Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-09T15:22:08.405Z Has data issue: false hasContentIssue false

6 - Sex-Linkage and Gene Interactions

Published online by Cambridge University Press:  05 June 2012

James N. Thompson, Jr
Affiliation:
University of Oklahoma
Jenna J. Hellack
Affiliation:
University of Oklahoma
Gerald Braver
Affiliation:
University of Oklahoma
David S. Durica
Affiliation:
University of Oklahoma
Get access

Summary

STUDY HINTS

Regular segregation and the assortment of alleles in a heterozygote produce the familiar genotypic and phenotypic ratios that you investigated in Problem Set 4. In a real sense these ratios are also “hypotheses,” in that they are the expectations appropriate to a particular genetic situation. For example, a cross between two heterozygotes, Aa × Aa, yields a 3:1 phenotypic ratio among the offspring. Turning this around, if one finds a 3:1 phenotypic ratio in a family, it is reasonable to hypothesize that the parents were both heterozygotes. Ratios are therefore an important key to establishing the genetic basis of an unfamiliar trait.

Sex-linkage, multiple alleles, gene interactions, and maternal and cytoplasmic effects are natural complications that can modify these underlying patterns and ratios. The secret to solving these types of problems is to be familiar with the clues that are often embedded in modified ratios. A distinct difference between male and female phenotypic ratios leads one to consider the possibility of sex-linkage and/or a maternal or cytoplasmic involvement. Lethality would lead to truncated ratios (e.g., 1:2), whereas the gene interactions such as epistasis would merge certain genotypic classes into the same phenotypic class. Textbooks often describe a large number of these modified ratios, but for convenience we have summarized some of the most commonly encountered ones in Table 6.1.

In addition to traits that can be traced to nuclear genes and their interactions, phenotypes are often dependent upon cytoplasmic interactions.

Type
Chapter
Information
Primer of Genetic Analysis
A Problems Approach
, pp. 55 - 69
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×