The effect of vegetation on waste rock erosion, Ranger Uranium Mine, Northern Territory, Bulletin of the Australian Institute of Mining and Metallurgy, 6, 2123.Google Scholar
Evans, K. G., Saynor, M. J., Willgoose, G. R., and Riley, S. J. (2000), Post-mining landform evolution modelling. I. Derivation of sediment transport model and rainfall-runoff model parameters, Earth Surface Processes and Landforms, 25(7), 743763.3.0.CO;2-0>CrossRefGoogle Scholar
Evans, K. G., and Willgoose, G. R. (2000), Post-mining landform evolution modelling. II. Effects of vegetation and surface ripping, Earth Surface Processes and Landforms, 25(8), 803823.3.0.CO;2-4>CrossRefGoogle Scholar
Fagherazzi, S., Howard, A. D., and Wiberg, P. L. (2002), An implicit finite difference method for drainage basin evolution, Water Resources Research, 38(7), art. no.-1116.CrossRefGoogle Scholar
FAO (2009), Harmonized World Soil Database (version 1.1), FAO, Rome, Italy, and IIASA, Laxenburg, Austria.Google Scholar
Fatichi, S., Pappas, C., and Ivanov, V. Y. (2016), Modeling plant–water interactions: an ecohydrological overview from the cell to the global scale, Wiley Interdisciplinary Reviews – Water, 3(3), 327368, doi:10.1002/wat2.1125.CrossRefGoogle Scholar
Field, J. B., and Anderson, G. R. (2003), Biological agents in regolith processes: Case study on the Southern Highlands, NSW, paper presented at Advances in Regolith: Proceedings of the CRC LEME Regional Regolith Symposia, 2003, Cooperative Research Centre for Landscape Environments and Mineral Exploration (CRC LEME), Canberra, www.crcleme.org.au/Pubs/Advancesinregolith/Field_Anderson.pdf.Google Scholar
Finke, P. A. (2012), Modeling the genesis of luvisols as a function of topographic position in loess parent material, Quaternary International, 265, 317, doi:10.1016/j.quaint.2011.10.016.CrossRefGoogle Scholar
Finke, P. A., Samouelian, A., Sourez-Bonnet, M., Laroche, B., and Cornu, S. S. (2015), Assessing the usage potential of SoilGen2 to predict clay translocation under forest and agricultural land uses, European Journal of Soil Science, 66, 194205, doi:10.1111/ejss.12190.CrossRefGoogle Scholar
Finke, P. A., Vanwalleghem, T., Opolot, E., Poesen, J., and Deckers, J. (2013), Estimating the effect of tree uprooting on variation of soil horizon depth by confronting pedogenetic simulations to measurements in a Belgian loess area, Journal of Geophysical Research (Earth Surface), 118, 21242139, doi:10.1002/jgrf.20153.CrossRefGoogle Scholar
Finney, M. A. (1999), Mechanistic modeling of landscape fire patterns, in Spatial modeling of forest landscape change: Approaches and applications, edited by Mladenoff, D. J. and Baker, W. L., pp. 186209, Cambridge University Press, Cambridge.Google Scholar
Finney, M. A. (2004), FARSITE: Fire Area Simulator – Model Development and Evaluation, Rep. RMRS-RP-4, USDA Forest Service Rocky Mountain Research Station.Google Scholar
Fleming, R. W., and Johnson, A. M. (1975), Rates of seasonal creep of silty clay soil, Quarterly Journal of Engineering Geology and Hydrogeology, 8(1), 129, doi:10.1144/GSL.QJEG.1975.008.01.01.CrossRefGoogle Scholar
Fleskens, L., Kirkby, M. J., and Irvine, B. J. (2016), The PESERA-DESMICE modeling framework for spatial assessment of the physical impact and economic viability of land degradation mitigation technologies, Frontiers in Environmental Science, 4, 31, doi:10.3389/fenvs.2016.00031.CrossRefGoogle Scholar
Fletcher, R. C., and Brantley, S. L. (2010), Reduction of bedrock blocks as corestones in the weathering profile: Observations and models, American Journal of Science, 310, 131164, doi:10.2475/03.2010.01].CrossRefGoogle Scholar
Fletcher, R. C., Buss, H. L., and Brantley, S. L. (2006), A spheroidal weathering model coupling porewater chemistry to soil thicknesses during steady-state denudation, Earth and Planetary Science Letters, 244, 444457, doi:10.1016/j.epsl.2006.01.055.CrossRefGoogle Scholar
Fontúrbel, M. T., Barreiro, A., Vega, J. A., Martín, A., Jiménez, E., Carballas, T., Fernández, C., and Díaz-Raviña, M. (2012), Effects of an experimental fire and post-fire stabilization treatments on soil microbial communities, Geoderma, 191, 5160, doi:10.1016/j.geoderma.2012.01.037.CrossRefGoogle Scholar
Fordham, A. W. (1990), Weathering of biotite into dioctahedral clay minerals, Clay Minerals, 25, 5163.CrossRefGoogle Scholar
Foster, G. R. (1982), Modelling the erosion process, in Hydrologic Modelling of Small Watersheds, edited by Haan, C. T., pp. 295380, American Society of Agricultural Engineers, St Joseph, Missouri.Google Scholar
Foster, G. R., Flanagan, D. C., Nearing, M. A., Lane, L. J., Risse, L. M., and Finkner, S. C. (1995), Chapter 11: Hillslope erosion component, in USDA-Water Erosion Prediction Project Hillslope Profile and Watershed Model Documentation, NSERL Report #10, edited by Flanagan, D. C. and Nearing, M. A., US Department of Agriculture ARS, West Lafayette, Indiana.Google Scholar
Fox, M., Goren, L., May, D. A., and Willett, S. D. (2014), Inversion of fluvial channels for paleorock uplift rates in Taiwan, Journal of Geophysical Research (Earth Surface), 119, 18531875, doi:10.1002/2014JF003196.CrossRefGoogle Scholar
Fox, R. W., and McDonald, A. T. (1998), Introduction to Fluid Mechanics, 5th ed., Wiley, Chichester, UK.Google Scholar
Fraser, H. J. (1935), Experimental study of the porosity and permeability of clastic sediments, Journal of Geology, 83(8), 9101010.CrossRefGoogle Scholar
Freer, J., McDonnell, J. J., Beven, K. J., Peters, N. E., Burns, D. A., Hooper, R. P., Aulenbach, B., and Kendall, C. (2002), The role of bedrock topography on subsurface storm flow, Water Resources Research, 38(12), art. no.-1269.CrossRefGoogle Scholar
Freeze, R. A., and Cherry, J. A. (1979), Groundwater, Prentice Hall, Englewood Cliffs, NJ.Google Scholar
Friedlingstein, P., et al. (2006), Climate-carbon cycling feedback analysis results from the C4MIP model intercomparison, Journal of Climate, 19(14), 33373353.CrossRefGoogle Scholar
Fujiwara, T., Kodaira, S., No, T., Kaiho, Y., Takahashi, N., and Kaneda, Y. (2011), The 2011 Tohoku-Oki earthquake: Displacement reaching the trench axis, Science, 334(6060), 1240, doi:10. 1126/science. 1211554.CrossRefGoogle ScholarPubMed
Furbish, D. J., Ball, A. E., and Schmeeckle, M. (2012a), A probabilistic description of the bed load sediment flux: 4. Fickian diffusion at low transport rates, Journal of Geophysical Research (Earth Surface), 117, F03034, doi:10.1029/2012JF002356.Google Scholar
Furbish, D. J., Childs, E. M., Haff, P. K., and Schmeeckle, M. W. (2009), Rain splash of soil grains as a stochastic advection-dispersion process, with implications for desert plant-soil interactions and land-surface evolution, Journal of Geophysical Research (Earth Surface), 114, F00A03, doi:10.1029/2009JF001265.Google Scholar
Furbish, D. J., and Fagherazzi, S. (2001), Stability of creeping soil and implications for hillslope evolution, Water Resources Research, 37(10), 26072618.CrossRefGoogle Scholar
Furbish, D. J., Haff, P. K., Roseberry, J. C., and Schmeeckle, M. (2012b), A probabilistic description of the bed load sediment flux: 1. Theory, Journal of Geophysical Research (Earth Surface), 117, F03031, doi:10.1029/2012JF002352.Google Scholar
Furbish, D. J., Hamner, K. K., Schmeeckle, M., Borosund, M. N., and Mudd, S. M. (2007), Rain splash of dry sand revealed by high-speed imaging and sticky paper splash targets, Journal of Geophysical Research (Earth Surface), 112, F01001, doi:10.1029/2006JF000498.Google Scholar
Furbish, D. J., Roseberry, J. C., and Schmeeckle, M. (2012c), A probabilistic description of the bed load sediment flux: 3. The particle velocity distribution and the diffusive flux, Journal of Geophysical Research (Earth Surface), 117, F03033, doi:10.1029/2012JF002355.Google Scholar
Gabet, E. J. (2000), Gopher bioturbation: Field evidence for nonlinear hillslope diffusion, Earth Surface Processes and Landforms, 25(13), 14191428.3.0.CO;2-1>CrossRefGoogle Scholar
Gabet, E. J., and Dunne, T. (2003), Sediment detachment by rain power, Water Resources Research, 39(1), ESG1, doi:10.1029/2001WR000656.CrossRefGoogle Scholar
Gabet, E. J., and Mudd, S. M. (2010), Bedrock erosion by root fracture and tree throw: A coupled biogeomorphic model to explore the humped soil production function and the persistence of hillslope soils, Journal of Geophysical Research (Earth Surface), 115, F04005, doi:10.1029/2009JF001526.Google Scholar
Gabet, E. J., Reichman, O. J., and Seabloom, E. W. (2003), The effects of bioturbation on soil processes and sediment transport, Annual Review of Earth and Planetary Sciences, 31, 249273.CrossRefGoogle Scholar
Garcia-Corona, R., Benito, E., de Blas, E., and Varela, M. E. (2004), Effects of heating on some soil physical properties related to its hydrological behaviour in two north-western Spanish soils, International Journal of Wildland Fire, 13, 195199, doi:10.1071/WF03068.CrossRefGoogle Scholar
Garreaud, R. D., Vuille, M., Compagnucci, R., and Marengo, J. (2009), Present-day South American climate, Paleogeography Paleoclimatology Paleoecology, 281, 180195, doi:10.1016/j.palaeo.2007.10.032.CrossRefGoogle Scholar
Gasparini, N. M., Tucker, G. E., and Bras, R. L. (1999), Downstream fining through selective particle sorting in an equilibrium drainage network, Geology, 27(12), 10791082.2.3.CO;2>CrossRefGoogle Scholar
Gasparini, N. M., Tucker, G. E., and Bras, R. L. (2004), Network-scale dynamics of grain-size sorting: Implications for downstream fining, stream-profile concavity, and drainage basin morphology, Earth Surface Processes and Landforms, 29(4), 401421.CrossRefGoogle Scholar
Gasparini, N. M., Whipple, K. X., and Bras, R. L. (2007), Predictions of steady state and transient landscape morphology using sediment-flux-dependent river incision models, Journal of Geophysical Research (Earth Surface), 112, F03S09, doi:10.1029/2006JF000567.Google Scholar
Géminard, J.-C., and Losert, W. (2002), Frictional properties of biodisperse granular matter: Effect of mixing ratio, Physical Review E, 65(4), D041301, doi:10.1103/PhysRevE.65.041301.CrossRefGoogle ScholarPubMed
Géminard, J.-C., Losert, W., and Gollub, J. P. (1999), Frictional mechanics of wet granular material, Physical Review E, 59(5), D5881, doi:10.1103/PhysRevE.59.5881.CrossRefGoogle ScholarPubMed
Gercek, H. (2007), Poisson’s ratio values for rocks, International Journal of Rock Mechanics & Mining Sciences, 44(1), 113, doi:10.1016/j.ijrmms.2006.04.011.CrossRefGoogle Scholar
Gerten, D. (2013), A vital link: Water and vegetation in the Anthropocene, Hydrology and Earth System Sciences, 17, 38413852, doi:10.5194/hess-17-3841-2013.CrossRefGoogle Scholar
Gerya, T. (2010), Introduction to numerical geodynamic modelling, Cambridge University Press, Cambridge.Google Scholar
Ghannoum, O. (2009), C4 photosynthesis and water stress, Annals of Botany, 103, 6350644, doi:10.1093/aob/mcn093.Google ScholarPubMed
Ghezzehei, T. A., and Or, D. (2001), Rheological properties of wet soils and clays under steady and oscillatory stresses, Soil Science Society of America, 65, 624637.CrossRefGoogle Scholar
Giacomini, A., Buzzi, O., Renard, B., and Giani, G. P. (2009), Experimental studies on fragmentation of rockfalls on impact with rock surfaces, International Journal of Rock Mechanics & Mining Sciences, 46, 708715, doi:10.1016/j.ijrmms.2008.09.007.CrossRefGoogle Scholar
Gignoux, J., House, J. I., Hall, D., Masse, D., Nacro, H. B., and Abbadie, L. (2001), Design and test of a generic cohort model of soil organic matter decomposition: The SOMKO model, Global Ecology and Biogeography, 10(6), 639660.CrossRefGoogle Scholar
Gilbert, G. (1909), The convexity of hillslopes, Journal of Geology, 17, 344350.CrossRefGoogle Scholar
Gilchrist, A. R., Kooi, H., and Beaumont, C. (1994), Post-Gondwana geomorphic evolution of south-western Africa: Implications for the controls on landscape development from observations and numerical experiments, Journal of Geophysical Research (Solid Earth), 99(B6), 1221112228.CrossRefGoogle Scholar
Gläser, G., Wernli, H., Kerkweg, A., and Teubler, F. (2015), The transatlantic dust transport from North Africa to the Americas – Its characteristics and source regions, Journal of Geophysical Research (Atmospheres), 120(121), 1123111252, doi:10.1002/2015JD023792.Google Scholar
Gómez-Villar, A., and García-Ruiz, J. M. (2000), Surface sediment characteristics and present dynamics in alluvial fans of the central Spanish Pyrenees, Geomorphology, 34(3–4), 127144, doi:10.1016/S0169-555X(99)00116-6.CrossRefGoogle Scholar
Goodfellow, B. W., Hilley, G. E., Webb, S. M., Sklar, L. S., Moon, S., and Olson, C. A. (2016), The chemical, mechanical, and hydrological evolution of weathering granitoid, Journal of Geophysical Research (Earth Surface), 121, doi:10.1002/2016JF003822.Google Scholar
Goodwin, I. D., van Ommen, T. D., Curran, M. A. J., and Mayewski, P. A. (2004), Mid latitude winter climate variability in the South Indian and southwest Pacific regions since 1300 AD, Climate Dynamics, 22, 783794, doi:10.1007/s00382-004-0403-3.CrossRefGoogle Scholar
Goren, L., Willett, S. D., Herman, F., and Braun, J. (2014), Coupled numerical–analytical approach to landscape evolution modeling, Earth Surface Processes and Landforms, 39(4), 522545, doi:10.1002/esp.3514.CrossRefGoogle Scholar
Gorsevski, P. V., Gessler, P. E., Boll, J., Elliot, W. J., and Foltz, R. B. (2006), Spatially and temporally distributed modeling of landslide susceptibility, Geomorphology, 80, 178198, doi:10.1016/j.geomorph.2006.02.011.CrossRefGoogle Scholar
Graf, W. H. (1984), Hydraulics of sediment transport, Water Resources Publications, Highlands Ranch, CO.Google Scholar
Graham, R. C., Rossi, A. M., and Hubbert, K. R. (2010), Rock to regolith conversion: Producing hospitable substrates for terrestrial ecosystems, GSA Today, 20 (2), 49, doi:10.1130/GSAT57A.1.CrossRefGoogle Scholar
Greene, R. S. B., Chartres, C. J., and Hodgkinson, K. A. (1990), The effects of fire on the soil in a degraded semi-arid woodland. I. Cryptogam cover and physical and micromorphological properties, Australian Journal of Soil Research, 28, 755777.CrossRefGoogle Scholar
Gregorich, E. G., Greer, K. J., Anderson, D. W., and Liang, B. C. (1998), Carbon distribution and losses: Erosion and deposition effects, Soil Tillage Research, 47(3–4), 291302, doi:10.1016/S0167-1987(98)00117-2.CrossRefGoogle Scholar
Griffiths, D. V., Huang, J., and deWolfe, G. F. (2011), Numerical and analytical observations on long and infinite slopes, International Journal for Numerical and Analytical Methods in Geomechanics, 35, 569585, doi:10.1002/nag.909.CrossRefGoogle Scholar
Grimm, V., et al. (2006), A standard protocol for describing individual-based and agent-based models, Ecological Modelling, 198, 115126, doi:10.1016/j.ecolmodel.2006.04.023.CrossRefGoogle Scholar
Guerit, L., Metiver, F., Devauchelle, O., Lajeunesse, E., and Barrier, L. (2014), Laboratory alluvial fans in one dimension, Physical Review E, 90, 022203, doi:10.1103/PhysRevE.90.022203.CrossRefGoogle ScholarPubMed
Güneralp, I., and Marston, R. A. (2012), Process–form linkages in meander morphodynamics: Bridging theoretical modeling and real world complexity, Progress in Physical Geography, 36(6), 718746, doi:10.1177/0309133312451989.CrossRefGoogle Scholar
Gupta, S., Collier, J. S., Palmer-Fengate, A., and Potter, G. (2007), Catastrophic flooding origin of shelf valley systems in the English Channel, Nature, 448(19 July), 342346, doi:doi:10.1038/nature06018.CrossRefGoogle ScholarPubMed
Gyasi-Agyei, Y., Willgoose, G. R., and de Troch, F. P. (1995), Effects of vertical resolution and map scale of digital elevation maps on geomorphologic parameters used in hydrology, Hydrological Processes, 9(3/4), 121140.CrossRefGoogle Scholar
Hack, J. T. (1957), Studies of longitudinal stream profiles in Virginia and Maryland, USGS Professional Papers 294-B, USGS.CrossRefGoogle Scholar
Hairsine, P. B., and Rose, C. W. (1992a), Modelling water erosion due to overland flow using physical principles: 1 Sheet flow, Water Resources Research, 28(1), 237243.CrossRefGoogle Scholar
Hairsine, P. B., and Rose, C. W. (1992b), Modelling water erosion due to overland flow using physical principles: 2 Rill flow, Water Resources Research, 28(1), 245250.CrossRefGoogle Scholar
Hairsine, P. B., and Sander, G. C. (2009), Comment on ‘A transport-distance based approach to scaling erosion rates’: Parts 1, 2 and 3 by Wainwright et al., Earth Surface Processes and Landforms, 34, 882885, doi:10.1002/esp.1782.CrossRefGoogle Scholar
Hallet, P. D., Caul, S., Daniell, T. J., Barre, P., and Paterson, E. (2010), The rheology of rhizosphere formation by root exudates and soil microbes, paper presented at 19th World Congress of Soil Science, 1–6 August 2010, Brisbane, Australia.Google Scholar
Hammer, P. T. C., Clowes, R. M., Cook, F. A., Vasudevan, K., and van der Velden, A. J. (2013), The big picture: A lithospheric cross section of the North American continent, GSA Today, 21(6), 410, doi:10.1130/GSATG95A.1.CrossRefGoogle Scholar
Han, S. C., Sauber, J., Luthcke, S. B., Ji, C., and Pollitz, F. F. (2008), Implications of postseismic gravity change following the great 2004 Sumatra-Andaman earthquake from the regional harmonic analysis of GRACE intersatellite tracking data, Journal of Geophysical Research (Solid Earth), 113(B11), B11413, doi:10.1029/2008JB005705.Google Scholar
Hancock, G. R. (2003), Effect of catchment aspect ratio on geomorphological descriptors, in Prediction in Geomorphology, edited by Wilcock, P. R. and Iverson, R. M., pp. 217230, American Geophysical Union, Washington, DC.Google Scholar
Hancock, G. R. ( 2005), The use of digital elevation models in the identification and characterisation of catchments, Hydrological Processes, 19, 17271749.CrossRefGoogle Scholar
Hancock, G. R., Coulthard, T. J., and Lowry, J. B. C. (2016), Long-term landscape trajectory – Can we make predictions about landscape form and function for post-mining landforms?, Geomorphology, 266, 121132, doi:10.1016/j.geomorph.2016.05.014.CrossRefGoogle Scholar
Hancock, G. R., Coulthard, T. J., Martinez, C., and Kalma, J. D. (2011), An evaluation of landscape evolution models to simulate decadal and centennial scale soil erosion in grassland catchments, Journal of Hydrology, 398(3–4), 171183, doi:10.1016/j.jhydrol.2010.12.002.CrossRefGoogle Scholar
Hancock, G. R., Evans, K. G., McDonnell, J. J., and Hopp, L. (2012), Ecohydrological controls on soil erosion and landscape evolution, Ecohydrology, 5(4), 478490, doi:10.1002/eco.241.CrossRefGoogle Scholar
Hancock, G. R., Evans, K. G., Willgoose, G. R., Moliere, D. R., Saynor, M. J., and Loch, R. J. (2000), Medium term erosion simulation of an abandoned mine site using the SIBERIA landscape evolution model, Australian Journal of Soil Research, 38, 249263.CrossRefGoogle Scholar
Hancock, G. R., Hugo, J., Webb, A., and Turner, L. (2017a), Sediment transport in steep forested catchments – An assessment of scale and disturbance, Journal of Hydrology, 547, 613622, doi:10.1016/j.jhydrol.2017.02.022.CrossRefGoogle Scholar
Hancock, G. R., Lowry, J. B. C., and Coulthard, T. J. (2015a), Catchment reconstruction – Erosional stability at millennial time scales using landscape evolution models, Geomorphology, 231, 1527, doi:10.1016/j.geomorph.2014.10.034.CrossRefGoogle Scholar
Hancock, G. R., Lowry, J. B. C., Coulthard, T. J., Evans, K. G., and Moliere, D. R. (2010), A catchment scale evaluation of the SIBERIA and CAESAR landscape evolution models, Earth Surface Processes and Landforms, 35(8), 863875, doi:10.1002/esp.1863.CrossRefGoogle Scholar
Hancock, G. R., Lowry, J. B. C., and Dever, C. (2017b), Surface disturbance and erosion by pigs: A medium term assessment for the Monsoonal tropics, Land Degradation and Development, 28(1), 255264, doi:10.1002/ldr.2636.CrossRefGoogle Scholar
Hancock, G. R., Lowry, J. B. C., Dever, C., and Braggins, M. (2015b), Does introduced fauna influence soil erosion? A field and modelling assessment, Science of the Total Environment, 518–519, 189–200, doi:10.1016/j.scitotenv.2015.02.086.CrossRefGoogle Scholar
