Book contents
- Frontmatter
- Preface to corrected reprint of the seventh edition
- Preface to the first edition
- Preface to the second edition
- Preface to the third edition
- Preface to the fourth edition
- Preface to the fifth edition
- Preface to the sixth edition
- Preface to the seventh edition
- Contents
- Historical introduction
- I Basic properties of the electromagnetic field
- II Electromagnetic potentials and polarization
- III Foundations of geometrical optics
- IV Geometrical theory of optical imaging
- V Geometrical theory of aberrations
- VI Image-forming instruments
- VII Elements of the theory of interference and interferometers
- VIII Elements of the theory of diffraction
- IX The diffraction theory of aberrations
- X Interference and diffraction with partially coherent light
- XI Rigorous diffraction theory
- XII Diffraction of light by ultrasonic waves
- XIII Scattering from inhomogeneous media
- XIV Optics of metals
- XV Optics of crystals
- Appendices
- I The Calculus of variations
- II Light optics, electron optics and wave mechanics
- III Asymptotic approximations to integrals
- IV The Dirac delta function
- V A mathematical lemma used in the rigorous derivation of the Lorentz-Lorenz formula (§2.4.2)
- VI Propagation of discontinuities in an electromagnetic field (§3.1.1)
- VII The circle polynomials of Zernike (§9.2.1)
- VIII Proof of the inequality |μ12(v| ≤ 1 for the spectral degree of coherence (§10.5)
- IX Proof of a reciprocity inequality (§10.8.3)
- X Evaluation of two integrals (§12.2.2)
- XI Energy conservation in scalar wavefields (§13.3)
- XII Proof of Jones' lemma (§13.3)
- Author index
- Subject index
I - The Calculus of variations
from Appendices
- Frontmatter
- Preface to corrected reprint of the seventh edition
- Preface to the first edition
- Preface to the second edition
- Preface to the third edition
- Preface to the fourth edition
- Preface to the fifth edition
- Preface to the sixth edition
- Preface to the seventh edition
- Contents
- Historical introduction
- I Basic properties of the electromagnetic field
- II Electromagnetic potentials and polarization
- III Foundations of geometrical optics
- IV Geometrical theory of optical imaging
- V Geometrical theory of aberrations
- VI Image-forming instruments
- VII Elements of the theory of interference and interferometers
- VIII Elements of the theory of diffraction
- IX The diffraction theory of aberrations
- X Interference and diffraction with partially coherent light
- XI Rigorous diffraction theory
- XII Diffraction of light by ultrasonic waves
- XIII Scattering from inhomogeneous media
- XIV Optics of metals
- XV Optics of crystals
- Appendices
- I The Calculus of variations
- II Light optics, electron optics and wave mechanics
- III Asymptotic approximations to integrals
- IV The Dirac delta function
- V A mathematical lemma used in the rigorous derivation of the Lorentz-Lorenz formula (§2.4.2)
- VI Propagation of discontinuities in an electromagnetic field (§3.1.1)
- VII The circle polynomials of Zernike (§9.2.1)
- VIII Proof of the inequality |μ12(v| ≤ 1 for the spectral degree of coherence (§10.5)
- IX Proof of a reciprocity inequality (§10.8.3)
- X Evaluation of two integrals (§12.2.2)
- XI Energy conservation in scalar wavefields (§13.3)
- XII Proof of Jones' lemma (§13.3)
- Author index
- Subject index
Summary
IT is a general feature of equations of classical physics that they can be derived from variational principles. Two early examples are Fermat's principle in optics (1657) and Maupertuis’ principle in mechanics (1744). The equations of elasticity, hydrodynamics and electrodynamics can also be represented in this way.
However, when one deals with field equations, involving as a rule four or more independent variables x, y, z, t, …, one makes little use, owing to the great complexity of partial differential equations, of the property that the solution expresses stationary values of certain integrals. The only essential advantage of the variational approach in such cases is connected with the derivation of conservation laws — e.g. for energy. The situation is quite different in problems involving one independent variable (time in mechanics, or length of a ray in geometrical optics). Then one deals with a set of ordinary differential equations and it turns out that a study of the behaviour of the solution is greatly facilitated by a variational approach. This approach is in fact a straightforward generalization of ordinary geometrical optics in every detail. Its modern representation owes much to David Hilbert, on whose unpublished lectures, given at Gottingen in about 1903, we base the considerations of the following sections. The theory is presented here for a three-dimensional space (x, y, z) only, but can easily be extended to more dimensions.
- Type
- Chapter
- Information
- Principles of OpticsElectromagnetic Theory of Propagation, Interference and Diffraction of Light, pp. 853 - 872Publisher: Cambridge University PressPrint publication year: 1999