Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-04T21:05:31.721Z Has data issue: false hasContentIssue false

Chapter 7 - Ensemble forecasting and data assimilation: two problems with the same solution?

Published online by Cambridge University Press:  03 December 2009

Eugenia Kalnay
Affiliation:
University of Maryland, College Park
Brian Hunt
Affiliation:
University of Maryland, College Park
Edward Ott
Affiliation:
University of Maryland, College Park
Istvan Szunyogh
Affiliation:
University of Maryland, College Park
Tim Palmer
Affiliation:
European Centre for Medium-Range Weather Forecasts
Renate Hagedorn
Affiliation:
European Centre for Medium-Range Weather Forecasts
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahlquist, J. (2000): Almost Anything can be a Singular Vector. http://www.met.fsu.edu/ftp/ahlquist/singvect.ps
Anderson, J. L. (2001). An ensemble adjustment filter for data assimilation. Mon. Weather Rev., 129, 2884–9032.0.CO;2>CrossRefGoogle Scholar
Anderson, J. L. and Anderson, S. L. (1999). A Monte Carlo implementation of the nonlinear filtering problem to produce ensemble assimilations and forecasts. Mon. Weather Rev., 127, 2741–582.0.CO;2>CrossRefGoogle Scholar
Andersson, Erik, Cardinali, C., Fisher, M., et al. (2004). Developments in ECMWF's 4D-Var system. In Symposium on Forecasting the Weather and Climate of the Atmosphere and Ocean, 20th Conference on Weather Analysis and Forecasting, 16th Conference on Numerical Weather Prediction, Seattle, Washington, January 2004. Paper J1.4, American Meteorological Society
Arribas, A., Robertson, K. B. and Mylne, K. R. (2005). Test of a poor man's ensemble prediction system for short-range probability forecasting. Mon. Weather Rev., 133, 1825–39CrossRefGoogle Scholar
Bishop, C. H., Etherton, B. J. and Majumdar, S. J. (2001). Adaptive sampling with the ensemble transform Kalman filter. I: Theoretical aspects. Mon. Weather Rev., 129, 420–362.0.CO;2>CrossRefGoogle Scholar
Buizza, R. (1997). Potential forecast skill of ensemble prediction, and spread and skill distributions of the ECMWF Ensemble Prediction System. Mon. Weather Rev., 125, 99–1192.0.CO;2>CrossRef
Buizza, R., Petroliagis, T., Palmer, T. N., et al. (1998). Impact of model resolution and ensemble size on the performance of an ensemble prediction system. Quart. J. Roy. Meteor. Soc., 124, 1935–60CrossRef
Buizza, R., Miller, M. and Palmer, T. N. (1999). Stochastic representation of model uncertainties in the ECMWF Ensemble Prediction System. Quart. J. Roy. Meteor. Soc., 125, 2887–908CrossRefGoogle Scholar
Buizza, R., Barkmeijer, J., Palmer, T. N. and Richardson, O. S. (2000). Current status and future developments of the ECMWF Ensemble Prediction System. Meteorol. Appl., 7, 163–75CrossRefGoogle Scholar
Buizza, R., Houtekamer, P. L., Toth, Z., Pellerin, G., Wei, M., Y. Zhu (2005). A comparison of the ECMWF, MSC and NCEP Global Ensemble Prediction Systems. Mon. Weather Rev., 133, 1076–97CrossRef
Cohn, S. (1997). An introduction to estimation theory. J. Meteorol. Soc., Jpn. 75 (1B), 257–88CrossRefGoogle Scholar
Corazza, M., Kalnay, E., Patil, D. J., et al. (2003). Use of the breeding technique to estimate the structure of the analysis “errors of the day”. Nonlinear Proc. Geoph., 10, 233–43CrossRefGoogle Scholar