Hancock, G. R., Lowry, J. B. C., Moliere, D. R., and Evans, K. G. (2008), An evaluation of an enhanced soil erosion and landscape evolution model: A case study assessment of the former Nabarlek uranium mine, Northern Territory, Australia, Earth Surface Processes and Landforms, 33(13), 20452063, doi:10.1002/esp.1653.CrossRefGoogle Scholar
Hancock, G. R., Lowry, J. B. C., and Saynor, M. J. (2017c), Surface armour and erosion – Impacts on long-term landscape evolution, Land Degradation and Development, doi:10.1002/ldr.2738.CrossRefGoogle Scholar
Hancock, G. R., Martinez, C., Evans, K. G., and Moliere, D. R.. (2006). A comparison of SRTM and high-resolution digital elevation models and their use in catchment geomorphology and hydrology – Australian examples, Earth Surface Processes and Landforms, 31, 809824.CrossRefGoogle Scholar
Hancock, G. R., and Willgoose, G. R. (2001), The use of a landscape simulator in the validation of the SIBERIA catchment evolution model: Declining equilibrium landforms, Water Resources Research, 37(7), 19811992.CrossRefGoogle Scholar
Hancock, G. R., and Willgoose, G. R. (2002), The use of a landscape simulator in the validation of the SIBERIA landscape evolution model: Transient landforms, Earth Surface Processes and Landforms, 27(12), 13211334.CrossRefGoogle Scholar
Hancock, G. R., and Willgoose, G. R. (2004), An experimental and computer simulation study of erosion on a mine tailings dam wall, Earth Surface Processes and Landforms, 29(4), 457475.CrossRefGoogle Scholar
Hancock, G. R., Willgoose, G. R., and Evans, K. G. (2002), Testing of the SIBERIA landscape evolution model using the Tin Camp Creek, Northern Territory, Australia, field catchment, Earth Surface Processes and Landforms, 27(2), 125143.CrossRefGoogle Scholar
Hantson, S., Pueyo, S., and Chuvieco, E. (2016), Global fire size distribution: From power law to log-normal, International Journal of Wildland Fire, 25, 403412, doi:10.1071/WF15108.CrossRefGoogle Scholar
Hart, S. A., and Luckai, N. J. (2014), Charcoal carbon pool in North American boreal forests, Ecosphere, 5(8), 99, doi:10.1890/ES13-00086.1.CrossRefGoogle Scholar
Hasbargen, L. E., and Paola, C. (2000), Landscape instability in an experimental drainage basin, Geology, 28(12), 10671070.2.0.CO;2>CrossRefGoogle Scholar
Hasegawa, K. (1977), Computer simulation of the gradual migration of meandering channels, in Proceedings of the Hokkaido Branch, Japan Society of Civil Engineering, pp. 197–202 (in Japanese).Google Scholar
Heimsath, A. M., Chappell, J., Spooner, N. A., and Questiaux, D. G. (2003), Creeping soil, Geology, 30(2), 111114.2.0.CO;2>CrossRefGoogle Scholar
Heimsath, A. M., Dietrich, W. E., Nishiizummi, K., and Finkel, R. C. (1997), The soil production function and landscape equilibrium, Nature, 388(6640), 358361.CrossRefGoogle Scholar
Heimsath, A. M., Dietrich, W. E., Nishiizummi, K., and Finkel, R. C. (1999), Cosmogenic nuclides, topography, and the spatial variation of soil depth, Geomorphology, 27(1–2), 151172.CrossRefGoogle Scholar
Heimsath, A. M., Furbish, D. J., and Dietrich, W. E. (2005), The illusion of diffusion: Field evidence for depth-dependent sediment transport, Geology, 33(12), 949952, doi:10.1130/G21868.1.CrossRefGoogle Scholar
Heimsath, A. M., Hancock, G. R., and Fink, D. (2009), The ‘humped’ soil production function: Eroding Arnhem Land, Australia, Earth Surface Processes and Landforms, 34(12), 16741684.CrossRefGoogle Scholar
Heister, K. (2016), How accessible is the specific surface area of minerals? A comparative study with Al-containing minerals as model substances, Geoderma, 263, 815, doi:10.1016/j.geoderma.2015.09.001.CrossRefGoogle Scholar
Henderson, F. M. (1966), Open channel flow, Macmillan, New York.Google Scholar
Hénin, S., and Dupuis, M. (1945), Essai de bilan de la matière organique des sols, Annales agronomiques, 15, 161172.Google Scholar
Hergarten, S. (2003), Landslides, sandpiles, and self-organized criticality, Natural Hazards and Earth System Sciences, 3, 505514.CrossRefGoogle Scholar
Hilinski, T. E. (2001), Implementation of exponential depth distribution of organic carbon in the CENTURY model, Colorado State University, Fort Collins. www.nrel.colostate.edu/projects/century5/reference/html/Century/exp-c-distrib.htm.Google Scholar
HilleRisLambers, R., Rietkerk, M., van Den Bosch, F., Prins, H. H. T., and de Kroon, H. (2001), Vegetation pattern formation in semi-arid grazing systems, Ecology, 82(1), 5061, doi:10.1890/0012-9658(2001)082[0050: VPFISA]2.0.CO;2.CrossRefGoogle Scholar
Hilton, J. E., Miller, C., Sullivan, A. L., and Rucinski, C. (2015), Effects of spatial and temporal variation in environmental conditions on simulation of wildfire spread, Environmental Modelling Software, 67, 118127, doi:10.1016/j.envsoft.2015.01.015.CrossRefGoogle Scholar
Ho, J.-Y., Lee, K. T., Chang, T.-C., Wang, Z.-Y., and Liao, Y.-H. (2012), Influences of spatial distribution of soil thickness on shallow landslide prediction, Engineering Geology, 124, 3846, doi:10.1016/j.enggeo.2011.09.013.CrossRefGoogle Scholar
Ho, M., Verdon-Kidd, D. C., Kiem, A. S., and Drysdale, R. N. (2014), Broadening the spatial applicability of paleoclimate information – A case study for the Murray-Darling Basin, Australia, Journal of Climate, 27(7), 24772495, doi:10.1175/JCLI-D-13-00071.1.CrossRefGoogle Scholar
Hobley, D. E. J., Adams, J. M., Nudurupati, S. S., Hutton, E. W. H., Gasparini, N. M., Istanbulluoglu, E., and Tucker, G. E. (2017), Creative computing with Landlab: An open-source toolkit for building, coupling, and exploring two-dimensional numerical models of Earth-surface dynamics, Earth Surface Dynamics, 5, 2146, doi:10.5194/esurf-5-21-2017.CrossRefGoogle Scholar
Hobley, E. U., Willgoose, G. R., Frisia, S., and Jacobsen, G. E. (2013), Environmental and site factors controlling the vertical distribution and radiocarbon ages of organic carbon in a sandy soil, Biology and Fertility of Soils, 49(8), 10151026, doi:10.1007/s00374-013–0800-z.CrossRefGoogle Scholar
Hobley, E. U., Willgoose, G. R., Frisia, S., and Jacobsen, G. E. (2014), Vertical distribution of charcoal in a sandy soil: Evidence from DRIFT spectra, SEM and radiocarbon dating, European Journal of Soil Science, 65(7), 751762, doi:10.1111/ejss.12171.CrossRefGoogle Scholar
Hobley, E. U., and Wilson, B. (2016), The depth distribution of organic carbon in the soils of eastern Australia, Ecosphere, 7(1), 121, doi:e01214. 10.1002/ecs2.1214.CrossRefGoogle Scholar
Hobley, E., Wilson, B., Wilkie, A., Gray, J., and Koen, T. (2015), Drivers of soil organic carbon storage and vertical distribution in Eastern Australia, Plant and Soil, 390(1–2), 111127, doi:10.1007/s11104-015-2380-1.CrossRefGoogle Scholar
Hodson, M. E. (2006), Does reactive surface area depend on grain size? Results from pH 3, 25 °C far-from-equilibrium flow-through dissolution experiments on anorthite and biotite, Geochimica et Cosmochimica Acta, 70(7), 16551667, doi:10.1016/j.gca.2006.01.001.CrossRefGoogle Scholar
Hole, F. D. (1981), Effects of animals on soils, Geoderma, 25(1–2), 75112, doi:10.1016/0016-7061(81)90008-2.CrossRefGoogle Scholar
Holmes, K. W., Sweeney, R. D. A, S., Numata, I., Matricardi, E., Biggs, T. W., Batista, G., and Chadwick, O. A. (2004), Soil databases and the problem of establishing regional biogeochemical trends, Global Change Biology, 10(5), 796814, doi:10.1111/j.1529-8817.2003.00753.x.CrossRefGoogle Scholar
Holzworth, D. P., Snow, V., Janssen, S., Athanasiadis, I. N., Donatelli, M., Hoogenboom, G., White, J. W., and Thorburn, P. (2015), Agricultural production systems modelling and software: Current status and future prospects, Environmental Modelling Software, 72, 276286, doi:10.1016/j.envsoft.2014.12.013.CrossRefGoogle Scholar
Hoosbeek, M. R. (1994), Towards the quantitative modeling of pedogenesis: A review – Reply – Pedology beyond the soil landscape paradigm: Pedodynamics and the connection to other sciences, Geoderma, 63(3–4), 303307.CrossRefGoogle Scholar
Hoosbeek, M. R., and Bryant, R. B. (1992), Towards the quantitative modeling of pedogenesis – A review, Geoderma, 55(3–4), 183210.CrossRefGoogle Scholar
Horwath, W. (2007), Carbon cycling and formation of soil organic matter, in Soil Microbiology, Ecology, and Biochemistry, edited by Paul, E. A., pp. 303340, Academic Press, Amsterdam.CrossRefGoogle Scholar
Hosseini, M., Keizer, J. J., Pelayo, O. G., Prats, S. A., Ritsema, C. J., and Geissen, V. (2016), Effect of fire frequency on runoff, soil erosion, and loss of organic matter at the micro-plot scale in north-central Portugal, Geoderma, 269, 126137, doi:10.1016/j.geoderma.2016.02.004.CrossRefGoogle Scholar
Houghton, R. A. (2007), Balancing the global carbon budget, Annual Review of Earth and Planetary Sciences, 35, 313347, doi:10.1146/annurev.earth.35.031306.140057.CrossRefGoogle Scholar
Hovius, N., Stark, C. P., and Allen, P. A. (1997), Sediment flux from a mountain belt derived by landslide mapping, Geology, 25(3), 231234, doi:10.1130/0091-7613(1997)025<0231:SFFAMB>2.3.CO;2.2.3.CO;2>CrossRefGoogle Scholar
Howard, A. D. (1971), Simulation of stream networks by headward growth and branching, Geographical Analysis, 3, 2950.CrossRefGoogle Scholar
Howard, A. D. (1980), Thresholds in river regimes, in Thresholds in Geomorphology, 9th Binghampton Geomorphology Symposium, 1978, edited by Coates, D. R. and Vitek, J. D., pp. 227258, Allen and Unwin, Boston.Google Scholar
Howard, A. D. (1992), Modelling channel migration and floodplain sedimentation in meandering streams, in Lowland floodplain rivers, edited by Carling, P. and Petts, G. E., pp. 142, Wiley, Chichester, UK.Google Scholar
Howard, A. D. (1994), A detachment-limited model of drainage-basin evolution, Water Resources Research, 30(7), 22612285.CrossRefGoogle Scholar
Howard, A. D. (1996), Modelling channel evolution and floodplain morphology, in Floodplain processes, edited by Anderson, M. G., Walling, D. E., and Bates, P. D., pp. 1562, Wiley, Chichester, UK.Google Scholar
Howard, A. D. (1998), Long profile development of bedrock channels: Interaction of weathering, mass wasting, bed erosion, and sediment transport, in Rivers over rocks: Fluvial processes in bedrock channels, edited by Tinkler, K. J. and Wohl, E. E., pp. 297319, America Geophysical Union, Washington, DC.CrossRefGoogle Scholar
Howard, A. D. (2009), How to make a meandering river, Proceedings of the National Academy of Sciences USA, 106(41), 1724617246.CrossRefGoogle ScholarPubMed
Howard, A. D., Dietrich, W. E., and Seidl, M. A. (1994), Modeling fluvial erosion on regional to continental scales, Journal of Geophysical Research (Solid Earth), 99(B7), 1397113986.CrossRefGoogle Scholar
Howard, A. D., and Kerby, G. (1983), Channel changes in badlands, Geological Society of America Bulletin, 94(6), 739752.2.0.CO;2>CrossRefGoogle Scholar
Howard, A. D., and Knutson, T. R. (1984), Sufficient conditions for river meandering – A simulation approach, Water Resources Research, 20(11), 16591667.CrossRefGoogle Scholar
Huang, H. Q., and Willgoose, G. R. (1993), Some scale dependent properties of distributed rainfall-runoff models, paper presented at Towards the 21st Century, Hydrology and Water Resources Symposium, Institution of Engineers (Aust.), Newcastle.Google Scholar
Huang, X., and Niemann, J. D. (2006), An evaluation of the geomorphically effective event for fluvial processes over long periods, Journal of Geophysical Research (Earth Surface), 111, doi:10.1029/2006JF000477.Google Scholar
Huang, X., and Niemann, J. D. (2008), How do streamflow generation mechanisms affect watershed hypsometry?, Earth Surface Processes and Landforms, 33, 751772, doi:10.1002/esp.1573.CrossRefGoogle Scholar
Hudson, B. D. (1994), Soil organic matter and available water capacity, Journal of Soil and Water Conservation, 49(2), 189194.Google Scholar
Huggett, R. J. (1975), Soil landscape systems: A model for soil genesis, Geoderma, 13, 122.CrossRefGoogle Scholar
Huntly, N., and Inouye, R. (1988), Pocket gophers in ecosystems: Patterns and mechanisms, Bioscience, 38(1), 786793.CrossRefGoogle Scholar
Hupy, J. P., and Schaetzl, R. J. (2006), Introducing ‘Bombturbation’, a singular type of soil disturbance and mixing, Soil Science, 171(11), 823836, doi:10.1097/01.ss.0000228053.08087.19.CrossRefGoogle Scholar
Hupy, J. P., and Schaetzl, R. J. (2008), Soil development on the WWI battlefield of Verdun, France, Geoderma, 145, 3749, doi:10.1016/j.geoderma.2008.01.024.CrossRefGoogle Scholar
Hutchinson, M. F. (1995), Interpolating mean rainfall using thin plate smoothing splines, International Journal of Geographical Information Systems, 9(4), 385403, doi:10.1080/02693799508902045.CrossRefGoogle Scholar
Hutchinson, M. F. (1998), Interpolation of rainfall data with thin plate smoothing splines – Part II: Analysis of Topographic Dependence, Journal of Geographic Information and Decision Analysis, 2(2), 152167.Google Scholar
Ibbitt, R. P., Willgoose, G. R., and Duncan, M. J. (1999), Channel network simulation models compared with data from the Ashley River, New Zealand, Water Resources Research, 35(12), 38753890.CrossRefGoogle Scholar
Ikeda, H., Parker, G., and Sawai, K. (1981), Bend theory of river meanders: Part I, Linear development, Journal of Fluid Mechanics, 112, 363377.CrossRefGoogle Scholar
IPCC (2007), Climate change 2007: The physical science basis. Contribution of Working Group 1 to the Fourth Assessment report of the Intergovernmental Panel on Climate Change, edited by Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., Tignor, M., and Miller, H. L., p. 996, Cambridge University Press, Cambridge.Google Scholar
Istanbulluoglu, E., and Bras, R. L. (2005), Vegetation-modulated landscape evolution: Effects of vegetation on landscape processes, drainage density, and topography, Journal of Geophysical Research (Earth Surface), 110, F02012, doi:10.1029/2004JF000249.Google Scholar
Istanbulluoglu, E., Tarboton, D. G., Pack, R. T., and Luce, C. H. (2004), Modeling of the interactions between forest vegetation, disturbances, and sediment yields, Journal of Geophysical Research (Earth Surface), 109, F01009, doi:10.1029/2003JF000041.Google Scholar
Iverson, R. M. (1990), Groundwater flow fields in infinite slopes, Geotechnique, 40(1), 139143.CrossRefGoogle Scholar
Iverson, R. M. (1997), The physics of debris flows, Reviews of Geophysics, 35(3), 245296.CrossRefGoogle Scholar
Iverson, R. M., and Denlinger, R. P. (2001), Flow of variably fluidized granular masses across three-dimensional terrain 1. Coulomb mixture theory, Journal of Geophysical Research (Solid Earth), 106(B1), 537552.CrossRefGoogle Scholar
Iverson, R. M., and George, D. L. (2015), A depth-averaged debris-flow model that includes the effects of evolving dilatancy. I. Physical basis, Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 470, 20130819, doi:10.1098/rspa.2013.0819.Google Scholar
Iverson, R. M., Logan, M., and Denlinger, R. P. (2004), Granular avalanches across irregular three-dimensional terrain: 2. Experimental tests, Journal of Geophysical Research (Earth Surface), 109(F1), F01015, doi:10.1029/2003JF000084.Google Scholar
Iverson, R. M., and Vallance, J. W. (2001), New views of granular mass flows, Geology, 29(2), 115118, doi:10.1130/0091-7613(2001)029<0115:NVOGMF>2.0.CO;2.2.0.CO;2>CrossRefGoogle Scholar
Ivins, E. R., and Wolf, D. (2008), Glacial isostatic adjustment: New developments from advanced observing systems and modeling, Journal of Geodynamics, 46, 6977, doi:10.1016/j.jog.2008.06.002.CrossRefGoogle Scholar
Ijjasz-Vasquez, E. J., Bras, R. L., Rodriguez-Iturbe, I., Rigon, R., and Rinaldo, A. (1993), Are river basins Optimal Channel Networks, Advances in Water Resources, 16(1), 6979.CrossRefGoogle Scholar
Jackson, R. B., Canadell, J. G., Ehleringer, J. R., Mooney, H. A., Sala, O. E., and Schulze, E. D. (1996), A global analysis of root distributions for terrestrial biomes, Oecologia, 108(3), 389411, doi:10.1007/BF00333714.CrossRefGoogle ScholarPubMed
Jagercikova, M., Evrard, O., Balesdent, J., Lefevre, I., and Cornu, S. S. (2014), Modeling the migration of fallout radionuclides to quantify the contemporary transfer of fine particles in Luvisol profiles under different land uses and farming practices, Soil Tillage Research, 140, 8297, doi:10.1016/j.still.2014.02.013.CrossRefGoogle Scholar
James, A. L., McDonnell, J. J., Tromp-van Meerveld, I., and Peters, N. E. (2010), Gypsies in the palace: Experimentalist’s view on the use of 3-D physics-based simulation of hillslope hydrological response, Hydrological Processes, 24(26), 38783893, doi:10.1002/hyp.7819.CrossRefGoogle Scholar
James, T. S., and Morgan, W. J. (1990), Horizontal motions due to post-glacial rebound, Geophysical Research Letters, 17(7), 957960.CrossRefGoogle Scholar
Jarvis, N. J., Villholth, K. G., and Ulen, B. (1999), Modelling particle mobilization and leaching in macroporous soil, European Journal of Soil Science, 50(4), 621632.CrossRefGoogle Scholar
Jenkinson, D. S., and Coleman, K. (2008), The turnover of organic carbon in subsoils. Part 2. Modelling carbon turnover, European Journal of Soil Science, 59, 400413, doi:10.1111/j.1365-2389.2008.01026.x.CrossRefGoogle Scholar
Jenkinson, D. S., and Rayner, J. H. (1977), The turnover of soil organic matter in some of the Rothamsted classical experiments, Soil Science, 123(5), 298305, doi:10.1097/00010694-197705000-00005.CrossRefGoogle Scholar
Jenny, H. (1941), Factors of soil formation – A system of quantitative pedology, McGraw-Hill, New York.Google Scholar
Jenny, H. (1961), Derivation of state factor equations of soils and ecosystems, Proceedings of the Soil Science Society of America, 25, 385388.CrossRefGoogle Scholar
Jobbágy, E. G., and Jackson, R. B. (2000), The vertical distribution of soil organic carbon and its relation to climate and vegetation, Ecological Applications, 10(2), 423436, doi:10.2307/2641104.CrossRefGoogle Scholar
Johansen, M. P., Hakonson, T. E., and Breshears, D. D. (2001), Post-fire runoff and erosion from rainfall simulation: Contrasting forests with shrublands and grasslands, Hydrological Processes, 15(15), 29532965.CrossRefGoogle Scholar
Johnson, B. C., Campbell, C. S., and Melosh, H. J. (2016), The reduction of friction in long runout landslides as an emergent phenomenon, Journal of Geophysical Research (Earth Surface), 121, 881889, doi:10.1002/ 2015JF003751.CrossRefGoogle Scholar
Johnson, C. G., Kokelaar, B. P., Iverson, R. M., Logan, M., LaHusen, R. G., and Gray, J. M. N. T. (2012), Grain-size segregation and levee formation in geophysical mass flows, Journal of Geophysical Research (Earth Surface), 117, F01032, doi:10.1029/2011JF002185.Google Scholar
Johnson, I. R. (2008), Biophysical pasture model documentation: Model documentation for DairyMod. EcoMod and the SGS Pasture Model, http://imj.com.au/wp-content/uploads/2014/08/GrazeMod.pdf.Google Scholar
Johnson, J. P., and Whipple, K. X. (2007), Feedbacks between erosion and sediment transport in experimental bedrock channels, Earth Surface Processes and Landforms, 32, 10481062, doi:10.1002/esp.1471.CrossRefGoogle Scholar
Johnston, C. A., et al. (2004), Carbon cycling in soil, Frontiers in Ecology and the Environment, 2(10), 522528, doi:10.1890/1540-9295(2004)002[0522:CCIS]2.0.CO;2.CrossRefGoogle Scholar
Johnstone, S. A., and Hilley, G. E. (2015), Lithologic control on the form of soil-mantled hillslopes, Geology, 43(1), 8386, doi:10.1130/G36052.1.CrossRefGoogle Scholar
Julien, P. Y. (2014), Downstream hydraulic geometry of alluvial rivers, in Sediment dynamics from the summit to the sea, IAHS Publ. 367, IAHS, New Orleans, doi:10.5194/piahs-367-3-2015.Google Scholar
Julien, P. Y., and Wargadalam, J. (1995), Alluvial channel geometry – Theory and applications, Journal of Hydraulic Division – ASCE, 121(4), 312325, doi:10.1061/(ASCE)0733–9429(1995)121:4(312).CrossRefGoogle Scholar
Kaiser, M., Zederer, D. P., Ellerbrook, R. H., Sommer, M., and Ludwig, B. (2016), Effects of mineral characteristics on content, composition, and stability of organic matter fractions separated from seven forest topsoils of different pedogenesis, Geoderma, 263, 17, doi:10.1016/j.geoderma.2015.08.029.CrossRefGoogle Scholar
