Book contents
- Frontmatter
- Contents
- Preface to the first edition
- Preface to the second edition
- 1 Introduction
- 2 Theoretical foundations
- 3 Propagation and focusing of optical fields
- 4 Resolution and localization
- 5 Nanoscale optical microscopy
- 6 Localization of light with near-field probes
- 7 Probe–sample distance control
- 8 Optical interactions
- 9 Quantum emitters
- 10 Dipole emission near planar interfaces
- 11 Photonic crystals, resonators, and cavity optomechanics
- 12 Surface plasmons
- 13 Optical antennas
- 14 Optical forces
- 15 Fluctuation-induced interactions
- 16 Theoretical methods in nano-optics
- Appendix A Semi-analytical derivation of the atomic polarizability
- Appendix B Spontaneous emission in the weak-coupling regime
- Appendix C Fields of a dipole near a layered substrate
- Appendix D Far-field Green functions
- Index
- References
9 - Quantum emitters
Published online by Cambridge University Press: 05 November 2012
- Frontmatter
- Contents
- Preface to the first edition
- Preface to the second edition
- 1 Introduction
- 2 Theoretical foundations
- 3 Propagation and focusing of optical fields
- 4 Resolution and localization
- 5 Nanoscale optical microscopy
- 6 Localization of light with near-field probes
- 7 Probe–sample distance control
- 8 Optical interactions
- 9 Quantum emitters
- 10 Dipole emission near planar interfaces
- 11 Photonic crystals, resonators, and cavity optomechanics
- 12 Surface plasmons
- 13 Optical antennas
- 14 Optical forces
- 15 Fluctuation-induced interactions
- 16 Theoretical methods in nano-optics
- Appendix A Semi-analytical derivation of the atomic polarizability
- Appendix B Spontaneous emission in the weak-coupling regime
- Appendix C Fields of a dipole near a layered substrate
- Appendix D Far-field Green functions
- Index
- References
Summary
The interaction of light with nanoscale structures is at the core of nano-optics. As the structures become smaller and smaller the laws of quantum mechanics will become apparent. In this limit, the discrete nature of atomic states gives rise to resonant light-matter interactions. In atoms, molecules, and nanoparticles, such as semiconductor nanocrystals and other “quantum confined” systems, these resonances occur when the photon energy matches the energy difference of discrete internal (electronic) energy levels. Owing to the resonant character, light-matter interaction can often be approximated by treating these quantum emitters as effective two-level systems, i.e. by considering only those two (electronic) levels whose difference in energy is close to the interacting photon energy ħω0.
In this chapter we discuss quantum emitters that are used in optical experiments. We will discuss their use as single-photon sources and analyze their photon statistics. While the radiative properties of quantum emitters have been discussed in Chapter 8, this chapter focuses on the properties of the quantum emitters themselves. We adopt a rather practical perspective since more detailed accounts can be found elsewhere (see e.g. [1–4]).
Types of quantum emitters
The possibility of detecting single quantum emitters optically relies mostly on the fact that redshifted emission can be very efficiently discriminated against excitation light [5, 6]. This opens the road for experiments in which the properties of these emitters are studied or in which they are used as discrete light sources.
- Type
- Chapter
- Information
- Principles of Nano-Optics , pp. 282 - 312Publisher: Cambridge University PressPrint publication year: 2012
References
- 1
- Cited by