from II - Predictive Modeling Methods
Published online by Cambridge University Press: 05 August 2014
Chapter Preview. The focus of this chapter is on various methods of unsupervised learning. Unsupervised learning is contrasted with supervised learning, and the role of unsupervised learning in a supervised analysis is also discussed. The concept of dimension reduction is presented first, followed by the common methods of dimension reduction, principal components/factor analysis, and clustering. More recent developments regarding classic techniques such as fuzzy clustering are then introduced. Illustrative examples that use publicly available databases are presented. At the end of the chapter there are exercises that use data supplied with the chapter. Free R code and datasets are available on the book's website.
Introduction
Even before any of us took a formal course in statistics, we were familiar with supervised learning, though it is not referred to as such. For instance, we may read in the newspaper that people who text while driving experience an increase in accidents. When the research about texting and driving was performed, there was a dependent variable (occurrence of accident or near accident) and independent variables or predictors (use of cell phone along with other variables that predict accidents).
In finance class, students may learn about the capital asset pricing model (CAPM)
R = α + βRM + ε,
where the return on an individual stock R is a constant α plus beta times the return for market RM plus an error ε.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.