Kalma, J. D., McVicar, T. R., and McCabe, M. F. (2008), Estimating land surface evaporation: A review of methods using remotely sensed surface temperature data, Surveys in Geophysics, 29, 421469, doi:10.1007/s10712-008-9037-z.CrossRefGoogle Scholar
Katagis, T., Gitas, I. Z., Toukiloglou, P., Veraverbeke, S., and Goosens, R. (2014), Trend analysis of medium- and coarse-resolution time series image data for burned area mapping in a Mediterranean ecosystem, International Journal of Wildland Fire, 23, 668677, doi:10.1071/WF12055.CrossRefGoogle Scholar
Kavetski, D., Kuczera, G., and Franks, S. W. (2006), Bayesian analysis of input uncertainty in hydrological modeling: 1. Theory, Water Resources Research, 42(3), W03407.Google Scholar
Keating, B. A., et al. (2003), An overview of APSIM, a model designed for farming systems simulation, European Journal of Agronomy, 18, 267288.CrossRefGoogle Scholar
Keeley, J. E. (2009), Fire intensity, fire severity and burn severity: A brief review and suggested usage, International Journal of Wildland Fire, 18, 116126, doi:10.1071/WF07049.CrossRefGoogle Scholar
Kelemen, P. B., and Behn, M. D. (2016), Formation of lower continental crust by relamination of buoyant arc lavas and plutons, Nature Geoscience, 9(3), 197205, doi:10.1038/ngeo2662.CrossRefGoogle Scholar
Kinnell, P. I. A. (2010), Event soil loss, runoff and the Universal Soil Loss Equation family of models: A review, Journal of Hydrology, 385, 384397, doi:10.1016/j.jhydrol.2010.01.024.CrossRefGoogle Scholar
Kirchner, J. W. (1993), Statistical inevitability of Horton’s laws and the apparent randomness of stream channel networks, Geology, 21, 591594.2.3.CO;2>CrossRefGoogle Scholar
Kirkby, M. J. (1967), Measurement and theory of soil creep, Journal of Geology, 75(4), 359378.CrossRefGoogle Scholar
Kirkby, M. J. (1971), Hillslope process-response models based on the continuity equation, in Slopes: Form and process, pp. 1530, Institute of British Geographers, London.Google Scholar
Kirkby, M. J. (1976), Tests of the random network model and its application to basin hydrology, Earth Surface Processes, 1, 197212, doi:10.1002/esp.3290010302.CrossRefGoogle Scholar
Kirkby, M. J. (1977), Soil development models as a component of slope models, Earth Surface Processes, 2, 203230, doi:10.1002/esp.3290020212.CrossRefGoogle Scholar
Kirkby, M. J. (1985), A basis for soil profile modelling in a geomorphic context, European Journal of Soil Science, 36(1), 97121, doi:10.1111/j.1365-2389.1985.tb00316.x.CrossRefGoogle Scholar
Kirkby, M. J. (1989), A model to estimate the impact of climatic-change on hillslope and regolith form, Catena, 16(4–5), 321341, doi:10.1016/0341-8162(89)90018-0.CrossRefGoogle Scholar
Kirkby, M. J. (2000), Limits to modelling in the Earth and environmental sciences, in Geocomputation, edited by Abrahart, R. J., Openshaw, S., and See, L. M., pp. 374386, Taylor and Francis, London.Google Scholar
Kirkby, M. J., Bull, L. J., Poesen, J., Nachtergaele, J., and Vandekerckhove, L. (2003), Observed and modelled distributions of channel and gully heads – with examples from SE Spain and Belgium, Catena, 50(2–4), 415434.CrossRefGoogle Scholar
Kirkby, M. J., and Statham, I. (1975), Surface stone movement and scree formation, Journal of Geology, 83(3), 349362.CrossRefGoogle Scholar
Kirkby, M. J., and Willgoose, G. R. (2005), Weathering limited or transport limited removal in bedrock channel systems, paper presented at IAG, 7–11 September, Zaragoza, Spain.Google Scholar
Klein, F. W. (2016), Lithospheric flexure under the Hawaiian volcanic load: Internal stresses and a broken plate revealed by earthquakes, Journal of Geophysical Research (Solid Earth), 121, 24002428, doi:10.1002/ 2015JB012746.CrossRefGoogle Scholar
Klemann, V., Martinec, Z., and Ivins, E. R. (2008), Glacial isostasy and plate motion, Journal of Geodynamics, 46, 95103, doi:10.1016/j.jog.2008.04.005.CrossRefGoogle Scholar
Klepeis, K. A., Clarke, G. L., and Rushmer, T. (2003), Magma transport and coupling between deformation and magmatism in the continental lithosphere, GSA Today.2.0.CO;2>CrossRefGoogle Scholar
Knisel, W. (1980), CREAMS: A field-scale model for chemicals, runoff, and erosion from Agricultural Management Systems, Conservation Research Report No. 26, US Department of Agriculture, Washington, DC.Google Scholar
Knorr, W., and Lakshmi, V. (2001), Assimilation of fAPAR and surface temperature into a land surface and vegetation model, in Land surface hydrology, meteorology and climate: Observations and modeling, edited by Lakshmi, V., Albertson, J., and Schaake, J., pp. 177200, American Geophysical Union, Washington, DC.CrossRefGoogle Scholar
Koltermann, C. E., and Gorelick, S. M. (1992), Paleoclimatic signature in terrestrial flood deposits, Science, 256, 17751782.CrossRefGoogle ScholarPubMed
Koltermann, C. E., and Gorelick, S. M. (1995), Fractional packing model for hydraulic conductivity derived from sediment mixtures, Water Resources Research, 31(12), 32833297.CrossRefGoogle Scholar
Konno, K. (2016), A general parameterized mathematical food web model that predicts a stable green world in the terrestrial ecosystem, Ecological Monographs, 86(2), 190214, doi:10.1890/15-1420.CrossRefGoogle Scholar
Kooi, H., and Beaumont, C. (1994), Escarpment evolution on high-elevation rifted margins: Insights derived from a surface process model that combines diffusion, advection and reaction, Journal of Geophysical Research (Solid Earth), 99(B6), 1219112209.CrossRefGoogle Scholar
Kotroni, V., and Lagouvardos, K. (2008), Lightning occurrence in relation with elevation, terrain slope, and vegetation cover in the Mediterranean, Journal of Geophysical Research (Atmospheres), D21118, doi:10.1029/2008JD010605.CrossRefGoogle Scholar
Kuczera, G. (1987), Prediction of water yield reductions following a bushfire in ash-mixed species eucalypt forest, Journal of Hydrology, 94(3–4), 215236.CrossRefGoogle Scholar
Kuczera, G. (1989), An application of Bayesian nonlinear-regression to hydrologic models, Advances in Engineering Software and Workstations, 11(3), 149155.CrossRefGoogle Scholar
Kuehl, S. A., et al. (2016), A source-to-sink perspective of the Waipaoa River margin, Earth-Science Reviews, 153(301–334), doi:10.1016/j.earscirev.2015.10.001.CrossRefGoogle Scholar
Kump, L. R., Brantley, S. L., and Arthur, M. A. (2000), Chemical weathering, atmospheric CO2, and climate, Annual Review of Earth and Planetary Sciences , 28, 611667, doi:10.1146/annurev.earth.28.1.611.CrossRefGoogle Scholar
Kyriakidis, P. C., Kim, J., and Miller, N. L. (2001), Geostatistical mapping of precipitation from rain gauge data using atmospheric and terrain characteristics, Journal of Applied Meteorology, 40, 18551877.2.0.CO;2>CrossRefGoogle Scholar
Lacoste, M., Viaud, V., Michot, D., and Walter, C. (2015), Landscape-scale modelling of erosion processes and soil carbon dynamics under land-use and climate change in agroecosystems, European Journal of Soil Science, 66(4), 780791, doi:10.1111/ejss.12267.CrossRefGoogle Scholar
Laflen, J. M., Lane, L. J., and Foster, G. R. (1991), WEPP: A new generation of erosion prediction technology, Journal of Soil and Water Conservation, 46(1), 3438.Google Scholar
Lague, D. (2014), The stream power river incision model: Evidence, theory and beyond, Earth Surface Processes and Landforms, 39, 3861, doi:10.1002/esp.3462.CrossRefGoogle Scholar
Lague, D., Crave, A., and Davy, P. (2003), Laboratory experiments simulating the geomorphic response to tectonic uplift, Journal of Geophysical Research (Solid Earth), 108(B1), 2008, doi:10.1029/2002JB001785.Google Scholar
Lague, D., Hovius, N., and Davy, P. (2005), Discharge, discharge variability, and the bedrock channel profile, Journal of Geophysical Research (Earth Surface), 110, F04006, doi:10.1029/2004JF000259.Google Scholar
Lal, R. (2003), Soil erosion and the global carbon budget, Environment International, 29, 437450, doi:10.1016/S0160-4120(02)00192-7.CrossRefGoogle ScholarPubMed
Lamb, M. P., Dietrich, W. E., and Sklar, L. S. (2008), A model for fluvial bedrock incision by impacting suspended and bed load sediment, Journal of Geophysical Research (Earth Surface), 113, F03025, doi:10.1029/2007JF000915.Google Scholar
Lamb, M. P., Finnegan, N. J., Scheingross, J. S., and Sklar, L. S. (2016), New insights into the mechanics of fluvial bedrock erosion through flume experiments and theory, Geomorphology, 244, 3355, doi:10.1016/j.geomorph.2015.03.003.CrossRefGoogle Scholar
Lambeck, K., and Johnston, P. (1998), The viscosity of the Mantle: Evidence from analyses of glacial-rebound phenomena, in The Earth’s Mantle: Composition, structure and evolution, edited by Jackson, I., pp. 461502, Cambridge University Press, Cambridge.Google Scholar
Lambeck, K., Rouby, H., Purcell, A., Sun, Y., and Sambridge, M. (2014), Sea level and global ice volumes from the Last Glacial Maximum to the Holocene, Proceedings of the National Academy of Sciences U.S.A, 111(43), 1529615303, doi:10.1073/pnas.1411762111.CrossRefGoogle ScholarPubMed
Lambers, H., Chapin, F. S., and Pons, T. L. (2008), Plant physiological ecology, 2nd ed., Springer, New York.CrossRefGoogle Scholar
Lancaster, S. T., and Bras, R. L. (2002), A simple model of river meandering and its comparison to natural channels, Hydrological Processes, 16(1), 126.CrossRefGoogle Scholar
Lane, E. W. (1955), Design of stable channels, Transactions of the American Society of Civil Engineers, 120(1), 12341260.CrossRefGoogle Scholar
Lane, L. J., Shirley, E. D., and Singh, V. P. (1988), Modelling erosion on hillslopes, in Modelling geomorphological systems, edited by Anderson, M. G., pp. 287308, John Wiley & Sons, New York.Google Scholar
Lane, P. N. J., Sheridan, G. J., and Noske, P. J. (2006), Changes in sediment loads and discharge from small mountain catchments following wildfire in south eastern Australia, Journal of Hydrology, 331, 495510, doi:10.1016/j.jhydrol.2006.05.035.CrossRefGoogle Scholar
Langbein, W. B., and Schumm, S. A. (1958), Yield of sediment in relation to mean annual precipitation, Transactions of the American Geophysical Union, 30(6), 10761084, doi:10.1029/ TR039i006p01076.Google Scholar
Langhans, C., Smith, H. G., Chong, D. M. O., Nyman, P., Lane, P. N. J., and Sheridan, G. J. (2016), A model for assessing water quality risk in catchments prone to wildfire, Journal of Hydrology, 534, 407426, doi:10.1016/j.jhydrol.2015.12.048.CrossRefGoogle Scholar
Lapotre, M. G. A., Lamb, M. P., and Williams, R. M. E. (2016), Canyon formation constraints on the discharge of catastrophic outburst floods of Earth and Mars, Journal of Geophysical Research (Planets), 121, doi:10.1002/2016JE005061.Google Scholar
Larcher, W. (2003), Physiological plant ecology: Ecophysiology and stress physiology of functional groups, Springer-Verlag, Berlin.CrossRefGoogle Scholar
Larsen, I. J., Montgomery, D. R., and Korup, O. (2010), Landslide erosion controlled by hillslope material, Nature Geoscience, 3, 247251, doi:10.1038/NGEO776.CrossRefGoogle Scholar
Larsen, L. G., Eppinga, M. B., Passalacqua, P., Getz, W. M., Rose, K. A., and Liang, M. (2016), Appropriate complexity landscape modeling, Earth-Science Reviews, 160, 111130, doi:10.1016/j.earscirev.2016.06.016.CrossRefGoogle Scholar
Lasaga, A. C. (1984), Chemical kinetics of water-rock interactions, Journal of Geophysical Research, 89(B6), 40094025, doi:10.1029/JB089iB06p04009.CrossRefGoogle Scholar
Lauer, J. W., and Parker, G. (2004), Modeling channel-floodplain co-evolution in sand-bed streams, in ASCE World Water and Environmental Resources 2004 Congress, 27 June–1 July, p. 10, ASCE, Salt Lake City.CrossRefGoogle Scholar
Lavier, L. L., and Buck, W. R. (2002), Half graben versus large-offset low-angle normal fault: Importance of keeping cool during normal faulting, Journal of Geophysical Research (Solid Earth), 107(B6), ETG 81, doi:10.1029/2001JB000513.Google Scholar
Lavier, L. L., Buck, W. R., and Poliakov, A. N. B. (2000), Factors controlling normal fault offset in an ideal brittle layer, Journal of Geophysical Research (Solid Earth), 105(B10), 2343123442.CrossRefGoogle Scholar
LeB. Hooke, R. (2005), Principles of glacier mechanics, Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Lebedeva, M. I., Fletcher, R. C., Balashov, V. N., and Brantley, S. L. (2007), A reactive diffusion model describing transformation of bedrock to saprolite, Chemical Geology, 244, 624645, doi:10.1016/j.chemgeo.2007.07.008.CrossRefGoogle Scholar
Legates, D. R., Mahmood, R., Levia, D. F., DeLiberty, T. L., Quiring, S. M., Houser, C., and Nelson, F. E. (2010), Soil moisture: A central and unifying theme in physical geography, Progress in Physical Geography, 35(1), 6586, doi:10.1177/0309133310386514.CrossRefGoogle Scholar
Legros, J. P., and Pedro, G. (1985), The causes of particle-size distribution in soil profiles derived from crystalline rocks, France, Geoderma, 36(1), 1525.CrossRefGoogle Scholar
Lehsten, V., Arneth, A., Spessa, A., Thonicke, K., and Moustakas, A. (2016), The effect of fire on tree–grass coexistence in savannas: A simulation study, International Journal of Wildland Fire, 25, 137146, doi:10.1071/WF14205.CrossRefGoogle Scholar
Leithold, E. L., Blair, N. E., and Wegmann, K. W. (2016), Source-to-sink sedimentary systems and global carbon burial: A river runs through it, Earth-Science Reviews, 153, 3042, doi:10.1016/j.earscirev.2015.10.011.CrossRefGoogle Scholar
Leopold, L. B., Wolman, M. G., and Miller, J. P. (1964), Fluvial processes in geomorphology, Freeman, London.Google Scholar
Li, F., Dyt, C., and Griffiths, C. (2004), 3D modelling of flexural isostatic deformation, Computers & Geosciences, 30, 11051115, doi:10.1016/j.cageo.2004.08.005.CrossRefGoogle Scholar
Li, Z., Liu, L., Chen, J., and Teng, H. H. (2016), Cellular dissolution at hypha- and spore-mineral interfaces revealing unrecognized mechanisms and scales of fungal weathering, Geology, 44(4), 319322, doi:10.1130/G37561.1.CrossRefGoogle Scholar
Little, D. A., Field, J. B., and Welch, S. A. (2005), Metal Dissolution from Rhizosphere and non-Rhizosphere soils using low molecular weight organic acids, paper presented at Regolith 2005: Ten Years of CRC LEME, Cooperative Research Centre for Landscape Environments and Mineral Exploration (CRC LEME), Canberra.Google Scholar
Llovet, J., Ruiz-Valera, M., Josa, R., and Vallejo, V. R. (2009), Soil responses to fire in Mediterranean forest landscapes in relation to the previous stage of land abandonment, International Journal of Wildland Fire, 18, 222232, doi:10.1071/WF07089.CrossRefGoogle Scholar
Lobry de Bruyn, L. A., and Conacher, A. J. (1990), The role of termites and ants in soil modification: A review, Australian Journal of Soil Research, 28(1), 5593.Google Scholar
Lobry de Bruyn, L. A., and Conacher, A. J. (1994), The bioturbation activity of ants in agricultural and naturally vegetated habitats in semi-arid environments, Australian Journal of Soil Research, 32, 555570, doi:10.1071/SR9940555.Google Scholar
Lockart, N., Willgoose, G. R., Kuczera, G., Kiem, A. S., Chowdhury, A. F. M. K., Manage, N. P., Zhang, L., and Twomey, C. (2016), Case study on the use of dynamically downscaled GCM data for assessing water security on coastal NSW, Journal of Southern Hemisphere Earth Systems Science, 66(2), 177202.CrossRefGoogle Scholar
Loewenherz-Lawrence, D. S. (1994), Theoretical constraints on the development of surface rills: Mode shapes, amplitude limitations and implications for nonlinear evolution, in Process Models and Theoretical Geomorphology, edited by Kirkby, M. J., pp. 315334, Wiley, Chichester, UK.Google Scholar
Lopéz, F., and García, M. (1998), Open-channel flow through simulated vegetation: Suspended sediment transport modeling, Water Resources Research, 34(9), 23412352, doi:10.1029/98WR01922.CrossRefGoogle Scholar
Lucas, Y. (2001), The role of plants in controlling rates and products of weathering: Importance of biological pumping, Annual Review of Earth and Planetary Sciences , 29, 135163.CrossRefGoogle Scholar
Luchi, R., Hooke, J. M., Zolezzi, G., and Bertoldi, W. (2010), Width variations and mid-channel bar inception in meanders: River Bollin (UK), Geomorphology, 119, 18, doi:10.1016/j.geomorph.2010.01.010.CrossRefGoogle Scholar
Ludwig, J. A., Tongway, D. J., and Marsden, S. G. (1999), Stripes, strands or stipples: Modelling the influence of three landscape banding patterns on resource capture and productivity in semi-arid woodlands, Australia, Catena, 37(1–2), 257273.CrossRefGoogle Scholar
Ludwig, J. A., Wilcox, B. P., Breshears, D. D., Tongway, D. J., and Imeson, A. C. (2005), Vegetation patches and runoff-erosion as interacting ecohydrological processes in semiarid landscapes, Ecology, 86(2), 288297.CrossRefGoogle Scholar
Lugato, E., Bampa, F., Panagos, P., Montanarella, L., and Jones, A. (2015), Potential carbon sequestration of European arable soils estimated by modelling a comprehensive set of management practices, Global Change Biology, 20, 35573567, doi:10.1111/gcb.12551.CrossRefGoogle Scholar
Lugato, E., Panagos, P., Bampa, F., Jones, A., and Montanarella, L. (2014), A new baseline of organic carbon stock in European agricultural soils using a modelling approach, Global Change Biology, 20, 313316, doi:10.1111/gcb.12292.CrossRefGoogle ScholarPubMed
Lugato, E., Paustian, K., Panagos, P., Jones, A., and Borrelli, P. (2016), Quantifying the erosion effect on current carbon budget of European agricultural soils at high spatial resolution, Global Change Biology, 22, 19761984, doi:10.1111/gcb.13198.CrossRefGoogle ScholarPubMed
Lynch, A. H., Beringer, J., Kershaw, P., Marshall, A., Mooney, S., Tapper, N., Turney, C., and Van Der Kaars, S. (2007), Using the paleorecord to evaluate climate and fire interactions in Australia, Annual Review of Earth and Planetary Sciences, 35, 215239, doi:10.1146/annurev.earth.35.092006.145055.CrossRefGoogle Scholar
McBratney, A. B., Odeh, I. O. A., Bishop, T. F. A., Dunbar, M. S., and Shatar, T. M. (2000), An overview of pedometric techniques for use in soil survey, Geoderma, 97(3–4), 293327.CrossRefGoogle Scholar
McBratney, A. B., Santos, M. L. M., and Minasny, B. (2003), On digital soil mapping, Geoderma, 117(1–2), 352, doi:10.1016/S0016-7061(03)00223-4.CrossRefGoogle Scholar
McCarthy, M. A., Gill, A. M., and Bradstock, R. A. (2001), Theoretical fire-interval distributions, International Journal of Wildland Fire, 10(1), 7377, doi:10.1071/wf01013.CrossRefGoogle Scholar
McFadden, L. D., and Knuepfer, P. L. K. (1990), Soil geomorphology: The linkage of pedology and surficial processes, Geomorphology, 3(3/4), 197205, doi:10.1016/0169–555X(90)90003-9.CrossRefGoogle Scholar
McGuire, L. A., Pelletier, J. D., Gomez, J. A., and Nearing, M. A. (2013), Controls on the spacing and geometry of rill networks on hillslopes: Rain splash detachment, initial hillslope roughness, and the competition between fluvial and colluvial transport, Journal of Geophysical Research (Earth Surface), 118, 241256, doi:10.1002/jgrf.20028.CrossRefGoogle Scholar
McKenzie, B. M., and Dexter, A. R. (1993), Size and orientation of burrows made by the earthworms Aporrectodea-Rosea and a-Caliginosa, Geoderma, 56(1–4), 233241.CrossRefGoogle Scholar
McKinnon, W. B., et al. (2016), Convection in a volatile nitrogen-ice-rich layer drives Pluto’s geological vigour, Nature, 534(7605), 8285, doi:10.1038/nature18289.CrossRefGoogle Scholar
McVicar, T. R., Van Niel, T. G., Li, L. T., Hutchinson, M. F., Mu, X. M., and Liu, Z. H. (2007), Spatially distributing monthly reference evapotranspiration and pan evaporation considering topographic influences, Journal of Hydrology, 338, 196220, doi:10.1016/j.jhydrol.2007.02.018.CrossRefGoogle Scholar
Maestre, F. T., et al. (2015), Increasing aridity reduces soil microbial diversity and abundance in global drylands, Proceedings of the National Academy of Sciences U.S.A, 112(51), 1568415689, doi:10.1073/pnas.1516684112.CrossRefGoogle ScholarPubMed
