Book contents
- Frontmatter
- Contents
- Preface to the first edition
- Preface to the second edition
- 1 Introduction
- 2 Theoretical foundations
- 3 Propagation and focusing of optical fields
- 4 Resolution and localization
- 5 Nanoscale optical microscopy
- 6 Localization of light with near-field probes
- 7 Probe–sample distance control
- 8 Optical interactions
- 9 Quantum emitters
- 10 Dipole emission near planar interfaces
- 11 Photonic crystals, resonators, and cavity optomechanics
- 12 Surface plasmons
- 13 Optical antennas
- 14 Optical forces
- 15 Fluctuation-induced interactions
- 16 Theoretical methods in nano-optics
- Appendix A Semi-analytical derivation of the atomic polarizability
- Appendix B Spontaneous emission in the weak-coupling regime
- Appendix C Fields of a dipole near a layered substrate
- Appendix D Far-field Green functions
- Index
- References
12 - Surface plasmons
Published online by Cambridge University Press: 05 November 2012
- Frontmatter
- Contents
- Preface to the first edition
- Preface to the second edition
- 1 Introduction
- 2 Theoretical foundations
- 3 Propagation and focusing of optical fields
- 4 Resolution and localization
- 5 Nanoscale optical microscopy
- 6 Localization of light with near-field probes
- 7 Probe–sample distance control
- 8 Optical interactions
- 9 Quantum emitters
- 10 Dipole emission near planar interfaces
- 11 Photonic crystals, resonators, and cavity optomechanics
- 12 Surface plasmons
- 13 Optical antennas
- 14 Optical forces
- 15 Fluctuation-induced interactions
- 16 Theoretical methods in nano-optics
- Appendix A Semi-analytical derivation of the atomic polarizability
- Appendix B Spontaneous emission in the weak-coupling regime
- Appendix C Fields of a dipole near a layered substrate
- Appendix D Far-field Green functions
- Index
- References
Summary
The interaction of metals with electromagnetic radiation is largely dictated by their free conduction electrons. According to the Drude model, the free electrons oscillate 180° out of phase relative to the driving electric field. As a consequence, most metals possess a negative dielectric constant at optical frequencies, which causes, for example, a very high reflectivity. Furthermore, at optical frequencies the metal's free-electron gas can sustain surface and volume charge-density oscillations, called plasmons, with distinct resonance frequencies. The existence of plasmons is characteristic of the interaction of metal nanostructures with light at optical frequencies. Similar behavior cannot be simply reproduced in other spectral ranges using the scale invariance of Maxwell's equations since the material parameters change considerably with frequency. Specifically, this means that model experiments with, for instance, microwaves and correspondingly larger metal structures cannot replace experiments with metal nanostructures at optical frequencies.
The surface charge-density oscillations associated with surface plasmons at the interface between a metal and a dielectric can give rise to strongly enhanced optical near-fields, which are spatially confined near the metal surface. Similarly, if the electron gas is confined in three dimensions, as in the case of a small particle, the overall displacement of the electrons with respect to the positively charged lattice leads to a restoring force, which in turn gives rise to specific particle-plasmon resonances depending on the geometry of the particle. In particles of suitable (usually pointed) shape, localized charge accumulations that are accompanied by strongly enhanced optical fields can occur.
- Type
- Chapter
- Information
- Principles of Nano-Optics , pp. 369 - 413Publisher: Cambridge University PressPrint publication year: 2012
References
- 9
- Cited by