Maher, K. (2010), The dependence of chemical weathering rates on fluid residence time, Earth and Planetary Science Letters, 294(1–2), 101110. doi:10.1016/j.epsl.2010.03.010.CrossRefGoogle Scholar
Maher, K., Steefel, C. I., White, A. F., and Stonestrom, D. A. (2009), The role of reaction affinity and secondary minerals in regulating chemical weathering rates at the Santa Cruz Soil Chronosequence, California, Geochimica et Cosmochimica Acta, 73, 28042831, doi:10.1016/j.gca.2009.01.030.CrossRefGoogle Scholar
Major, J. J., and Iverson, R. M. (1999), Debris-flow deposition: Effects of pore-fluid pressure and friction concentrated at flow margins, Geological Society of America Bulletin, 111(10), 14241434.2.3.CO;2>CrossRefGoogle Scholar
Malamoud, K., McBratney, A. B., Minasny, B., and Field, D. J. (2009), Modelling how carbon affects soil structure, Geoderma, 149(1–2), 1926, doi:10.1016/j.geoderma.2008.10.018.CrossRefGoogle Scholar
Malamud, B. D., Millington, J. D. A., and Perry, G. L. W. (2005), Characterizing wildfire regimes in the Unites States, Proceedings of the National Academy of Sciences U.S.A, 102(13), 46944699, doi:10.1073/pnas.0500880102.CrossRefGoogle Scholar
Malamud, B. D., Morein, G., and Turcotte, D. L. (1998), Forest fires: An example of self-organized critical behavior, Science, 281(5384), 18401842.CrossRefGoogle ScholarPubMed
Malamud, B. D., Turcotte, D. L., Guzzetti, F., and Reichenback, P. (2004), Landslide inventories and their statistical properties, Earth Surface Processes and Landforms, 29, 687711, doi:10.1002/esp.1064.CrossRefGoogle Scholar
Mann, M. E., Bradley, R. S., and Hughes, M. K. (1999), Northern hemisphere temperatures during the past millennium: Inferences, uncertainties, and limitations, Geophysical Research Letters, 26(6), 759762, doi:10.1029/1999GL900070.CrossRefGoogle Scholar
Mao, L., Cooper, J. R., and Frostick, L. E. (2011), Grain size and topographical differences between static and mobile armour layers, Earth Surface Processes, 36, 13211334, doi:10.1002/esp.2156.CrossRefGoogle Scholar
Markgraf, W., Watts, C. W., Whalley, W. R., Hrkac, T., and Horn, R. (2012), Influence of organic matter on rheological properties of soil, Applied Clay Science, 64, 2533, doi:10.1016/j.clay.2011.04.009.CrossRefGoogle Scholar
Marshall, J. S., and Palmer, W. M. (1948), The distribution of raindrops with size, Journal of Meteorology, 5, 165166.2.0.CO;2>CrossRefGoogle Scholar
Martin, Y. E. (2007), Wildfire disturbance and shallow landsliding in coastal British Columbia over millennial time scales: A numerical modelling study, Catena, 69(3), 206219, doi:10.1016/j.catena.2006.05.006.CrossRefGoogle Scholar
Martinez-Casasnovas, J. A. (2003), A spatial information technology approach for the mapping and quantification of gully erosion, Catena, 50(2–4), 293308.CrossRefGoogle Scholar
Mataix-Solera, J., Gómez, I., Navarro-Pedreño, J., Guerrero, C., and Moral, R. (2002), Soil organic matter and aggregates affected by wildfire in a Pinus halepensis forest in a Mediterranean environment, International Journal of Wildland Fire, 11, 107114, doi:10.1071/WF02020.CrossRefGoogle Scholar
Matsuoka, N., and Moriwaki, K. (1992), Frost heave and creep in the Sør Rondane Mountains, Antarctica, Arctic and Alpine Research, 24(4), 271280.CrossRefGoogle Scholar
Mead, S. R., and Cleary, P. W. (2015), Validation of DEM prediction for granular avalanches on irregular terrain, Journal of Geophysical Research (Earth Surface), 120, 17241742, doi:10.1002/2014JF003331.CrossRefGoogle Scholar
Mein, R. G., Laurenson, E. M., and McMahon, T. A. (1976), Simple nonlinear model for flood estimation, Journal of Hydraulic Division – ASCE 100(NHY11), 15071518.CrossRefGoogle Scholar
Meisina, C., and Scarabelli, S. (2007), A comparative analysis of terrain stability models for predicting shallow landslides in colluvial soils, Geomorphology, 87, 207223, doi:10.1016/j.geomorph.2006.03.039.CrossRefGoogle Scholar
Melini, D., Gegout, P., Spada, G., and King, M. A. (2015), REAR: A Regional Elastic Rebound calculator, GitHub.Google Scholar
Mesa, O. J. (1986), Analysis of channel networks parameterized by elevation, PhD thesis, University of Mississippi.Google Scholar
Metherell, A. K., Harding, L. A., Cole, C. V., and Parton, W. J. (1994), CENTURY Soil organic matter environment, Technical Documentation Agrosystem, Version 4.0, Great Plains System Research Unit Technical Report No. 4, USDA-ARS, Fort Collins, CO.Google Scholar
Michaelides, K., and Martin, G. J. (2012), Sediment transport by runoff on debris-mantled dryland hillslopes, Journal of Geophysical Research (Earth Surface), 117, F03014, doi:10.1029/2012JF002415.Google Scholar
Michaelides, K., and Singer, M. B. (2014), Impact of coarse sediment supply from hillslopes to the channel in runoff-dominated, dryland fluvial systems, Journal of Geophysical Research (Earth Surface), 119, 12051221, doi:10.1002/2013JF002959.CrossRefGoogle Scholar
Migon, P., and Thomas, M. F. (2002), Grus weathering mantles – Problems of interpretation, Catena, 49(1–2), 524.CrossRefGoogle Scholar
Millar, R. G. (2005), Theoretical regime equations for mobile gravel-bed rivers with stable banks, Geomorphology, 64(3–4), 207220, doi:10.1016/j.geomorph.2004.07.001.CrossRefGoogle Scholar
Milledge, D. G., Bellugi, D., McKean, J. A., Densmore, A. L., and Dietrich, W. E. (2014), A multidimensional stability model for predicting shallow landslide size and shape across landscapes, Journal of Geophysical Research (Earth Surface), 119, 24812504, doi:10.1002/2014JF003135.CrossRefGoogle ScholarPubMed
Minasny, B., Finke, P., Stockmann, U., Vanwalleghem, T., and McBratney, A. B. (2015), Resolving the integral connection between pedogenesis and landscape evolution, Earth-Science Reviews, 150, 102120, doi:10.1016/j.earscirev.2015.07.004.CrossRefGoogle Scholar
Minasny, B., and McBratney, A. B. (1999), A rudimentary mechanistic model for soil production and landscape development, Geoderma, 90(1–2), 321, doi:10.1016/S0016-7061(98)00115-3.CrossRefGoogle Scholar
Minasny, B., and McBratney, A. B. (2001), A rudimentary mechanistic model for soil formation and landscape development II. A two-dimensional model incorporating chemical weathering, Geoderma, 103(1–2), 161179, doi:10.1016/S0016-7061(01)00075-1.CrossRefGoogle Scholar
Minasny, B., and McBratney, A. B. (2006), Mechanistic soil–landscape modelling as an approach to developing pedogenetic classifications, Geoderma, 133(1–2), 138149, doi:10.1016/j.geoderma.2006.03.042.CrossRefGoogle Scholar
Minasny, B., McBratney, A. B., and Salvador-Blanes, S. (2008), Quantitative models for pedogenesis – A review, Geoderma, 144(1–2), 140157, doi:10.1016/j.geoderma.2007.12.013.CrossRefGoogle Scholar
Meriam, J. L., Kraige, L. G., and Bolton, J. N. (2012), Engineering mechanics: Statics, Wiley, Chichester, UK.Google Scholar
Mitchell, A., and Hungr, O. (2017), Theory and calibration of the Pierre 2 stochastic rock fall dynamics simulation program, Canadian Geotechnical Journal, 54(1), 1830, doi:10.1139/cgj-2016-0039.CrossRefGoogle Scholar
Mitchell, P. B. (1985), Some aspects of the role of bioturbation in soil formation in south-eastern Australia, PhD thesis, Macquarie University.Google Scholar
Mitchell, S. G., and Humphries, E. E. (2015), Glacial cirques and the relationship between equilibrium line altitudes and mountain range height, Geology, 43(1), 3538, doi:10.1130/G36180.1.CrossRefGoogle Scholar
Mitrovica, J. X., and Forte, A. M. (2004), A new inference of mantle viscosity based upon joint inversion of convection and glacial isostatic adjustment data, Earth and Planetary Science Letters, 225(1–2), 177189, doi:10.1016/j.epsl.2004.06.005.CrossRefGoogle Scholar
Moglen, G. E., and Bras, R. L. (1995), The importance of spatially heterogeneous erosivity and the Cumulative Area Distribution within a basin evolution model, Geomorphology, 12(3), 173185.CrossRefGoogle Scholar
Moglen, G. E., Eltahir, E. A. B., and Bras, R. L. (1998), On the sensitivity of drainage density to climate change, Water Resources Research, 34(4), 855862.CrossRefGoogle Scholar
Montelli, R., Noilet, G., Dahlen, F. A., Masters, G., Engdahl, E. R., and Hung, S. H. (2004), Finite-frequency tomography reveals a variety of plumes in the mantle, Science, 303(5656), 338343, doi:10.1126/science.1092485.CrossRefGoogle ScholarPubMed
Montgomery, D. R., and Dietrich, W. E. (1988), Where do channels begin?, Nature, 336, 232234.CrossRefGoogle Scholar
Montgomery, D. R., and Dietrich, W. E. (1989), Source areas, drainage density and channel initiation, Water Resources Research, 25(8), 19071918, doi:10.1029/WR025i008p01907.CrossRefGoogle Scholar
Montgomery, D. R., and Dietrich, W. E. (1994), A physically based model for the topographic control on shallow landsliding, Water Resources Research, 30(4), 11531171.CrossRefGoogle Scholar
Montgomery, D. R., and Foufoula-Georgiou, E. (1993), Channel network source representation using digital elevation models, Water Resources Research, 29(12), 39253935, doi:10.1029/93WR02463.CrossRefGoogle Scholar
Montgomery, D. R., Schmidt, K. M., Dietrich, W. E., and McKean, J. (2009), Instrumental record of debris flow initiation during natural rainfall: Implications for modeling slope stability, Journal of Geophysical Research (Earth Surface), 114, F01031, doi:10.1029/2008JF001078.Google Scholar
Moody, J. A., Shakesby, R. A., Robichaud, P. R., Cannon, S. H., and Martin, D. A. (2013), Current research issues related to post-wildfire runoff and erosion processes, Earth-Science Reviews, 122, 1037, doi:10.1016/j.earscirev.2013.03.004.CrossRefGoogle Scholar
Moore, J. G. (1987), Subsidence of the Hawaiian Ridge, in Volcanism in Hawaii, edited by R. W. Decker, T. L. Wright, and P. H. Stauffer, USGS Professional Paper 1350.Google Scholar
Moore, J. M., Howard, A. D., and Morgan, A. M. (2014), The landscape of Titan as witness to its climate evolution, Journal of Geophysical Research (Planets), 119(9), 20602077, doi:10.1002/2014JE004608.CrossRefGoogle Scholar
Moreno de Las Heras, M., Saco, P. M., and Willgoose, G. R. (2012), A comparison of SRTM V4 and ASTER GDEM for hydrological applications in low relief terrain, Photogrammetric Engineering and Remote Sensing, 78(7), 757766.CrossRefGoogle Scholar
Moreno de Las Heras, M., Saco, P. M., Willgoose, G. R., and Tongway, D. J. (2012), Variations in hydrological connectivity of Australian semiarid landscapes indicate abrupt changes in ecosystem functionality, Journal of Geophysical Research (Biogeosciences), 117, G03009, doi:10.1029/2011JG001839.Google Scholar
Morin, R. H. (2005), Negative correlation between porosity and hydraulic conductivity in sand-and-gravel aquifers at Cape Cod, Massachusetts, USA, Journal of Hydrology, 316, 4352, doi:10.1016/j.jhydrol.2005.04.013.CrossRefGoogle Scholar
Mudd, S. M., and Furbish, D. J. (2004), Influence of chemical denudation on hillslope morphology, Journal of Geophysical Research (Earth Surface), 109, F02001, doi:10.1029/2003JF000087.Google Scholar
Munson, B. R., Young, D. F., and Okiishi, T. H. (1998), Fundamentals of fluid mechanics, Wiley, Chichester, UK.Google Scholar
Murphy, B., Russell-Smith, J., and Prior, L. (2010), Frequent fires reduce tree growth in northern Australian savannas: Implications for tree demography and carbon sequestration, Global Change Biology, 16(1), 331343, doi:10.1111/j.1365-2486.2009.01933.x.CrossRefGoogle Scholar
Murray, A. B., and Paola, C. (2003), Modelling the effect of vegetation on channel pattern in bedload rivers, Earth Surface Processes and Landforms, 28(2), 131143.CrossRefGoogle Scholar
National Academy of Science (NAS) (2010), Landscapes on the edge: New horizons for research of earth’s surface, National Academies Press, Washington, DC.Google Scholar
Navarre-Stichler, A. K., Cole, D. R., Rother, G., Jin, L., Buss, H. L., and Brantley, S. L. (2013), Porosity and surface area evolution during weathering of two igneous rocks, Geochimica et Cosmochimica Acta, 109, 400413, doi:10.1016/j.gca.2013.02.012.CrossRefGoogle Scholar
Nayyar, H., and Gupta, D. (2006), Differential sensitivity of C3 and C4 plants to water deficit stress: Association with oxidative stress and antioxidants, Environmental and Experimental Botany, 58(1–3), 106113, doi:10.1016/j.envexpbot.2005.06.021.CrossRefGoogle Scholar
Nearing, M. A., Foster, G. R., Lane, L. J., and Finkner, S. C. (1989), A process-based soil erosion model for USDA-Water Erosion Prediction Project Technology, American Society of Agricultural Engineers, 32(5), 15871593.CrossRefGoogle Scholar
Nelson, P. A., Vendetti, J. G., Dietrich, W. E., Kirchner, J. W., Ikeda, H., Iseya, F., and Sklar, L. S. (2009), Response of bed surface patchiness to reductions in sediment supply, Journal of Geophysical Research (Earth Surface), 114, F02005, doi:10.1029/2008JF001144.Google Scholar
Nepf, H. (2012), Hydrodynamics of vegetated channels, Journal of Hydraulic Research, 50(3), 262279, doi:10.1080/00221686.2012.696559.CrossRefGoogle Scholar
Nesbitt, S. W., and Anders, A. M. (2009), Very high resolution precipitation climatologies from the Tropical Rainfall Measuring Mission precipitation radar, Geophysical Research Letters, 36, L15815, doi:10.1029/2009GL038026.CrossRefGoogle Scholar
Nicholas, A. P., and Quine, T. A. (2010), Quantitative assessment of landform equifinality and palaeoenvironmental reconstruction using geomorphic models, Geomorphology, 121, 167183, doi:10.1016/j.geomorph.2010.04.004.CrossRefGoogle Scholar
Niklasson, M., and Granström, A. (2000), Numbers and sizes of fires: Long-term spatially explicit fire history in a Swedish boreal landscape, Ecology, 81(6), 14841499.CrossRefGoogle Scholar
Nimmo, J. R., and Perkins, K. S. (2002), Aggregate stability and size distribution, in Methods of soil analysis, Part 4 – Physical methods, edited by Dane, J. H. and Topp, G. C., pp. 317328, Soil Science Society of America, Madison, WI.Google Scholar
Nolan, R. H., Lane, P. N. J., Benyon, R. G., Bradstock, R. A., and Mitchell, P. J. (2014a), Changes in evapotranspiration following wildfire in resprouting eucalypt forests, Ecohydrology, 7, 13631377, doi:10.1002/eco.1463.CrossRefGoogle Scholar
Nolan, R. H., Lane, P. N. J., Benyon, R. G., Bradstock, R. A., and Mitchell, P. J. (2015), Trends in evapotranspiration and streamflow following wildfire in resprouting eucalypt forests, Journal of Hydrology, 524, 614624, doi:10.1016/j.jhydrol.2015.02.045.CrossRefGoogle Scholar
Nolan, R. H., Mitchell, P. J., Bradstock, R. A., and Lane, P. N. J. (2014b), Structural adjustments in resprouting trees drive differences in post-fire transpiration, Tree Physiology, 34(2), 123136, doi:10.1093/treephys/tpt125.CrossRefGoogle ScholarPubMed
North Greenland Ice Core Project (NGRIP) (2004a), High-resolution record of Northern Hemisphere climate extending into the last interglacial period, Nature, 431(7005), 147151.CrossRefGoogle Scholar
North Greenland Ice Core Project (NGRIP) (2004b), North Greenland Ice Core Project Oxygen Isotope Data, NOAA/NGDC Paleoclimatology Program, Boulder CO, USA, IGBP PAGES/World Data Center for Paleoclimatology Data Contribution Series no. 2004-059.Google Scholar
Noy-Meir, I. (1973), Desert ecosystems: Environment and producers, Annual Review of Ecology and Systematics, 4, 2551.CrossRefGoogle Scholar
NRCCA (2016), Northeast Region Certified Crop Advisor (NRCCA) Study Resources, Cornell University, Ithaca, NY, http://nrcca.cals.cornell.edu/soil/CA2/CA0212.1–3.php.Google Scholar
Nyman, P., Sheridan, G. J., and Lane, P. N. J. (2013), Hydro-geomorphic response models for burned areas and their applications in land management, Progress in Physical Geography, 37(6), 787812, doi:10.1177/0309133313508802.CrossRefGoogle Scholar
Nyman, P., Sheridan, G. J., Moody, J. A., Smith, H. G., Noske, P. J., and Lane, P. N. J. (2013), Sediment availability on burned hillslopes, Journal of Geophysical Research (Earth Surface), 118, 24512467, doi:10.1002/jgrf.20152.CrossRefGoogle Scholar
Nyman, P., Sheridan, G. J., Smith, H. G., and Lane, P. N. J. (2011), Evidence of debris flow occurrence after wildfire in upland catchments of south-east Australia, Geomorphology, 125, 383401, doi:10.1016/j.geomorph.2010.10.016.CrossRefGoogle Scholar
O’Brien, B. J., and Stout, J. D. (1978), Movement and turnover of soil organic matter as indicated by carbon isotope measurements, Soil Biology & Biochemistry, 10(4), 309317, doi:10.1016/0038-0717(78)90028-7.CrossRefGoogle Scholar
O’Callaghan, J. F., and Mark, D. M. (1984), The extraction of drainage networks from digital elevation data, Computer Vision, Graphics and Image Processing, 28(3), 323344, doi: 10.1016/S0734-189X(84)80011-0.CrossRefGoogle Scholar
O’Donnell, A. J., Boer, M. M., McCaw, W. L., and Grierson, P. F. (2011), Climatic anomalies drive wildfire occurrence and extent in semi-arid shrublands and woodlands of southwest Australia, Ecosphere, 2(11), 127, doi:10.1890/ES11-00189.1.Google Scholar
O’Donnell, A. J., Boer, M. M., McCaw, W. L., and Grierson, P. F. (2014), Scale-dependent thresholds in the dominant controls of wildfire size in semi-arid southwest Australia, Ecosphere, 5(7), 93, doi:10.1890/ES14-00145.1.Google Scholar
Ogawa, M. (2008), Mantle convection: A review, Fluid Dynamics Research, 40, 379398, doi:10.1016/j.fluiddyn.2007.09.001.CrossRefGoogle Scholar
Olive, J.-A., Behn, M. D., and Malatesta, L. C. (2014), Modes of extensional faulting controlled by surface processes, Geophysical Research Letters, 41, 67256733, doi:10.1002/2014GL061507.CrossRefGoogle Scholar
Ollier, C. D., and Pain, C. F. (1996), Regolith, soils and landforms, Wiley, Chichester, UK.Google Scholar
O’Reilly, S. Y., Griffin, W. L., Poudjom Djomani, Y. H., and Morgan, P. (2001), Are lithospheres forever? Tracking changes in subcontinental lithospheric mantle through time, GSA Today, 11(4), 410.2.0.CO;2>CrossRefGoogle Scholar
Ouimet, R. (2008), Using compositional change within soil profiles for modelling base cation transport and chemical weathering, Geoderma, 145(3–4), 410418, doi:10.1016/j.geoderma.2008.01.007.CrossRefGoogle Scholar
Oyama, T., and Chigara, M. (1999), Weathering rate of mudstone and tuff on old unlined tunnel walls, Engineering Geology, 55(1), 1527, doi:10.1016/S0013-7952(99)00103-9.CrossRefGoogle Scholar
Pack, R. T., Tarboton, D. G., and Goodwin, C. N. (1998), The SINMAP approach to terrain stability mapping, in Eighth International Congress of the International Association for Engineering Geology and the Environment, edited by Moore, D. and Hungr, O., pp. 11571165, Vancouver, 21–25 September.Google Scholar
Panagos, P., Borrelli, P., Meusburger, K., Alewell, C., Lugato, E., and Montanarella, L. (2015), Estimating the soil erosion cover-management factor at the European scale, Land Use Policy, 48, 3850, doi:10.1016/j.landusepol.2015.05.021.CrossRefGoogle Scholar
Pandey, S., and Rajaram, H. (2016), Modeling the influence of preferential flow on the spatial variability and time-dependence of mineral weathering rates, Water Resources Research, 52, doi:10.1002/2016WR019026.CrossRefGoogle Scholar
Parana Manage, N. (2017), Testing the hydrologic validity of downscaled rainfall data for water security assessment, PhD thesis, University of Newcastle, Callaghan, Australia.Google Scholar
Pardini, G. (2003), Fractal scaling of surface roughness in artificially weathered smectite-rich soil regoliths, Geoderma, 117(1–2), 157167.CrossRefGoogle Scholar
Parizek, J. R., and Girty, G. H. (2014), Assessing volumetric strains and mass balance relationships resulting from biotite-controlled weathering: Implications for the isovolumetric weathering of the Boulder Creek Granodiorite, Boulder County, Colorado, USA, Catena, 120, 2945, doi:10.1016/j.catena.2014.03.019.CrossRefGoogle Scholar
Parker, G. (1990), Surface-based bedload transport relation for gravel rivers, Journal of Hydraulic Research, 28(4), 417436.CrossRefGoogle Scholar
Parker, G., and Klingeman, P. C. (1982), On why gravel beds streams are paved, Water Resources Research, 18(5), 14091423, doi:10.1029/WR018i005p01409.CrossRefGoogle Scholar
Parker, G., Sawai, K., and Ikeda, S. (1982), Bend theory of river meanders: Part II, Nonlinear deformation of finite amplitude bends, Journal of Fluid Mechanics, 115, 303314.Google Scholar
Parker, G., Shimizu, Y., Wilkerson, G. V., Eke, E. C., Abad, E. C., Lauer, J. D., Paola, C., Dietrich, W. E., and Voller, V. R. (2011), A new framework for modeling the migration of meandering rivers, Earth Surface Processes and Landforms, 36, 7086, doi:10.1002/esp.2113.CrossRefGoogle Scholar
Parker, G., Wilcock, P. R., Paola, C., Dietrich, W. E., and Pitlick, J. (2007), Physical basis for quasi-universal relations describing bankfull hydraulic geometry of single-thread gravel bed rivers, Journal of Geophysical Research (Earth Surface), 112, F04005, doi:10.1029/2006JF000549.Google Scholar
Parsons, A. J., Abrahams, A. D., and Luk, S. H. (1990), Hydraulics of interrill overland flow on a semi-arid hillslope, southern Arizona, Journal of Hydrology, 117, 255273.CrossRefGoogle Scholar
Parsons, A. J., Abrahams, A. D., and Simanton, J. R. (1992), Microtopography and soil-surface materials on semi-arid piedmont hillslopes, southern Arizona, Journal of Arid Environments, 22, 107115.CrossRefGoogle Scholar
Parsons, A. J., Wainwright, J., Abrahams, A. D., and Simanton, J. R. (1997), Distributed dynamic modelling of interrill overland flow, Hydrological Processes, 11(14), 18331859.3.0.CO;2-7>CrossRefGoogle Scholar
Parton, W. J., Stewart, J. W. B., and Cole, C. V. (1988), Dynamics of C, N, P and S in grassland soils: A model, Biogeochemistry, 4(1), 109131, doi:10.1007/BF02180320.CrossRefGoogle Scholar
Paton, T. R., Humphreys, G. S., and Mitchell, P. B. (1995), Soils: A new global view, CRC Press, Boca Raton, FL.Google Scholar
Paulson, A., Zhong, S., and Wahr, J. (2007), Inference of mantle viscosity from GRACE and relative sea level data, Geophysical Journal International, 171, 497508, doi:10.1111/j.1365-246X.2007.03556.x.CrossRefGoogle Scholar
Peakall, J., and Sumner, E. J. (2015), Submarine channel flow processes and deposits: A process-product perspective, Geomorphology, 244, 95120, doi:10.1016/j.geomorph.2015.03.005.CrossRefGoogle Scholar
Peckham, S. D., Hutton, E. W. H., and Norris, B. (2013), A component-based approach to integrated modeling in the geosciences: The design of CSDMS, Computers & Geosciences, 53, 312, doi:10.1016/j.cageo.2012.04.002.CrossRefGoogle Scholar
Peltier, W. R. (1998), Postglacial variations in the level of the sea: Implications for climate dynamics and soil-earth geophysics, Reviews of Geophysics, 36(4), 441500.CrossRefGoogle Scholar
Peltier, W. R. (1999), Global sea level rise and glacial isostatic adjustment, Global Planetary Change, 20, 93123.CrossRefGoogle Scholar
Peltier, W. R. (2004), Global glacial isostasy and the surface of the ice-age Earth: The ICE-5G (VM2) model and GRACE, Annual Reviews of Earth and Planetary Sciences, 32, 111149, doi:10.1146/annurev.earth.32.082503.144359.CrossRefGoogle Scholar
Peng, J., Dan, L., and Huang, M. (2014), Sensitivity of global and regional terrestrial carbon storage to the direct CO2 effect and climate change based on the CMIP5 model intercomparison, PLoS ONE, 9(4), e95282, doi:10.1371/journal.pone.0095282.CrossRefGoogle Scholar
Penman, T. D., Bradstock, R. A., and Price, O. (2013), Modelling the determinants of ignition in the Sydney Basin, Australia: Implications for future management, International Journal of Wildland Fire, 22(4), 469478, doi:10.1071/wf12027.CrossRefGoogle Scholar
Perera, H. J., and Willgoose, G. R. (1998), A physical explanation of the cumulative area diagram, Water Resources Research, 34(5), 13351345.CrossRefGoogle Scholar
Perez, L., and Dragicevic, S. (2012), Landscape-level simulation of forest insect disturbance: Coupling swarm intelligent agents with GIS-based cellular automata model, Ecological Modelling, 231, 5364, doi:10.1016/j.ecolmodel.2012.01.020.CrossRefGoogle Scholar
Perron, J. T. (2011), Numerical methods for nonlinear hillslope transport laws, Journal of Geophysical Research (Earth Surface), 116, F02021, doi:10.1029/2010JF001801.Google Scholar
Perron, J. T., and Royden, L. H. (2013), An integral approach to bedrock river profile analysis, Earth Surface Processes and Landforms, 38, 570576, doi:10.1002/esp.3302.CrossRefGoogle Scholar
Peterman, W., and Bachelet, D. (2012), Climate change and forest dynamics: A soils perspective, in Soils and food security, edited by Hester, R. E. and Harrison, R. M., pp. 158182, Royal Society of Chemistry, London.CrossRefGoogle Scholar
Peterman, W., Bachelet, D., Ferschweiler, K., and Sheehan, T. (2014), Soil depth affects simulated carbon and water in the MC2 dynamic global vegetation model, Ecological Modelling, 294, 8493, doi:10.1016/j.ecolmodel.2014.09.025.CrossRefGoogle Scholar
Petersen, J. F., Sack, D., and Gabler, R. E. (2012), Physical geography, 10th ed., Brooks/Cole, Belmont, CA.Google Scholar
Petit, J. R., et al. (1999a), Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica, Nature, 399(6735), 429436, doi:10.1038/20859.CrossRefGoogle Scholar
Petit, J. R. (1999b), Vostok Ice Core Data for 420,000 Years, NOAA/NGDC Paleoclimatology Program, Boulder CO, IGBP PAGES/World Data Center for Paleoclimatology Data Contribution Series #2001-076.Google Scholar
Pfister, L., and Kirchner, J. W. (2017), Debates – Hypothesis testing in hydrology: Theory and practice, Water Resources Research, 53, doi:10.1002/2016WR020116.CrossRefGoogle Scholar
Philip, J. R. (1991), Hillslope infiltration, Water Resources Research, 27(1), 109117.CrossRefGoogle Scholar
Phillips, J. D. (1993), Stability implications of the state factor model of soils as a nonlinear dynamical system, Geoderma, 58(1–2), 115.CrossRefGoogle Scholar
Picard, K., Brooke, B., and Coffin, M. F. (2017), Geological insights from Malaysia Airlines flight MH370 search, EOS, 98, doi:10.1029/2017EO069015.Google Scholar
Pierson, F. B., Carlson, D. H., and Spaeth, K. E. (2002), Impacts of wildfire on soil hydrological properties of steep sagebrush-steppe rangeland, International Journal of Wildland Fire, 11, 145151, doi:10.1071/WF02037.CrossRefGoogle Scholar
Pilgrim, D. H. (1976), Travel times and nonlinearity of flood runoff from tracer measurements on a small watershed, Water Resources Research, 12(3), 487496.CrossRefGoogle Scholar
Pilgrim, D. H. (1977), Isochrones of travel time and distribution of flood storage from a tracer study on a small watershed, Water Resources Research, 13(3), 587595.CrossRefGoogle Scholar
Placzkowska, E., Gornik, M., Mocior, E., Peek, B., Potoniec, P., Rzonca, B., and Siwek, J. (2015), Spatial distribution of channel heads in the Polish Flysch Carpathians, Catena, 127, 240249, doi:10.1016/j.catena.2014.12.033.CrossRefGoogle Scholar
Plante, A. F., and Parton, W. J. (2007), The dynamics of soil organic matter and nutrient cycling, in Soil Microbiology, Ecology, and Biochemistry, edited by Paul, E. A., pp. 433470, Academic Press, Amsterdam.CrossRefGoogle Scholar
Poesen, J., Nachtergaele, J., Verstraeten, G., and Valentin, C. (2003), Gully erosion and environmental change: Importance and research needs, Catena, 50(2–4), 91133.CrossRefGoogle Scholar
Pollen-Bankhead, N., and Simon, A. (2010), Hydrologic and hydraulic effects of riparian root networks on streambank stability: Is mechanical root-reinforcement the whole story?, Geomorphology, 116, 353362, doi:10.1016/j.geomorph.2009.11.013.CrossRefGoogle Scholar
Polyakov, V. O., and Lal, R. (2004), Modeling soil organic matter dynamics as affected by soil water erosion, Environment International, 30, 547556, doi:10.1016/j.envint.2003.10.011.CrossRefGoogle ScholarPubMed
Polychronaki, A., Gitas, I. Z., and Minchella, A. (2014), Monitoring post-fire vegetation recovery in the Mediterranean using SPOT and ERS imagery, International Journal of Wildland Fire, 23, 631642, doi:10.1071/WF12058.CrossRefGoogle Scholar
Popper, K. R. (1959), The Logic of Scientific Discovery, Hutchinson, London.Google Scholar
Portenga, E. W., and Bierman, P. R. (2011), Understanding Earth’s eroding surface with 10Be, GSA Today, 21(8), 410, doi:10.1130/G111A.1.CrossRefGoogle Scholar
Prentice, I. C., Cramer, W., Harrison, S. P., Leemans, R., Monserud, R. A., and Solomon, A. M. (1992), A global biome model based on plant physiology and dominance, soil properties and climate, Journal of Biogeography, 19(2), 117134.CrossRefGoogle Scholar
Price, F., and Bradstock, R. A. (2011), Quantifying the influence of fuel age and weather on the annual extent of unplanned fires in the Sydney region of Australia, International Journal of Wildland Fire, 20(1), 142151, doi:10.1071/wf10016.CrossRefGoogle Scholar
Price, O. E., Bradstock, R. A., Keeley, J. E., and Syphard, A. D. (2012), The impact of antecedent fire area on burned area in southern California coastal ecosystems, Journal of Environmental Management, 113, 301307, doi:10.1016/j.jenvman.2012.08.042.CrossRefGoogle ScholarPubMed
Proffitt, G. T., and Sutherland, A. J. (1983), Transport of non-uniform sediments, Journal of Hydraulic Research, 21, 3343.CrossRefGoogle Scholar
Prosser, I. P., and Abernethy, B. (1996), Predicting the topographic limits to a gully network using a digital terrain model and process thresholds, Water Resources Research, 32(7), 22892298.CrossRefGoogle Scholar
Prosser, I. P., Dietrich, W. E., and Stevenson, J. (1995), Flow resistance and sediment transport by concentrated overland flow in a grassland, Geomorphology, 13, 7186, doi:10.1016/0169-555X(95)00020-6.CrossRefGoogle Scholar
Pumpanen, J., Ilvesniemi, H., and Hari, P. (2003), A process-based model for predicting soil carbon dioxide efflux and concentration, Soil Science Society of America, 67(2), 402413, doi:10.2136/sssaj2003.4020.Google Scholar
Quillet, A., Peng, C., and Garneau, M. (2010), Toward dynamic global vegetation models for simulating vegetation–climate interactions and feedbacks: Recent developments, limitations, and future challenges, Environmental Reviews, 18, 333353, doi:10.1139/A10-016.CrossRefGoogle Scholar
Radoane, M., Ichim, I., and Radoane, N. (1995), Gully distribution and development in Moldova, Romania, Catena, 24(2), 127146, doi:10.1016/0341-8162(95)00023-L.CrossRefGoogle Scholar
Rajaram, H., and Arshadi, M. (2016), A similarity solution for reaction front propagation in a fracture–matrix system, Philosophical Transactions of the Royal Society of London A, 374, 20150424, doi:10.1098/rsta.2015.0424.Google Scholar
Ramankutty, P., Ryan, M., Lawes, R., Speijers, J., and Renton, M. (2013), Statistical emulators of a plant growth simulation model, Climate Research, 55, 253265, doi:10.3354/cr01138.CrossRefGoogle Scholar
Rasmussen, E., Dahlgren, R. A., and Southard, R. J. (2010), Basalt weathering and pedogenesis across an environmental gradient in the southern Cascade Range California, USA, Geoderma, 154, 473485, doi:10.1016/j.geoderma.2009.05.019.CrossRefGoogle Scholar
Rawls, W. J., Pachepsky, Y. A., Ritchie, J. C., Sobecki, T. M., and Bloodworth, H. (2003), Effect of soil organic carbon on soil water retention, Geoderma, 116(1–2), 6176.CrossRefGoogle Scholar
Recking, A. (2010), A comparison between flume and field bed load transport data and consequences for surface-based bed load transport prediction, Water Resources Research, 46, W03518, doi:10.1029/2009WR008007.CrossRefGoogle Scholar
Refice, A., Giachetta, E., and Capolongo, D. (2012), SIGNUM: A Matlab, TIN-based landscape evolution model, Computers & Geosciences, 45, 293303, doi:10.1016/j.cageo.2011.11.013.CrossRefGoogle Scholar
Reneau, S. L., Katzman, D., Kuyumjian, G. A., Lavine, A., and Malmon, D. V. (2007), Sediment delivery after a wildfire, Geology, 35(2), 151154, doi:10.1130/G23288A.1.CrossRefGoogle Scholar
Rengers, F. K., and Tucker, G. E. (2014), Analysis and modeling of gully headcut dynamics, North American high plains, Journal of Geophysical Research (Earth Surface), 119, 9831003, doi:10.1002/2013JF002962.CrossRefGoogle Scholar
Rethemeyer, J., Kramer, C., Gleixner, G., John, B., Yamashita, T., Flessa, H., Andersen, N., Nadeau, M. J., and Grootes, P. M. (2005), Transformation of organic matter in agricultural soils: Radiocarbon concentration versus soil depth, Geoderma, 128(1–2), 94105.CrossRefGoogle Scholar
Richter, D. D., and Markewitz, D. (1995), How deep is soil?, Bioscience, 45(9), 600609, doi:10.2307/1312764.CrossRefGoogle Scholar
Richter, D. D., Markewitz, D., Trumbore, S., and Wells, C. G. (1999), Rapid accumulation and turnover of soil carbon in a re-establishing forest, Nature, 400(6739), 5658, doi:10.1038/21867.CrossRefGoogle Scholar
Riebe, C. S., Kirchner, J. W., and Finkel, R. C. (2003), Long-term rates of chemical weathering and physical erosion from cosmogenic nuclides and geochemical mass balance, Geochimica et Cosmochimica Acta, 67(22), 44114427, doi:10.1016/S0016-7037(03)00382-X.CrossRefGoogle Scholar
Riebe, C. S., Kirchner, J. W., and Finkel, R. C. (2004), Erosional and climatic effects on long-term chemical weathering rates in granitic landscapes spanning diverse climate regimes, Earth and Planetary Science Letters, 224(3–4), 547562, doi:10.1016/j.epsl.2004.05.019.CrossRefGoogle Scholar
Rieke-Zapp, D., Poesen, J., and Nearing, M. A. (2007), Effects of rock fragments incorporated in the soil matrix on concentrated flow hydraulics and erosion, Earth Surface Processes and Landforms, 32, 10631076, doi:10.1002/esp.1469.CrossRefGoogle Scholar
Rietkerk, M., Boerlijst, M. C., van Langevelde, F., HilleRisLambers, R., van de Koppel, J., Kumar, L., Prins, H. H. T., and de Roos, A. M. (2002), Self-organization of vegetation in arid ecosystems, American Naturalist, 160(4), 524530, doi:10.1086/342078.CrossRefGoogle ScholarPubMed
Rigon, R., Rinaldo, A., Rodriguez-Iturbe, I., Bras, R. L., and Ijjasz-Vasquez, E. (1993), Optimal Channel Networks – A framework for the study of river basin morphology, Water Resources Research, 29(6), 16351646.CrossRefGoogle Scholar
Riley, S. J., Gardiner, B., Hancock, F., and Uren, C. (1991), Concentrated flow simulation experiments, waste rock dumps, Ranger Uranium Mine, 1990 results, Internal Report 49, Supervising Scientist for the Alligator Rivers Region.Google Scholar
Rinaldo, A., Vogel, G. K., Rigon, R., and Rodriguez-Iturbe, I. (1995), Can one gauge the shape of a basin?, Water Resources Research, 31(4), 11191127.CrossRefGoogle Scholar
Ritchie, J. C., McCarty, G. W., Venteris, E. R., and Kaspar, T. C. (2007), Soil and soil organic carbon redistribution on the landscape, Geomorphology, 89, 163171, doi:10.1016/j.geomorph.2006.07.021.CrossRefGoogle Scholar
Robertson, A., Githumbi, E., and Colombaroli, D. (2016), Paleofires and models illuminate future fire scenarios, EOS, 97, 11, doi:10.1029/2016EO049933.CrossRefGoogle Scholar
Rodrigues, M., Ibarra, P., Echeverría, M., Pérez-Cabello, F., and de la Riva, J. (2014), A method for regional-scale assessment of vegetation recovery time after high-severity wildfires: Case study of Spain, Progress in Physical Geography, 38(5), 556575, doi:10.1177/0309133314542956.CrossRefGoogle Scholar
Rodriguez-Iturbe, I., Ijjasz-Vasquez, E. J., Bras, R. L., and Tarboton, D. G. (1992a), Power law distributions of discharge mass and energy in river basins, Water Resources Research, 28(4), 10891093.CrossRefGoogle Scholar
Rodriguez-Iturbe, I., and Mejia, J. M. (1974), On the transformation of point rainfall to areal rainfall, Water Resources Research, 10(4), 729735, doi:10.1029/WR010i004p00729.CrossRefGoogle Scholar
Rodriguez-Iturbe, I., and Porporato, A. (2005), Ecohydrology of water-controlled ecosystems: Soil moisture and plant dynamics, Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Rodriguez-Iturbe, I., and Rinaldo, A. (2001), Fractal river basins: Chance and self-organization, Cambridge University Press, Cambridge.Google Scholar
Rodriguez-Iturbe, I., Rinaldo, A., Rigon, R., Bras, R. L., Ijjasz-Vasquez, E., and Marani, A. (1992b), Fractal structures as least energy patterns – The case of river networks, Geophysical Research Letters, 19(9), 889892.CrossRefGoogle Scholar
Rodriguez-Iturbe, I., and Valdes, J. B. (1979), The geomorphologic structure of hydrologic response, Water Resources Research, 15(6), 14091420.CrossRefGoogle Scholar
Roe, G. H. (2005), Orographic precipitation, Annual Review of Earth and Planetary Sciences, 33, 645671, doi:10.1146/annurev.earth.33.092203.122541.CrossRefGoogle Scholar
Roe, G. H., and Brandon, M. T. (2011), Critical form and feedbacks in mountain-belt dynamics: Role of rheology as a tectonic governor, Journal of Geophysical Research (Solid Earth), 116, B02101, doi:10.1029/2009JB006571.Google Scholar
Roe, G. H., Montgomery, D. R., and Hallet, B. (2002), Effects of orographic precipitation variations on the concavity of steady-state river profiles, Geology, 30(2), 143146.2.0.CO;2>CrossRefGoogle Scholar
Roe, G. H., Montgomery, D. R., and Hallet, B. (2003), Orographic precipitation and the relief of mountain ranges, Journal of Geophysical Research (Solid Earth), 108(B6), ETG15, doi:10.1029/2001JB001521.Google Scholar
Roe, G. H., Whipple, K. X., and Fletcher, J. K. (2008), Feedbacks among climate, erosion, and tectonics in a critical wedge orogen, American Journal of Science, 308, 815842, doi:10.2475/07.2008.01.CrossRefGoogle Scholar
Roering, J. J. (2004), Soil creep and convex-upward velocity profiles: Theoretical and experimental investigation of disturbance-driven sediment transport on hillslopes, Earth Surface Processes and Landforms, 29, 15971612, doi:10.1002/esp.1112.CrossRefGoogle Scholar
Roering, J. J. (2008), How well can hillslope evolution models ‘explain’ topography? Simulating soil transport and production with high-resolution topographic data, Geological Society of America Bulletin, 120(9/10), 12481262, doi:10.1130/B26283.1.CrossRefGoogle Scholar
Roering, J. J., Kirchner, J. W., and Dietrich, W. E. (1999), Evidence for nonlinear, diffusive sediment transport on hillslopes and implications for landscape morphology, Water Resources Research, 35(3), 853870.CrossRefGoogle Scholar
Roering, J. J., Kirchner, J. W., Sklar, L. S., and Dietrich, W. E. (2001), Hillslope evolution by nonlinear creep and landsliding: An experimental study, Geology, 29(2), 143146, doi:10.1130/0091-7613(2001)029<0143:HEBNCA>2.0.CO;2.2.0.CO;2>CrossRefGoogle Scholar
Roering, J. J., Perron, J. T., and Kirchner, J. W. (2007), Functional relationships between denudation and hillslope form and relief, Earth and Planetary Science Letters, 264, 245258, doi:10.1016/j.epsl.2007.09.035.CrossRefGoogle Scholar
Roering, J. J., Schmidt, K. M., Stock, J. D., Dietrich, W. E., and Montgomery, D. R. (2003), Shallow landsliding, root reinforcement, and the spatial distribution of trees in the Oregon Coast Range, Canadian Geotechnical Journal, 40, 237253, doi:10.1139/T02-113.CrossRefGoogle Scholar
Rogers, N. (2007), An introduction to the structure and composition of the Earth, in An Introduction to Our Dynamic Planet, edited by Rogers, N., pp. 146, Cambridge University Press, Cambridge.Google Scholar
Román-Sánchez, A., Vanwalleghem, T., Peña, A., Laguna, A., and Giráldez, J. V. (2017), Controls on soil carbon storage from topography and vegetation in a rocky, semi-arid landscapes, Geoderma, doi:10.1016/j.geoderma.2016.10.013.CrossRefGoogle Scholar
Roseberry, J. C., Furbish, D. J., and Schmeeckle, M. (2012), A probabilistic description of the bed load sediment flux: 2. Particle activity and motions, Journal of Geophysical Research (Earth Surface), 117, F03032, doi:10.1029/2012JF002353.Google Scholar
Rothermel, R. C. (1972), A mathematical model for predicting fire spread in wildland fire, Rep. INT-115, Intermountain Forest and Range Experiment Station, USDA Forest Service, Ogden, UT.Google Scholar
Rothermel, R. C. (1991), Predicting behavior and size of crown fires in the northern Rocky Mountains, Rep. INT-438, Intermountain Research Station, USDA Forest Service, Ogden, UT.CrossRefGoogle Scholar
Roy, S. G., Koons, P. O., Upton, P., and Tucker, G. E. (2015), The influence of crustal strength fields on the patterns and rates of fluvial incision, Journal of Geophysical Research (Earth Surface), 120, 275299, doi:10.1002/2014JF003281.CrossRefGoogle Scholar
Royden, L. H., and Perron, J. T. (2013), Solutions of the stream power equation and application to the evolution of river longitudinal profiles, Journal of Geophysical Research (Earth Surface), 118(2), 497518, doi:10.1002/jgrf.20031.CrossRefGoogle Scholar
Ruddiman, W. F. (2013), Earth’s climate: Past and future, 3rd ed., Freeman, New York.Google Scholar
Rüdiger, C., Hancock, G. R., Hemakumura, H. M., Jacobs, B., Kalma, J. D., Martinez, C., Thyer, M., Walker, J. P., Wells, T., and Willgoose, G. R. (2007), Goulburn River experimental catchment data set, Water Resources Research, 43(10), W10403.CrossRefGoogle Scholar
Ruimy, A., Kergoat, L., Bondeau, A., and Postdam NPP Model Intercomparison Team (1999), Comparing global models of terrestrial net primary productivity (NPP): Analysis of differences in light absorption and light-use efficiency, Global Change Biology, 5(Suppl. 1), 5664.CrossRefGoogle Scholar
Rumpel, C., Chaplot, V., Planchon, O., Bernadou, J., Valentin, C., and Mariotti, A. (2006), Preferential erosion of black carbon on steep slopes with slash and burn agriculture, Catena, 65, 3040, doi:10.1016/j.catena.2005.09.005.CrossRefGoogle Scholar
Rumpel, C., Ba, A., Darboux, F., Vhaplot, V., and Planchon, O. (2009), Erosion budget and process selectivity of black carbon at meter scale, Geoderma, 154, 131137, doi:10.1016/j.geoderma.2009.10.006.CrossRefGoogle Scholar
Rumpel, C., Leifield, J., Santin, C., and Doerr, S. (2015), Movement of biochar in the environment, in Biochar for environmental management: Science, technology and implementation, edited by Lehmann, J. and Joseph, S., pp. 283300, Routledge, Oxford.Google Scholar
Russell-Smith, J., Ryan, P. G., and Durieu, R. (1997), A LANDSAT-MSS derived fire history of Kakadu National Park, monsoonal northern Australia, 1980–94: seasonal extent, frequency and patchiness, Journal of Applied Ecology, 34, 748766.CrossRefGoogle Scholar
Ryan, S. A., Dwire, K. A., and Dixon, M. K. (2011), Impacts of wildfire on runoff and sediment loads at Little Granite Creek, western Wyoming, Geomorphology, 129, 113130, doi:10.1016/j.geomorph.2011.01.017.CrossRefGoogle Scholar
Sachau, T., Koehn, D., and Passchier, C. (2013), Mountain building under extension, American Journal of Science, 313, 326344, doi:10.2475/04.2013.03.CrossRefGoogle Scholar
Saco, P. M., and Moreno de Las Heras, M. (2013), Ecogeomorphic coevolution of semiarid hillslopes: Emergence of banded and striped vegetation patterns through interaction of biotic and abiotic processes, Water Resources Research, 49(1), 115126, doi:10.1029/2012WR012001.CrossRefGoogle Scholar
Saco, P. M., Willgoose, G. R., and Hancock, G. R. (2006), Spatial organization of soil depths using a landform evolution model, Journal of Geophysical Research (Earth Surface), 111, F02016, doi:02010.01029/02005JF000351.Google Scholar
Saco, P. M., Willgoose, G. R., and Hancock, G. R. (2007), Eco-geomorphology and banded vegetation patterns in arid and semi-arid regions, Hydrology and Earth System Sciences, 11(6), 17171730, doi:10.5194/hess-11-1717-2007.CrossRefGoogle Scholar
Saft, M., Peel, M. C., Western, A. W., Perraud, J. M., and Zhang, L. (2016a), Bias in streamflow projections due to climate-induced shifts in catchment response, Geophysical Research Letters, 43(4), 15741581, doi:10.1002/2015GL067326.CrossRefGoogle Scholar
Saft, M., Peel, M. C., Western, A. W., and Zhang, L. (2016b), Predicting shifts in rainfall-runoff partitioning during multiyear drought: Roles of dry period and catchment characteristics, Water Resources Research, 52, doi:10.1002/2016WR019525.CrossRefGoogle Scholar
Saft, M., Western, A. W., Zhang, L., Peel, M. C., and Potter, N. J. (2015), The influence of multiyear drought on the annual rainfall-runoff relationship: An Australian perspective, Water Resources Research, 51, 24442463, doi:10.1002/2014WR015348.CrossRefGoogle Scholar
Saito, K., and Oguchi, T. (2005), Slope of alluvial fans in humid regions of Japan, Taiwan and the Philippines, Geomorphology, 70, 147162, doi:10.1016/j.geomorph.2005.04.006.CrossRefGoogle Scholar
Sala, O. E., Parton, W. J., Joyce, L., and Laurenrath, W. K. (1988), Primary production of the central grassland region of the United States, Ecology, 69(1), 4045.CrossRefGoogle Scholar
Sallares, V., and Calahorrano, A. (2007), Geophysical characterization of mantle melting anomalies: A crustal view, in Plates, plumes and planetary processes, Geological Society of America Special Paper 430, edited by Foulger, G. R. and Jurdy, D. M., pp. 507524, Geological Society of America, Boulder, CO, doi:10.1130/2007.2430(25).CrossRefGoogle Scholar
Salvador-Blanes, S., Minasny, B., and McBratney, A. B. (2007), Modelling long-term in situ soil profile evolution: Application to the genesis of soil profiles containing stone layers, European Journal of Soil Science, 58, 15351548.CrossRefGoogle Scholar
Samonil, P., Kral, K., and Hort, L. (2010), The role of tree uprooting in soil formation: A critical literature review, Geoderma, 157, 6579, doi:10.1016/j.geoderma.2010.03.018.CrossRefGoogle Scholar
Sanchidrian, J. A., Ouchterlony, F., Segarra, P., and Moser, P. (2014), Size distribution functions for rock fragments, International Journal of Rock Mechanics & Mining Sciences, 71, 381394, doi:10.1016/j.ijrmms.2014.08.007.CrossRefGoogle Scholar
Sankaran, M., et al. (2005), Determinants of woody cover in African savannas, Nature, 438(7069), 846849, doi:10.1038/NATURE04070.CrossRefGoogle ScholarPubMed
Santi, P. M., deWolfe, V. G., Higgins, J. D., Cannon, S. H., and Gartner, J. E. (2008), Sources of debris flow material in burned areas, Geomorphology, 96, 310321, doi:10.1016/j.geomorph.2007.02.022.CrossRefGoogle Scholar
Sauer, D., Finke, P., Sorensen, R., Sperstad, R., Schulli-Maurer, I., Hoeg, H., and Stahr, K. (2012), Testing a soil development model against southern Norway soil chronosequences, Quaternary International, 265, 1831, doi:10.1016/j.quaint.2011.12.018.CrossRefGoogle Scholar
Saxton, K. E., and Rawls, W. J. (2006), Soil water characteristic estimates by texture and organic matter for hydrologic solutions, Soil Science Society of America, 70, 15691578, doi:10.2136/sssaj2005.0117.CrossRefGoogle Scholar
Schaetzl, R. J. (2014), Professor Donald Johnson’s list of Landmark Papers (1878–1998) in geomorphology and soil geomorphology – An appreciation, Progress in Physical Geography, 28(1), 129137, doi:10.1177/0309133314522284.CrossRefGoogle Scholar
Schaetzl, R. J., and Thompson, M. L. (2015), Soils genesis and geomorphology, 2nd ed., Cambridge University Press, Cambridge.Google Scholar
Schmidt, K. M., Roering, J. J., Stock, J. D., Dietrich, W. E., Montgomery, D. R., and Schaub, T. (2001), The variability of root cohesion as an influence on shallow landslide susceptibility in the Oregon Coast Range, Canadian Geotechnical Journal, 38, 9951024, doi:10.1139/cgj-38–5-995.CrossRefGoogle Scholar
Schmidt, M. W. I., et al. (2011), Persistence of soil organic matter as an ecosystem property, Nature, 478, 4956, doi:10.1038/nature10386.CrossRefGoogle ScholarPubMed
Schimel, D. S., Braswell, B. H., Holland, E. A., McKeown, R., Ojima, D. S., Painter, T. H., Parton, W. J., and Townsend, A. R. (1994), Climatic, edaphic, and biotic controls over storage and turnover of carbon in soils, Global Biogeochemical Cycles, 8(3), 279293.CrossRefGoogle Scholar
Schönbrodt, S., Saumer, P., Behrens, T., Seeber, C., and Scholten, T. (2010), Assessing the USLE crop and management factor C for soil erosion modeling in a large mountainous watershed in Central China, Journal of Earth Science, 21(6), 835845, doi:10.1007/s12583-010-0135-8.CrossRefGoogle Scholar
Schoorl, J. M., Temme, A. J. A. M., and Veldkamp, T. (2014), Modelling centennial sediment waves in an eroding landscape – Catchment complexity, Earth Surface Processes and Landforms, 39(11), 15261537, doi:10.1002/esp.3605.CrossRefGoogle Scholar
Schoorl, J. M., and Veldkamp, A. (2001), Linking land use and landscape process modelling: A case study for the Alora region (south Spain), Agriculture, Ecosystems & Environment, 85(1–3), 281292, doi:10.1016/s0167-8809(01)00194-3.CrossRefGoogle Scholar
Scott, K. M., and Pain, C. F. (2009), Regolith science, Springer, Dordrecht, the Netherlands.CrossRefGoogle Scholar
Sella, G. F., Stein, S., Dixon, T. H., Craymer, M., James, T. S., Mazzotti, S., and Dokka, R. K. (2007), Observation of glacial isostatic adjustment in ‘stable’ North America with GPS, Geophysical Research Letters, 34(2), L02306, doi:10.1029/2006GL027081.CrossRefGoogle Scholar
Shakesby, R. A. (2011), Post-wildfire soil erosion in the Mediterranean: Review and future research directions, Earth-Science Reviews, 105(3–4), 71100, doi:10.1016/j.earscirev.2011.01.001.CrossRefGoogle Scholar
Shakesby, R. A., and Doerr, S. H. (2006), Wildfire as a hydrological and geomorphological agent, Earth-Science Reviews, 74, 269307, doi:10.1016/j.earscirev.2005.10.006.CrossRefGoogle Scholar
Sharmeen, S., and Willgoose, G. R. (2006), The interaction between armouring and particle weathering for eroding landscapes, Earth Surface Processes and Landforms, 31(10), 11951210, doi:10.1002/esp.1397.CrossRefGoogle Scholar
Sharmeen, S., and Willgoose, G. R. (2007), A one-dimensional model for simulating armouring and erosion on hillslopes. 2. Long-term erosion and armouring predictions for two contrasting mine spoils, Earth Surface Processes and Landforms, 32(10), 14371453, doi:10.1002/esp.1482.CrossRefGoogle Scholar
Sharples, J. J., Cary, G. J., Fox-Hughes, P., Mooney, S., Evans, J. P., Fletcher, M.-S., Fromm, M., Grierson, P. F., McRae, R., and Baker, P. (2016), Natural hazards in Australia: Extreme bushfire, Climate Change, 139, 8599, doi:10.1007/s10584-016-1811-1.CrossRefGoogle Scholar
Sheridan, G. J., Lane, P. N. J., and Noske, P. J. (2007), Quantification of hillslope runoff and erosion processes before and after wildfire in a wet eucalyptus forest, Journal of Hydrology, 343, 1228, doi:10.1016/j.jhydrol.2007.06.005.CrossRefGoogle Scholar
Shreve, R. L. (1967), Infinite topologically random channel networks, Journal of Geology, 75, 178186.CrossRefGoogle Scholar
Shuin, Y., Hotta, N., Suzuki, M., and Ogawa, K. (2012), Estimating the effects of heavy rainfall conditions on shallow landslides using a distributed landslide conceptual model, Physics and Chemistry of the Earth, 49, 4451, doi:10.1016/j.pce.2011.06.002.CrossRefGoogle Scholar
Shull, D. H. (2001), Transition-matrix model of bioturbation and radionuclide diagenesis, Limnology and Oceanography, 46(4), 905916.CrossRefGoogle Scholar
Sidle, R. C. (1992), A theoretical model of the effects of timber harvesting on slope stability, Water Resources Research, 28(7), 18971910.CrossRefGoogle Scholar
Sidman, G., Guertin, D. P., Goodrich, D. C., Thoma, D., Falk, D., and Burns, I. S. (2016), A coupled modelling approach to assess the effect of fuel treatments on post-wildfire runoff and erosion, International Journal of Wildland Fire, 25, 351362, doi:10.1071/WF14058.CrossRefGoogle Scholar
Silva, J. S., Rego, F. C., and Mazzoleni, S. (2006), Soil water dynamics after fire in a Portuguese shrubland, International Journal of Wildland Fire, 15, 99111, doi:10.1071/WF04057.CrossRefGoogle Scholar
Simonett, D. S. (1967), Landslide distribution and earthquakes in the Bewani and Torricelli Mountains, New Guinea, in Landform studies from Australia and New Guinea, edited by Jennings, J. N. and Mabbutt, J. A., pp. 6484, Cambridge University Press, Cambridge.Google Scholar
Simunek, J., Senja, M., Saito, H., Sakai, M., and van Genuchten, M. T. (2008), The HYDRUS-1D software package for simulating the one-dimensional movement of water, heat, and multiple solutes in variably-saturated media, version 4.0, 315 pp, University of California.Google Scholar
Sitch, S., et al. (2003), Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model, Global Change Biology, 9(2), 161185.CrossRefGoogle Scholar
Six, J., Bossuyt, H., Degryze, S., and Denef, K. (2004), Review: A history of research on the link between (micro)aggregates, soil biota, and soil organic matter dynamics, Soil Tillage Research, 79, 731, doi:10.1016/j.still.2004.03.008.CrossRefGoogle Scholar
Sklar, L. S., and Dietrich, W. E. (1998), River longitudinal profiles and bedrock incision models: Stream power and the influence of sediment supply, in Rivers over rock: Fluvial processes in bedrock channels, edited by Tinkler, K. J. and Wohl, E. E., AGU, Washington, DC.Google Scholar
Sklar, L. S., and Dietrich, W. E. (2001), Sediment and rock strength controls on river incision into bedrock, Geology, 29(12), 10871090, doi:10.1130/0091-7613(2001)029<1087:SARSCO>2.0.CO;2.2.0.CO;2>CrossRefGoogle Scholar
Sklar, L. S., and Dietrich, W. E. (2004), A mechanistic model for river incision into bedrock by saltating bedrock, Water Resources Research, 40(6), W06301.CrossRefGoogle Scholar
Sklar, L. S., and Dietrich, W. E. (2008), Implications of the saltation–abrasion bedrock incision model for steady-state river longitudinal profile relief and concavity, Earth Surface Processes and Landforms, 33(7), 11291151, doi:10.1002/esp.1689.CrossRefGoogle Scholar
Sklar, L. S., and Dietrich, W. E. (2012), Correction to A mechanistic model for river incision into bedrock by saltating bed load, Water Resources Research, 48, W06902, doi:10.1029/2012WR012267.CrossRefGoogle Scholar
Sklar, L. S., and Marshall, J. A. (2016), The problem of predicting the size distribution of sediment supplied by hillslopes to rivers, Geomorphology, 277, 3149, doi:10.1016/j.geomorph.2016.05.005.CrossRefGoogle Scholar
Sloan, S. W. (1987), A fast algorithm for constructing Delaunay triangulation in the plane, Advances in Engineering Software, 9(1), 3455.CrossRefGoogle Scholar
Smith, H. G., Sheridan, G. J., Lane, P. N. J., Nyman, P., and Haydon, S. (2011), Wildfire effects on water quality in forest catchments: A review with implications for water supply, Journal of Hydrology, 396, 170192, doi:10.1016/j.jhydrol.2010.10.043.CrossRefGoogle Scholar
Smith, P., et al. (1997), A comparison of the performance of nine soil organic matter models using datasets from seven long-term experiments, Geoderma, 81(1–2), 153225.CrossRefGoogle Scholar
Smith, T. R., and Bretherton, F. P. (1972), Stability and the conservation of mass in drainage basin evolution, Water Resources Research, 8(6), 15061529.CrossRefGoogle Scholar
Solyom, P. B., and Tucker, G. E. (2004), Effect of limited storm duration on landscape evolution, drainage basin geometry, and hydrograph shapes, Journal of Geophysical Research (Earth Surface), 109, F03012.Google Scholar
Solyom, P. B., and Tucker, G. E. (2007), The importance of the catchment area–length relationship in governing non-steady state hydrology, optimal junction angles and drainage network pattern, Geomorphology, 88, 84108, doi:10.1016/j.geomorph.2006.10.014.CrossRefGoogle Scholar
Sørensen, M. (2004), On the rate of aeolian sand transport, Geomorphology, 59(1–4), doi:10.1016/j.geomorph.2003.09.005.CrossRefGoogle Scholar
Southard, J. B. (2006), 12.090 Introduction to fluid motions, sediment transport, and current-generated sedimentary structures, MIT OpenCourseWare, Massachusetts Institute of Technology, Cambridge, MA.Google Scholar
Spada, G., Ruggieri, G., Sorenson, L. S., Nielson, K., Melini, D., and Colleoni, F. (2012), Greenland uplift and regional sea level changes from ICESat observations and GIA modelling, Geophysical Journal International, 189, 14571474, doi:10.1111/j.1365-246X.2012.05443.x.CrossRefGoogle Scholar
Stallard, R. F. (1998), Terrestrial sedimentation and the carbon cycle: Coupling weathering and erosion to carbon burial, Global Biogeochemical Cycles, 12(2), 231257.CrossRefGoogle Scholar
Stark, C. P., and Guzzetti, F. (2009), Landslide rupture and the probability distribution of mobilized debris volumes, Journal of Geophysical Research (Earth Surface), 114, F00A02, doi:10.1029/2008JF001008.Google Scholar
Stark, C. P., and Hovius, N. (2001), The characterization of landslide size distributions, Geophysical Research Letters, 28(6), 10911094, doi:10.1029/2000GL008527.CrossRefGoogle Scholar
Steefel, C. I. (2009), CrunchFlow: Software for modelling multicomponent reactive flow and transport, user manual, Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, www.csteefel.com/CrunchFlowManual.pdf.Google Scholar
Steel, Z. L., Safford, H. D., and Viers, J. H. (2015), The fire frequency-severity relationship and the legacy of fire suppression in California forests, Ecosphere, 6(1), 8, doi:10.1890/ES14-00224.1.CrossRefGoogle Scholar
Stewart, V. I., Adams, W. A., and Abdulla, H. H. (1970), Quantitative pedological studies on soils derived from Silurian mudstones. II. The relationship between stone content and apparent density of the fine earth, Journal of Soil Science, 21, 248255.CrossRefGoogle Scholar
Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M. M. B., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M. (Eds.) (2013), Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge.Google Scholar
Stockmann, U., Minasny, B., and McBratney, A. B. (2014), How fast does soil grow?, Geoderma, 216, 4861, doi:10.1016/j.geoderma.2013.10.007.CrossRefGoogle Scholar
Stockmann, U., et al. (2013), The knowns, known unknowns and unknowns of sequestration of soil organic carbon, Agriculture, Ecosystems & Environment, 164, 8099, doi:10.1016/j.agee.2012.10.001.CrossRefGoogle Scholar
Strahler, A. N. (1952), Dynamic basis of geomorphology, Bulletin of the Geological Society of America, 63, 923938.CrossRefGoogle Scholar
Strahler, A. N. (1952), Hypsometric (area-altitude) analysis of erosional topography, Bulletin of the Geological Society of America, 63, 11171142.CrossRefGoogle Scholar
Sullivan, A. L. (2009a), Wildland surface fire spread modelling, 1990–2007. 1: Physical and quasi-physical models, International Journal of Wildland Fire, 18, 349368, doi:10.1071/WF06143.CrossRefGoogle Scholar
Sullivan, A. L. (2009b), Wildland surface fire spread modelling, 1990–2007. 2: Empirical and quasi-empirical models, International Journal of Wildland Fire, 18, 369386, doi:10.1071/WF06142.CrossRefGoogle Scholar
Sullivan, A. L. (2009c), Wildland surface fire spread modelling, 1990–2007. 3: Simulation and mathematical analogue models, International Journal of Wildland Fire, 18, 387403, doi:10.1071/WF06144.CrossRefGoogle Scholar
Surkan, A. J. (1969), Synthetic hydrographs: Effects of network geometry, Water Resources Research, 5(1), 112128.CrossRefGoogle Scholar
Sweeney, K. E., Roering, J. J., and Ellis, C. (2015), Experimental evidence for hillslope control of landscape scale, Science, 349(6243), 5153, doi:10.1126/science.aab0017.CrossRefGoogle ScholarPubMed
Syvitski, J. P. M., Peckham, S. D., Hilberman, R., and Mulder, T. (2003), Predicting the terrestrial flux of sediment to the global ocean: A planetary perspective, Sedimentary Geology, 162, 524, doi:10.1016/S0037-0738(03)00232-X.CrossRefGoogle Scholar
Tarboton, D. G. (1997), A new method for the determination of flow directions and upslope areas in grid digital elevation models, Water Resources Research, 33(2), 309319.CrossRefGoogle Scholar
Tarboton, D. G., Bras, R. L., and Rodriguez-Iturbe, I. (1989), Scaling and elevation in river networks, Water Resources Research, 25(9), 20372052.CrossRefGoogle Scholar
Tarolli, P. (2014), High-resolution topography for understanding Earth surface processes: Opportunities and challenges, Geomorphology, 216, 295312, doi:10.1016/j.geomorph.2014.03.008.CrossRefGoogle Scholar
Taylor, S. H., Ripley, B. S., Woodward, F. I., and Osborne, C. P. (2011), Drought limitation of photosynthesis differs between C3 and C4 grass species in a comparative experiment, Plant, Cell and Environment, 34, 6575, doi:10.1111/j.1365-3040.2010.02226.x.CrossRefGoogle Scholar
Teles, V., de Marsily, G., and Perrier, É. (1998), Sur une nouvelle approche de modélisation de la mise en place des sédiments dans une plaine alluviale pour en représenter l’hétérogénéité, Comptes Rendus de l’Academie des Sciences Serie II Fascicule A – Sciences de la terre et des planètes, 327(9), 597606, doi:10.1016/S1251-8050(99)80113-X.Google Scholar
Temme, A. J. A. M., Claessens, L., Veldkamp, A., and Schoorl, J. M. (2011), Evaluating choices in multi-process landscape evolution models, Geomorphology, 125, doi:10.1016/j.geomorph.2010.10.007.CrossRefGoogle Scholar
Temme, A. J. A. M., Peeters, I., Buis, E., Veldkamp, A., and Govers, G. (2011), Comparing landscape evolution models with quantitative field data at the millennial time scale in the Belgian loess belt, Earth Surface Processes and Landforms, 36(10), 13001312, doi:10.1002/esp.2152.CrossRefGoogle Scholar
Temme, A. J. A. M., and Vanwalleghem, T. (2016), LORICA – A new model for linking landscape and soil profile evolution: Development and sensitivity analysis, Computers & Geosciences 90, 131143, doi:10.1016/j.cageo.2015.08.004.CrossRefGoogle Scholar
Temme, A. J. A. M., and Veldkamp, A. (2009), Multi-process Late Quaternary landscape evolution modelling reveals lags in climate response over small spatial scales, Earth Surface Processes and Landforms, 34(4), 573589, doi:10.1002/esp.1758.CrossRefGoogle Scholar
Tesemma, Z. K., Wei, Y., Peel, M. C., and Western, A. W. (2015), The effect of year-to-year variability of leaf area index on Variable Infiltration Capacity model performance and simulation of runoff, Advances in Water Resources, 83, 310322, doi:10.1016/j.advwatres.2015.07.002.CrossRefGoogle Scholar
Tessler, N., Wittenberg, L., and Greenbaum, N. (2013), Soil water repellency persistence after recurrent forest fires on Mount Carmel, Israel, International Journal of Wildland Fire, 22, 515526, doi:10.1071/WF12063.CrossRefGoogle Scholar
Thomas, I. A., Jordan, P., Shine, O., Fenton, O., Mellander, P. E., Dunlop, P., and Murphy, P. N. C. (2017), Defining optimal DEM resolutions and point densities for modelling hydrologically sensitive areas in agricultural catchments dominated by microtopography, International Journal of Applied Earth Observation and Geoinformation, 54, 3852, doi:10.1016/j.jag.2016.08.012.CrossRefGoogle Scholar
Thompson, S. E., Harman, C. J., Heine, P., and Katul, G. G. (2010), Vegetation infiltration relationships across climatic and soil type gradients, Journal of Geophysical Research (Biogeosciences), 115, G02023, doi:10.1029/2009JG001134.Google Scholar
Thonicke, K., Spessa, A., Prentice, I. C., Harrison, S. P., Dong, L., and Carmona-Moreno, C. (2010), The influence of vegetation, fire spread and fire behaviour on biomass burning and trace gas emissions: Results from a process-based model, Biogeosciences, 7, 19912011, doi:10.5194/bg-7-1991-2010.CrossRefGoogle Scholar
Tilman, D. (1994), Competition and biodiversity in spatially structured habitats, Ecology, 75(1), 216, doi:10.2307/1939377.CrossRefGoogle Scholar
Ting, I. P., and Loomis, W. E. (1965), Further studies concerning stomatal diffusion, Plant Physiology, 40(2), 220228, doi:10.1104/pp.40.2.220.CrossRefGoogle ScholarPubMed
Tisdall, J. M. (1996), Formation of soil aggregates and accumulation of soil organic matter, in Structure and organic matter storage in agricultural soils, edited by Carter, M. R. and Stewart, B. A., pp. 5796, CRC Press, Boca Raton, FL.Google Scholar
Tisdall, J. M., and Oades, J. M. (1982), Organic matter and water stable aggregates in soils, European Journal of Soil Science, 33(2), 141163.CrossRefGoogle Scholar
Tomkin, J. H., Brandon, M. T., Pazzaglia, F. J., Barbour, J. R., and Willett, S. D. (2003), Quantitative testing of bedrock incision models for the Clearwater River, NW Washington State, Journal of Geophysical Research (Solid Earth), 108(B6), ETG 10, doi:10.1029/2001JB000862.Google Scholar
Tongway, D. J., and Ludwig, J. A. (1990), Vegetation and soil patterning in semi-arid mulga lands of Eastern Australia, Australian Journal of Ecology, 15, 2334.CrossRefGoogle Scholar
Torn, M. S., Trumbore, S. E., Chadwick, O. A., Vitousek, P. M., and Hendricks, D. M. (1997), Mineral control of soil organic carbon storage and turnover, Nature, 389(6647), 170173, doi:10.1038/38260.CrossRefGoogle Scholar
Torri, D., and Poesen, J. (2014), A review of topographic threshold conditions for gully head development in different environments, Earth-Science Reviews, 130, 7385, doi:10.1016/j.earscirev.2013.12.006.CrossRefGoogle Scholar
Tranter, G., Minasny, B., McBratney, A. B., Murphy, B., McKenzie, N. J., Grundy, M., and Brough, D. M. (2007), Building and testing conceptual and empirical models for predicting soil bulk density, Soil Use and Management, 23(4), 437443, doi:0.1111/j.1475-2743.2007.00092.x.CrossRefGoogle Scholar
Trumbore, S. (2000), Age of soil organic matter and soil respiration: Radiocarbon constraints on belowground C dynamics, Ecological Applications, 10(2), 399411, doi:10.1890/1051-0761(2000)010[0399:AOSOMA]2.0.CO;2.CrossRefGoogle Scholar
Trumbore, S. (2009), Radiocarbon and soil carbon dynamics, Annual Review of Earth and Planetary Sciences, 37, 4766, doi:10.1146/annurev.earth.36.031207.124300.CrossRefGoogle Scholar
Tucker, G., Lancaster, S., Gasparini, N., and Bras, R. (2001a), The channel-hillslope integrated landscape development model (CHILD), in Landscape erosion and evolution modelling, edited by Harmon, R. S. and Doe, W. W., pp. 349388, Kluwer, New York.CrossRefGoogle Scholar
Tucker, G. E., and Bras, R. L. (2000), A stochastic approach to modeling the role of rainfall variability in drainage basin evolution, Water Resources Research, 36(7), 19531964.CrossRefGoogle Scholar
Tucker, G. E., and Hancock, G. R. (2010), Modelling landscape evolution, Earth Surface Processes and Landforms, 35(1), 2850, doi:10.1002/esp.1952.CrossRefGoogle Scholar
Tucker, G. E., Lancaster, S. T., Gasparini, N. M., Bras, R. L., and Rybarczyk, S. M. (2001b), An object-oriented framework for distributed hydrologic and geomorphic modeling using triangulated irregular networks, Computers & Geosciences, 27(8), 959973.CrossRefGoogle Scholar
Tucker, G. E., and Slingerland, R. L. (1994), Erosional dynamics, flexural isostasy, and long-lived escarpments – A numerical modeling study, Journal of Geophysical Research (Solid Earth), 99(B6), 1222912243, doi:10.1029/94JB00320.CrossRefGoogle Scholar
Tucker, G. E., and Whipple, K. X. (2002), Topographic outcomes predicted by stream erosion models: Sensitivity analysis and intermodel comparison, Journal of Geophysical Research (Solid Earth), 107(B9), art. no.-2179.Google Scholar
Turcotte, D. L., and Schubert, G. (2002), Geodynamics, Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Turowski, J. M., and Rickenmann, D. (2009), Tools and cover effects in bedload transport observations in the Pitzbach, Austria, Earth Surface Processes and Landforms, 34, 2637, doi:10.1002/esp.1686.CrossRefGoogle Scholar
Tushingham, A. M., and Peltier, W. R. (1991), ICE-3G: A new global model of late Pleistocene deglaciation based upon geophysical predictions of post-glacial relative sea level change, Journal of Geophysical Research (Solid Earth), 96(B3), 44974523.CrossRefGoogle Scholar
Uijlenhoet, R. (2001), Raindrop size distributions and radar reflectivity–rain rate relationships for radar hydrology, Hydrology and Earth System Sciences, 5(4), 615627.CrossRefGoogle Scholar
Unger, P. W., and Jones, O. R. (1998), Long-term tillage and cropping systems affect bulk density and penetration resistance of soil cropped to dryland wheat and grain sorghum, Soil Tillage Research, 45(1–2), 3957, doi:10.1016/S0167-1987(97)00068-8.CrossRefGoogle Scholar
USDA-ARS (1999), Soil quality test kit guide, USDA-ARS, Soil Quality Institute.Google Scholar
USDA-ARS (2008), User’s reference guide: Revised universal soil loss equation Version 2 (RUSLE2), USDA-ARS, Washington, DC.Google Scholar
USGS (2015), PHREEQC (Version 3) – A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations, http://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc/.Google Scholar
Valentin, C., Poesen, J., and Li, Y. (2005), Gully erosion: Impacts, factors and control, Catena, 63(2–3), 132153, doi:10.1016/j.catena.2005.06.001.CrossRefGoogle Scholar
van Ash, T. J. W., and van Genuchten, P. M. B. (1990), A comparison between theoretical and measured creep profiles of landslides, Geomorphology, 3(1), 4555, doi:10.1016/0169-555X(90)90031-K.Google Scholar
Vandaele, K., and Poesen, J. (1995), Spatial and temporal patterns of soil-erosion rates in an agricultural catchment, Central Belgium, Catena, 25(1–4), 213226.CrossRefGoogle Scholar
Vandekerckhove, L., Poesen, J., and Govers, G. (2003), Medium-term gully headcut retreat rates in Southeast Spain determined from aerial photographs and ground measurements, Catena, 50(2–4), 329352, doi:10.1016/S0341-8162(02)00132–7.CrossRefGoogle Scholar
Vandekerckhove, L., Poesen, J., Wijdenes, D. O., and Gyssels, G. (2001), Short-term bank gully retreat rates in Mediterranean environments, Catena, 44(2), 133161, doi:10.1016/S0341-8162(00)00152-1.CrossRefGoogle Scholar
VandenBygaart, A. J., Gregorich, E. G., and Helgason, B. L. (2015), Cropland C erosion and burial: Is buried soil organic matter biodegradable?, Geoderma, 239–240, 240249, doi:10.1016/j.geoderma.2014.10.011.CrossRefGoogle Scholar
van der Beek, P., Summerfield, M. A., Braun, J., Brown, R. W., and Fleming, A. (2002), Modeling postbreakup landscape development and denudational history across the southeast African (Drakensberg Escarpment) margin, Journal of Geophysical Research (Solid Earth), 107(B12), art. no.-2351.Google Scholar
Van De Wiel, M. J., Coulthard, T. J., Macklin, M. G., and Lewin, J. (2007), Embedding reach-scale fluvial dynamics within the CAESAR cellular automaton landscape evolution model, Geomorphology, 90, 283301, doi:10.1016/j.geomorph.2006.10.024.CrossRefGoogle Scholar
van Dijk, A. I. J. M., Bruijnzeel, L. A., and Rosewell, C. J. (2002a), Rainfall intensity-kinetic energy relationships: A critical literature appraisal, Journal of Hydrology, 261(1–4), 123, doi:10.1016/S0022-1694(02)00020-3.CrossRefGoogle Scholar
van Dijk, A. I. J. M., Meesters, A. G. C. A., and Bruijnzeel, L. A. (2002b), Exponential distribution theory and the interpretation of splash detachment and transport experiments, Soil Science Society of America Journal, 66, 14661474, doi:10.2136/sssaj2002.1466.CrossRefGoogle Scholar
Van Eck, C. M., Nunes, J. P., Vieira, D. C. S., Keestra, S., and Keizer, J. J. (2016), Physically-based modelling of the post-fire runoff response of a forest catchment in central Portugal: Using field versus remote sensing based estimates of vegetation recovery, Land Degradation and Development, 27, 15351544, doi:10.1002/ldr.2507.CrossRefGoogle Scholar
van Grinsven, J. J. M., and van Riemsdijk, W. H. (1992), Evaluation of batch and column techniques to measure weathering rates in soils, Geoderma, 52(1–2), 4157.CrossRefGoogle Scholar
van Hooff, P. (1983), Earthworm activity as a cause of splash erosion in a Luxembourg forest, Geoderma, 31(3), 195204.CrossRefGoogle Scholar
Vanmaercke, M., et al. (2016), How fast do gully headcuts retreat?, Earth-Science Reviews, 154, 336355, doi:10.1016/j.earscirev.2016.01.009.CrossRefGoogle Scholar
van Mantgem, P. J., et al. (2009), Widespread increase of tree mortality in the western United States, Science, 323(5913), 521524, doi:10.1126/science.1165000.CrossRefGoogle ScholarPubMed
Vanoni, V. A. (1975), Sedimentation engineering, ASCE, New York.Google Scholar
Van Oost, K., and Bakker, M. M. (2012), Soil productivity and erosion, in Soil ecology and ecosystem services, edited by Wall, D. H., Bardgett, R. D., Behan-Pelletier, V., Herrick, J. E., Jones, T. H., Ritz, K., Six, J., Strong, D. R., and van der Putten, W. H., pp. 301314, Oxford University Press, Oxford.CrossRefGoogle Scholar
van Veen, J. A., and Paul, E. A. (1981), Organic carbon dynamics in grassland soils. 1. Background information and computer simulation, Canadian Journal of Soil Science, 61(2), 185201.CrossRefGoogle Scholar
Vanwalleghem, T., Poesen, J., McBratney, A. B., and Deckers, J. (2010), Spatial variability of soil horizon depth in natural loess-derived soils, Geoderma, 157, 3745, doi:10.1016/j.geoderma.2010.03.013.CrossRefGoogle Scholar
Vanwalleghem, T., Saito, H., Hayakawa, Y., and Oguchi, T. (2013), Interaction between soil formation and landslide occurrence, paper presented at EGU General Assembly 2013, Geophysical Research Abstracts, EGU2013-8665-1, European Geophysical Union, Vienna.Google Scholar
Vanwalleghem, T., Stockmann, U., Minasny, B., and McBratney, A. B. (2013), A quantitative model for integrating landscape evolution and soil formation, Journal of Geophysical Research (Earth Surface), 118, 117, doi:10.1029/2011JF002296.Google Scholar
Varadachari, C., Barman, A. K., and Ghosh, K. (1994), Weathering of silicate minerals by organic-acids. 2. Nature of residual products, Geoderma, 61(3–4), 251268.CrossRefGoogle Scholar
Veenstra, J. J., and Burras, C. L. (2015), Soil profile transformation after 50 years of agricultural land use, Soil Science Society of America, 79, 11541162, doi:10.2136/sssaj2015.01.0027.CrossRefGoogle Scholar
Venevsky, S., Thonicke, K., Sitch, S., and Cramer, W. (2002), Simulating fire regimes in human-dominated ecosystems: Iberian Peninsula case study, Global Change Biology, 8(10), 984998.CrossRefGoogle Scholar
Ventsel, E., and Krauthammer, T. (2001), Thin plates and shells: Theory: analysis, and applications, Marcel Dekker, New York.CrossRefGoogle Scholar
Verdon, D. C., Kiem, A. S., and Franks, S. W. (2004), Multi-decadal variability of forest fire risk – Eastern Australia, International Journal of Wildland Fire, 13(2), 165171.CrossRefGoogle Scholar
Vereecken, H., et al. (2016), Modelling soil processes: Review, key challenges and new perspectives, Vadose Zone Journal, 15(5), doi:10.2136/vzj2015.09.0131.CrossRefGoogle Scholar
Vico, G., and Porporato, A. (2008), Modelling C3 and C4 photosynthesis under water-stressed conditions, Plant and Soil, 313, 187203, doi:10.1007/s11104-008-9691-4.CrossRefGoogle Scholar
Viles, H. A., Naylor, L. A., Carter, N. E. A., and Chaput, D. (2008), Biogeomorphological disturbance regimes: Progress in linking ecological and geomorphological systems, Earth Surface Processes and Landforms, 33, 14191435, doi:10.1002/esp.1717.CrossRefGoogle Scholar
Vince, G. (2005), Tsunami seabed shows massive disruption, New Scientist, www.newscientist.com/article/dn7465-tsunami-seabed-shows-massive-disruption/.Google Scholar
Vincent, K. R., and Chadwick, O. A. (1994), Synthesizing bulk-density for soils with abundant rock fragments, Soil Science Society of America Journal, 58, 455464.CrossRefGoogle Scholar
Volkwein, A., Schllenberg, K., Labiouse, V., Agliardi, F., Berger, F., Bourrier, F., Dorren, L. K. A., Gerber, W., and Jaboyedoff, M. (2011), Rockfall characterisation and structural protection – A review, Natural Hazards and Earth System Sciences, 11, 26172651, doi:10.5194/nhess-11-2617-2011.CrossRefGoogle Scholar
Voroney, R. P. (2007), The soil habitat, in Soil microbiology, ecology, and biochemistry, edited by Paul, E. A., pp. 2552, Academic Press, Amsterdam.CrossRefGoogle Scholar
Vrieling, A. (2006), Satellite remote sensing for water erosion assessment: A review, Catena, 65, 218, doi:10.1016/j.catena.2005.10.005.CrossRefGoogle Scholar
Wainwright, J. (2008), Can modelling enable us to understand the role of humans in landscape evolution?, Geoforum, 39(2), 659674, doi:10.1016/j.geoforum.2006.09.011.CrossRefGoogle Scholar
Wainwright, J., and Millington, J. D. A. (2010), Mind, the gap in landscape-evolution modelling, Earth Surface Processes and Landforms, 35, 842855, doi:10.1002/esp.2008.CrossRefGoogle Scholar
Wainwright, J., Parsons, A. J., Cooper, J. R., Gao, P., Gillies, J. A., Mao, L., Orford, J. D., and Knight, P. G. (2015), The concept of transport capacity in geomorphology, Reviews of Geophysics, 53, 1151202, doi:10.1002/2014RG000474.CrossRefGoogle Scholar
Wainwright, J., Parsons, A. J., Müller, E. N., Brazier, R. E., and Powell, D. M. (2009), Response to Hairsine’s and Sander’s ‘Comment on “A transport-distance based approach to scaling erosion rates”’: Parts 1, 2 and 3 by Wainwright et al., Earth Surface Processes and Landforms, 34(6), 886890.CrossRefGoogle Scholar
Wainwright, J., Parsons, A. J., Müller, E. N., Brazier, R. E., Powell, D. M., and Fenti, B. (2008a), A transport-distance approach to scaling erosion rates: 1. Background and model development, Earth Surface Processes and Landforms, 33, 813826, doi:10.1002/esp.1624.CrossRefGoogle Scholar
Wainwright, J., Parsons, A. J., Müller, E. N., Brazier, R. E., Powell, D. M., and Fenti, B. (2008b), A transport-distance approach to scaling erosion rates: 2. Sensitivity and evaluation of MAHLERAN, Earth Surface Processes and Landforms, 33, 962984, doi:10.1002/esp.1623.CrossRefGoogle Scholar
Wainwright, J., Parsons, A. J., Müller, E. N., Brazier, R. E., Powell, D. M., and Fenti, B. (2008c), A transport-distance approach to scaling erosion rates: 3. Evaluating scaling characteristics of MAHLERAN, Earth Surface Processes and Landforms, 33, 11131128, doi:10.1002/esp.1622.CrossRefGoogle Scholar
Walker, J. P., and Willgoose, G. R. (1999), On the effect of digital elevation model accuracy on hydrology and geomorphology, Water Resources Research, 35(7), 22592268.CrossRefGoogle Scholar
Walker, J. P., Willgoose, G. R., and Kalma, J. D. (2001), One-dimensional soil moisture profile retrieval by assimilation of near-surface measurements: A simplified soil moisture model and field application, Journal of Hydrometeorology, 2(4), 356373.2.0.CO;2>CrossRefGoogle Scholar
Wang, E., Robertson, M. J., Hammer, G. L., Carberry, P. S., Holzworth, D., Meinke, H., Chapman, S. C., Hargreaves, J. N. G., Huth, N. I., and McLean, G. (2002), Development of a generic crop model template in the cropping system model APSIM, European Journal of Agronomy, 18, 121140.CrossRefGoogle Scholar
Wang, Y., and Tonon, F. (2011), Dynamic validation of a discrete element code in modeling rock fragmentation, International Journal of Rock Mechanics & Mining Sciences, 48, 535545, doi:10.1016/j.ijrmms.2011.02.003.CrossRefGoogle Scholar
Warburton, J., Milledge, D. G., and Johnson, R. (2008), Assessment of shallow landslide activity following the January 2005 storm, northern Cumbria, Proceedings of the Cumberland Geological Society, 7, 263283.Google Scholar
Wardle, D. A. (1992), A comparative-assessment of factors which influence microbial biomass carbon and nitrogen levels in soil, Biological Reviews of the Cambridge Philosophical Society, 67(3), 321358, doi:10.1111/j.1469-185X.1992.tb00728.x.CrossRefGoogle Scholar
Wasson, R. J., Mazari, R. K., Starr, B., and Clifton, G. (1998), The recent history of erosion and sedimentation on the Southern Tablelands of southeastern Australia: Sediment flux dominated by channel incision, Geomorphology, 24(4), 263372, doi:10.1016/S0169-555X(98)00019-1.CrossRefGoogle Scholar
Watson, F. G. R., Vertessy, R. A., McMahon, T. A., Rhodes, B. G., and Watson, I. S. (1999), The hydrologic impacts of forestry on the Maroondah catchments Rep. 99/1, Cooperative Research Centre for Catchment Hydrology, Melbourne.Google Scholar
Watts, A. B. (2001), Isostasy and flexure of the lithosphere, Cambridge University Press, Cambridge.Google Scholar
Wechsler, S. P. (2007), Uncertainties associated with digital elevation models for hydrologic applications: A review, Hydrology and Earth System Sciences 11, 14811500.CrossRefGoogle Scholar
Weissel, J. K., and Seidl, M. A. (1997), Influence of rock strength properties on escarpment retreat across passive continental margins, Geology, 25(7), 631635, doi:10.1130/0091-7613(1997) 025<0631:IORSPO> 2.3.CO;2.2.3.CO;2>CrossRefGoogle Scholar
Welivitiya, W. D. D. P. (2017), A next generation spatially distributed model for soil profile dynamics and pedogenesis, PhD thesis, University of Newcastle, Callaghan, Australia.Google Scholar
Welivitiya, W. D. D. P., Willgoose, G. R., Hancock, G. R., and Cohen, S. (2016), Exploring the sensitivity on a soil area-slope-grading relationship to changes in process parameters using a pedogenesis model, Earth System Dynamics, 4, 607625, doi:10.5194/esurf-4-607-2016.CrossRefGoogle Scholar
Wells, T., Binning, P., and Willgoose, G. R. (2005), The role of moisture cycling in the weathering of a quartz chlorite schist in a tropical environment: Findings of a laboratory simulation, Earth Surface Processes and Landforms, 30(4), 413428, doi:10.1002/esp.1149.CrossRefGoogle Scholar
Wells, T., Binning, P., Willgoose, G. R., and Hancock, G. R. (2006), Laboratory simulation of the salt weathering of schist: I. Weathering of schist blocks in a seasonally wet tropical environment, Earth Surface Processes and Landforms, 31(3), 339354, doi:10.1002/esp.1248.CrossRefGoogle Scholar
Wells, T., Hancock, G. R., Dever, C., and Martinez, C. (2013), Application of RothPC-1 to soil carbon profiles in cracking soils under minimal till cultivation, Geoderma, 207–208, 144153, doi:10.1016/j.geoderma.2013.05.018.CrossRefGoogle Scholar
Wells, T., Hancock, G. R., Dever, C., and Murphy, D. (2012), Prediction of vertical soil organic carbon profiles using soil properties and environmental tracer data at an untilled site, Geoderma, 170, 337346, doi:10.1016/j.geoderma.2011.11.006.CrossRefGoogle Scholar
Wells, T., Willgoose, G. R., and Binning, P. (2007), Laboratory simulation of the salt weathering of schist: II. Fragmentation of fine schist particles, Earth Surface Processes and Landforms, 32(5), 687697, doi:10.1002/esp.1450.CrossRefGoogle Scholar
Wells, T., Willgoose, G. R., and Hancock, G. R. (2008), Modelling weathering pathways and processes for salt induced fragmentation of quartz-chlorite schist, Journal of Geophysical Research (Earth Surface), 113, F01014, doi:10.1029/2006JF000714.Google Scholar
West, A. J. (2012), Thickness of the chemical weathering zone and implications for erosional and climatic drivers of weathering and for carbon-cycle feedbacks, Geology, 40(9), 811814, doi:10.1130/G33041.1.CrossRefGoogle Scholar
West, N., Kirby, E., Bierman, P., and Clarke, B. A. (2014), Aspect-dependent variations in regolith creep revealed by meteoric 10Be, Geology, 42(6), 507510, doi:10.1130/G35357.1.CrossRefGoogle Scholar
Western, A. W., Grayson, R. B., Blöschl, G., Willgoose, G. R., and McMahon, T. A. (1999), Observed spatial organization of soil moisture and its relation to terrain indices, Water Resources Research, 35(3), 797810.CrossRefGoogle Scholar
Whipple, K. X. (1997), Open-channel flow of Bingham fluids: Applications in debris-flow research, Journal of Geology, 105(2), 243262, doi:10.1086/515916.CrossRefGoogle Scholar
Whipple, K. X. (2009), The influence of climate on the tectonic evolution of mountain belts, Nature Geoscience, 2, 97104, doi:10.1038/ngeo413.CrossRefGoogle Scholar
Whipple, K. X., Hancock, G. S., and Anderson, R. S. (2000), River incision into bedrock: Mechanics and relative efficacy of plucking, abrasion, and cavitation, Geological Society of America Bulletin, 112(3), 490503.2.0.CO;2>CrossRefGoogle Scholar
Whipple, K. X., and Meade, B. J. (2004), Controls on the strength of coupling among climate, erosion, and deformation in two sided, frictional orogenic wedges at steady state, Journal of Geophysical Research (Earth Surface), 109(F1), F01011, doi:10.1029/2003JF000019.Google Scholar
Whipple, K. X., and Tucker, G. E. (1999), Dynamics of the stream-power river incision model: Implications for height limits of mountain ranges, landscape response timescales, and research needs, Journal of Geophysical Research (Solid Earth), 104(B8), 1766117674.CrossRefGoogle Scholar
Whipple, K. X., and Tucker, G. E. (2002), Implications of sediment-flux-dependent river incision models for landscape evolution, Journal of Geophysical Research (Solid Earth), 107(B2), art. no.-2039.Google Scholar
White, A. F., and Brantley, S. L. (2003), The effect of time on the weathering of silicate minerals: Why do weathering rates differ in the laboratory and field?, Chemical Geology, 202(3–4), 479506, doi:10.1016/j.chemgeo.2003.03.001.CrossRefGoogle Scholar
White, A. F., Blum, A. E., Schulz, M. S., Bullen, T. D., Harden, J. W., and Peterson, M. L. (1996), Chemical weathering rates of a soil chronosequence on granitic alluvium: I. Quantification of mineralogical and surface area changes and calculation of primary silicate reaction rates, Geochimica et Cosmochimica Acta, 60(14), 25332550.CrossRefGoogle Scholar
White, A. F., Schulz, M. S., Stonestrom, D. A., Vivit, D. V., Fitzpatrick, J., Bullen, T. D., Maher, K., and Blum, A. E. (2009), Chemical weathering of a marine terrace chronosequence, Santa Cruz, California. Part II: Solute profiles, gradients and the comparisons of contemporary and long-term weathering rates, Geochimica et Cosmochimica Acta, 73, 27692803, doi:10.1016/j.gca.2009.01.029.CrossRefGoogle Scholar
White, A. F., Schulz, M. S., Vivit, D. V., Blum, A. E., Stonestrom, D. A., and Anderson, S. P. (2008), Chemical weathering of a marine terrace chronosequence, Santa Cruz, California I: Interpreting rates and controls based on soil concentration–depth profiles, Geochimica et Cosmochimica Acta, 72(1), 3668, doi:10.1016/j.gca.2007.08.029.CrossRefGoogle Scholar
White, A. F., Schulz, M. S., Vivit, D. V., Blum, A. E., Stonestrom, D. A., and Harden, J. W. (2005), Chemical weathering rates of a soil chronosequence on granitic alluvium: III. Hydrochemical evolution and contemporary solute fluxes and rates, Geochimica et Cosmochimica Acta, 69(8), 19751996, doi:10.1016/j.gca.2004.10.003.CrossRefGoogle Scholar
Wickens, G. E., and Collier, F. W. (1971), Some vegetation patterns in the Republic of Sudan, Geoderma, 6, 4359, doi:10.1016/0016-7061(71)90050-4.CrossRefGoogle Scholar
Wickert, A. D. (2015), Open-source modular solutions for flexural isostasy: gFlex v1.0, Geoscientific Model Development Discussions, 8, 42454292, doi:10.5194/gmdd-8-4245-2015.Google Scholar
Wilcock, P. R., and Crowe, J. C. (2003), Surface-based transport model for mixed-size sediment, Journal of Hydraulic Engineering, 129(2), 120128, doi:10.1061/ASCE 0733-9429(2003)129:2(120).CrossRefGoogle Scholar
Wilkinson, M. T., Humphreys, G. S., Chappell, J., Fifield, K., and Smith, B. (2003), Estimates of soil production in the Blue Mountains, Australia, using cosmogenic 10Be, Advances in Regolith: Proceedings of the CRC LEME Regional Regolith Symposia, 2003, Cooperative Research Centre for Landscape Environments and Mineral Exploration (CRC LEME), Canberra, http://crcleme.org.au/Pubs/Advancesinregolith/Wilkinson_et_al.pdf.Google Scholar
Wilkinson, M. T., Richards, P. J., and Humphreys, G. S. (2009), Breaking ground: Pedological, geological, and ecological implications of soil bioturbation, Earth-Science Reviews, 97, 257272, doi:10.1016/j.earscirev.2009.09.005.CrossRefGoogle Scholar
Willett, S. (1999), Orogeny and orography: The effects of erosion on the structure of mountain belts, Journal of Geophysical Research (Solid Earth), 104(B12), 2895728981.CrossRefGoogle Scholar
Willett, S. D., Slingerland, R., and Hovius, N. (2001), Uplift, shortening, and steady-state topography in active mountain belts, American Journal of Science, 301(4–5), 455485.CrossRefGoogle Scholar
Willgoose, G. R. (1989), A physically based channel network and catchment evolution model, PhD thesis, Department of Civil Engineering, Massachusetts Institute of Technology, Cambridge, MA. Also published as Willgoose, G. R., Bras, R. L., and Rodriguez-Iturbe, I. (1989), A physically based channel network and catchment evolution model, Tech. Report 322, Ralph M. Parsons Laboratory, Dept. of Civil Engineering, MIT, Cambridge, MA.Google Scholar
Willgoose, G. R. (1994a), A physical explanation for an observed area-slope-elevation relationship for declining catchments, Water Resources Research, 30(2), 151159.CrossRefGoogle Scholar
Willgoose, G. R. (1994b), A statistic for testing the elevation characteristics of landscape simulation models, Journal of Geophysical Research (Solid Earth), 99(B7), 1398713996.CrossRefGoogle Scholar
Willgoose, G. R. (1995), A preliminary assessment of the effect of vegetation on the long-term stability of the proposed above-grade rehabilitation strategy at Ranger Uranium Mine, Open File Report 119, Environmental Research Institute of the Supervising Scientist, Jabiru, Australia.Google Scholar
Willgoose, G. R. (1997), A hydrodynamic particle tracking algorithm for simulating settling of sediment, Mathematics and Computers in Simulation, 43, 343349.CrossRefGoogle Scholar
Willgoose, G. R. (2001), Erosion processes, catchment elevations and landform evolution modelling, in Gravel Bed Rivers 2000, edited by Mosley, P., pp. 507530, Hydrology Society, Christchurch, New Zealand.Google Scholar
Willgoose, G. R. (2005a), Mathematical modeling of whole-landscape evolution, Annual Review of Earth and Planetary Sciences, 33, 443459.CrossRefGoogle Scholar
Willgoose, G. R. (2005b), User manual for SIBERIA (Version 8.30), www.telluricresearch.com/siberia_8.30_manual.pdf.Google Scholar
Willgoose, G. R. (2009), TELLUSIM: A Python plug-in based computational framework for spatially distributed environmental and earth sciences modelling, paper presented at 18th World IMACS/MODSIM Congress, Cairns, Australia, 13–17 July 2009.Google Scholar
Willgoose, G. R. (2010), Assessment of the erosional stability of encapsulation caps and covers at the millennial timescale: Current capabilities, research issues and operational needs, paper presented at Proceedings of the Workshop on Engineered Barrier Performance Related to Low-level Radioactive Waste, Decommissioning, and Uranium Mill Tailings facilities, NUREG/CP-0195, Office of Nuclear Regulatory Research, Rockville, Maryland, 3–5 August 2010.Google Scholar
Willgoose, G. R. (2011), Modelling bushfire impact on hydrology: The implications of the fire modelling approach on the climate change impact, in MSSANZ MODSIM 2011, pp. 36643670, Modelling and Simulation Society of Australia and New Zealand, Perth.Google Scholar
Willgoose, G. R. (2015), The interactions between evolving soils and landforms, and the importance of relative response times, in EGU General Meeting, pp. EGU2015–8220, EGU, Vienna.Google Scholar
Willgoose, G. R., Bras, R. L., and Rodriguez-Iturbe, I. (1990), A model of river basin evolution, EOS, 71(47), 18061807.CrossRefGoogle Scholar
Willgoose, G. R., Bras, R. L., and Rodriguez-Iturbe, I. (1991a), A coupled channel network growth and hillslope evolution model. 1. Theory, Water Resources Research, 27(7), 16711684.CrossRefGoogle Scholar
Willgoose, G. R., Bras, R. L., and Rodriguez-Iturbe, I. (1991b), A coupled channel network growth and hillslope evolution model. 2. Nondimensionalization and applications, Water Resources Research, 27(7), 16851696.CrossRefGoogle Scholar
Willgoose, G. R., Bras, R. L., and Rodriguez-Iturbe, I. (1991c), A physical explanation of an observed link area-slope relationship, Water Resources Research, 27(7), 16971702.CrossRefGoogle Scholar
Willgoose, G. R., and Gyasi-Agyei, Y. (1995), New technology in hydrology and erosion modeling for mine rehabilitation, paper presented at APCOM XXV Application of Computers and Operations Research in the Mineral Industries, Australian Institute of Mining and Metallurgy, Brisbane.Google Scholar
Willgoose, G. R., and Hancock, G. R. (1998), Revisiting the hypsometric curve as an indicator of form and process in transport-limited catchments, Earth Surface Processes and Landforms, 23(7), 611623.3.0.CO;2-Y>CrossRefGoogle Scholar
Willgoose, G. R., and Hancock, G. R. (2010), Applications of long-term erosion and landscape evolution models, in Handbook of erosion modelling, edited by Morgan, R. P. C. and Nearing, M. A., pp. 339359, Wiley-Blackwell, Oxford.CrossRefGoogle Scholar
Willgoose, G. R., Hancock, G. R., and Kuczera, G. A. (2003), A framework for the quantitative testing of landform evolution models, in Predictions in geomorphology, edited by Wilcock, P. R. and Iverson, R. M., pp. 195216, American Geophysical Union, Washington, DC.Google Scholar
Willgoose, G., and Kuczera, G. (1995), Estimation of subgrid scale kinematic wave parameters for hillslopes, Hydrological Processes, 9(3–4), 469482.CrossRefGoogle Scholar
Willgoose, G. R., Kuczera, G. A., and Williams, B. J. (1995), DISTFW-NLFIT: Rainfall-runoff and erosion model calibration and model uncertainty assessment suite, Research Report 108.03.1995, Department of Civil Engineering and Surveying, University of Newcastle, Australia, Callaghan.Google Scholar
Willgoose, G. R., and Perera, H. J. (2001), A simple model for saturation excess runoff generation based on geomorphology, steady state soil moisture, Water Resources Research, 37(1), 147156.CrossRefGoogle Scholar
Willgoose, G. R., and Riley, S. J. (1998a), Application of a catchment evolution model to the prediction of long term erosion on the spoil heap at Ranger Uranium Mines: Initial analysis, Supervising Scientist Report 132, Australian Government Publishing Service, Canberra. Originally published as Willgoose, G. R., and S. J. Riley (1993), Application of a catchment evolution model to the prediction of long-term erosion on the spoil heap at Ranger Uranium Mine, Open File Report 107, Office of the Supervising Scientist, Jabiru.Google Scholar
Willgoose, G. R., and Riley, S. J. (1998b), An assessment of the long-term erosional stability of a proposed mine rehabilitation, Earth Surface Processes and Landforms, 23, 237259.3.0.CO;2-X>CrossRefGoogle Scholar
Willgoose, G. R., and Sharmeen, S. (2006), A one-dimensional model for simulating armouring and erosion on hillslopes. 1. Model development and event-scale dynamics, Earth Surface Processes and Landforms, 31(8), 970991, doi:10.1002/esp.1398.CrossRefGoogle Scholar
Williams, B. J. (2006), Hydrobiological modelling: Processes, numerical methods and applications, Lulu Press, Newcastle, Australia.Google Scholar
Wilson, C. J., Crowell, K. J., and Lane, L. J. (2006), Surface erosion modelling for the repository waste cover at Los Alamos National Laboratory Technical Area 54, Material Disposal Area G, Rep. LA-UR-05–7771, Los Alamos.Google Scholar
Wischmeier, W. H., and Smith, D. D. (1978), Predicting rainfall erosion losses – A guide to conservation planning, USDA Agriculture Handbook 537, US Government Printing Office, Washington, DC. http://naldc.nal.usda.gov/download/CAT79706928/PDF.Google Scholar
Witten, T. A., and Sander, L. M. (1981), Diffusion-limited aggregation, a kinetic critical phenomenon, Physical Review Letters, 47(19), 14001403.CrossRefGoogle Scholar
Wohl, E. E., Hall, R. O., Lininger, K. B., Sutfin, N. A., and Walters, D. M. (2017), Carbon dynamics of river corridors and the effects of human alterations, Ecological Monographs, doi:10.1002/ecm.1261.CrossRefGoogle Scholar
Woods, S. W., and Balfour, V. N. (2008), The effect of ash on runoff and erosion after a severe forest wildfire, Montana, USA, International Journal of Wildland Fire, 17, 535548, doi:10.1071/WF07040.CrossRefGoogle Scholar
Wu, S., Bras, R. L., and Barros, A. P. (2006), Sensitivity of channel profiles to precipitation properties in mountain ranges, Journal of Geophysical Research (Earth Surface), 111, F01024, doi:10.1029/2004JF000164.Google Scholar
Wu, W., and Sidle, R. C. (1995), A distributed slope stability model for steep forested basins, Water Resources Research, 31(8), 20972110.CrossRefGoogle Scholar
Wyllie, D. C. (2014), Calibration of rockfall modeling parameters, International Journal of Rock Mechanics & Mining Sciences, 67, 170180, doi:10.1016/j.ijrmms.2013.10.002.CrossRefGoogle Scholar
Yang, C. T. (1973), Incipient motion and sediment transport, Journal of Hydraulic Division – ASCE, 99(HY10), 16791704.CrossRefGoogle Scholar
Yeteman, O., Istanbulluoglu, E., and Duvall, A. R. (2015a), Solar radiation as a global driver of hillslope asymmetry: Insights from an ecogeomorphic landscape evolution model, Water Resources Research, 51, 98439861, doi:10.1002/2015WR017103.CrossRefGoogle Scholar
Yetemen, O., Istanbulluoglu, E., Flores-Cervantes, J., Vivoni, E. R., and Bras, R. L. (2015b), Ecohydrologic role of solar radiation on landscape evolution, Water Resources Research, 51, 11271157, doi:10.1002/2014WR016169.CrossRefGoogle Scholar
Yoo, K., Amundson, R., Heimsath, A. M., and Dietrich, W. E. (2005), Erosion of upland hillslope soil organic carbon: Coupling field measurements with a sediment transport model, Global Biogeochemical Cycles, 19, GB3003, doi:10.1029/2004GB002271.CrossRefGoogle Scholar
Yoo, K., Amundson, R., Heimsath, A. M., and Dietrich, W. E. (2006), Spatial patterns of soil organic carbon on hillslopes: Integrating geomorphic processes and the biological C cycle, Geoderma, 130(1–2), 4765.CrossRefGoogle Scholar
Yoo, K., and Mudd, S. M. (2008), Toward process-based modeling of geochemical soil formation across diverse landforms: A new mathematical framework, Geoderma, 146, 248260, doi:10.1016/j.geoderma.2008.05.029.CrossRefGoogle Scholar
Yu, C.-K., and Cheng, L.-W. (2013), Distribution and mechanisms of orographic precipitation associated with Typhoon Morakot, Journal of Atmospheric Sciences, 70(9), 28942915, doi:10.1175/JAS-D-12-0340.1.CrossRefGoogle Scholar
Yu, N., Boudevillian, B., Delrieu, G., and Uijlenhoet, R. (2012), Estimation of rain kinetic energy from radar reflectivity and/or rain rate based on a scaling formulation of the raindrop size distribution, Water Resources Research, 48, W04505, doi:10.1029/2011WR011437.CrossRefGoogle Scholar
Yu, Y. Y., Finke, P. A., Wu, H. B., and Guo, Z. T. (2013), Sensitivity analysis and calibration of a soil carbon model (SoilGen2) in two contrasting loess forest soils, Geoscientific Model Development, 6, 2944, doi:10.5194/gmd-6-29-2013.CrossRefGoogle Scholar
Zaitlin, B., and Hayashi, M. (2012), Interactions between soil biota and the effects on geomorphological features, Geomorphology, 157–158, 142152, doi:10.1016/j.geomorph.2011.07.029.CrossRefGoogle Scholar
Zhang, J. J., and Bentley, L. R. (2005), Factors determining Poisson’s ratio, Research Report 62, University of Calgary, CREWES, Calgary.Google Scholar
Zhang, K., Kimball, J. S., and Running, S. W. (2016), A review of remote sensing based actual evapotranspiration estimation, Wiley Interdisciplinary Reviews – Water, 3(6), 834853, doi:10.1002/wat2.1168.CrossRefGoogle Scholar
Zhang, W., and Montgomery, D. R. (1994), Digital elevation model grid size, landscape representation and hydrologic simulations, Water Resources Research, 30(4), 10191028.CrossRefGoogle Scholar
Zhang, W., Niu, J., Morales, V. L., Chen, X., Hay, A. G., Lehmann, J., and Steenhuis, T. S. (2010), Transport and retention of biochar particles in porous media: Effect of pH, ionic strength, and particle size, Ecohydrology, 3, 497508, doi:10.1002/eco.160.CrossRefGoogle Scholar
Zhang, Z. F., Ward, A. L., and Keller, J. M. (2009), Determining the porosity and saturated hydraulic conductivity of binary mixtures, Pacific Northwest National Laboratory, Oak Ridge.CrossRefGoogle Scholar
Zhong, S., Paulson, A., and Wahr, J. (2003), Three-dimensional finite-element modelling of Earth’s viscoelastic deformation: Effects of lateral variations in lithospheric thickness, Geophysical Journal International, 155(2), 679695, doi:10.1046/j.1365-246X.2003.02084.x.CrossRefGoogle Scholar
Zhou, X., Istanbulluoglu, E., and Vivoni, E. R. (2013), Modeling the ecohydrological role of aspect-controlled radiation on tree-grass-shrub coexistence in a semiarid climate, Water Resources Research, 49, 28722895, doi:10.1002/wrcr.20259.CrossRefGoogle Scholar
Zolezzi, G., Luchi, R., and Tubino, M. (2012), Modelling morphodynamic processes in meandering rivers with spatial width variations, Reviews of Geophysics, 50, RG4005, doi:10.1029/2012RG000392.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Garry Willgoose, University of Newcastle, New South Wales
  • Book: Principles of Soilscape and Landscape Evolution
  • Online publication: 23 February 2018
  • Chapter DOI: https://doi.org/10.1017/9781139029339.018
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Garry Willgoose, University of Newcastle, New South Wales
  • Book: Principles of Soilscape and Landscape Evolution
  • Online publication: 23 February 2018
  • Chapter DOI: https://doi.org/10.1017/9781139029339.018
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Garry Willgoose, University of Newcastle, New South Wales
  • Book: Principles of Soilscape and Landscape Evolution
  • Online publication: 23 February 2018
  • Chapter DOI: https://doi.org/10.1017/9781139029339.018
Available formats
×