Danforth, C., Kalnay, E. and Miyoshi, T. (2006). Estimating and correcting global weather model error. J. Atmos. Sci., 63, in pressGoogle Scholar
DelSole, T. and Hou, A. Y. (1999). Empirical stochastic models for the dominant climate statistics of a general circulation model. J. Atmos. Sci., 56, 3436–34562.0.CO;2>CrossRefGoogle Scholar
Desroziers, G., Hello, G. and Thépaut, J. N. (2003). A 4D-VAR re-analysis of the FASTEX experiment. Quart. J. Roy. Meteor. Soc., 129, 1301–16CrossRefGoogle Scholar
Ebisuzaki, and Kalnay, E. (1991). Ensemble experiments with a new lagged average forecasting scheme. In Research Activities in Atmospheric and Oceanic Modeling, pp. 6.31–6.32. WMO Report 15. [Available from WMO, C. P. No 2300, CH1211, Geneva, Switzerland]
Ehrendorfer, M. and Tribbia, J. J. (1997). Optimal prediction of forecast error covariances through singular vectors. J. Atmos. Sci., 54, 286–3132.0.CO;2>CrossRefGoogle Scholar
Epstein, E. S. (1969). Stochastic-dynamic prediction. Tellus, 21, 739–59CrossRefGoogle Scholar
Errico, R. and D. P. Baumhefner (1987). Predictability experiments using a highresolution limited-area model. Mon. Weather Rev., 115, 488–5042.0.CO;2>CrossRef
Evensen, G. (1994). Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J. Geophys. Res., 99 (C5), 10143–62CrossRefGoogle Scholar
Evensen, G. (2003). The ensemble Kalman filter: theoretical formulation and practical implementation. Ocean Dynam., 53, 343–67CrossRefGoogle Scholar
Fisher, M., Isaksen, L., Ehrendorfer, M., Beck, A. and Andersson, E. (2003). A critical evaluation of the reduced-rank Kalman filter (RRKF) approach to flow-dependent cycling of background error covariances. ECMWF Technical MemorandumGoogle Scholar
Fritsch, J. M., Hilliker, J., Ross, J. and Vislocky, R. L. (2000). Model consensus. Weather Forecast, 15, 571–822.0.CO;2>CrossRefGoogle Scholar
Gauthier, P. (2004). THORPEX activities in Canada. In THORPEX workshop, Boulder, CO, June 2004. (http://box.mmm.ucar.edu/uswrp/recent_meetings/ThorpexWorkshop/Canada_Gauthier.pdf)
Ghil, M., Cohn, S., Tavantzis, J., K. Bube and E. Isaacson (1981). Applications of estimation theory to numerical weather prediction. In Dynamic Meteorology: Data Assimilation Methods, ed. Bengtsson, L., Ghil, M. and Kallen, E.. Springer-VerlagGoogle Scholar
Hamill, T. M. and , C. Snyder (2000). A hybrid ensemble Kalman filter-3D variational analysis scheme. Mon. Weather Rev., 128, 2905–9192.0.CO;2>CrossRefGoogle Scholar
Hoffman, R. and Kalnay, E. (1983). Lagged average forecasting, an alternative to Monte Carlo forecasting. Tellus, 35A, 100–18CrossRef
Hollingsworth, A. (1980). An experiment in Monte Carlo forecasting. In ECMWF Workshop on Stochastic-Dynamic Forecasting, pp. 65–85. ECMWF, Shinfield Park, Reading, UK, RG2 9AX
Hou, D., Kalnay, E. and Droegemeier, K. K. (2001). Objective verification of the SAMEX '98 ensemble forecasts. Mon. Weather Rev., 129, 73–912.0.CO;2>CrossRefGoogle Scholar
Houtekamer, P. and Mitchell, H. L. (1998). Data assimilation using an ensemble Kalman filter technique. Mon. Weather Rev., 126, 796–8112.0.CO;2>CrossRef
Houtekamer, P. and Mitchell, H. L. (2001). A sequential ensemble Kalman filter for atmospheric data assimilation. Mon. Weather Rev., 129, 123–372.0.CO;2>CrossRefGoogle Scholar
Houtekamer, P. L., Lefaivre, L. and Derome, J. (1996). A system simulation approach to ensemble prediction. Mon. Weather Rev., 124, 1225–422.0.CO;2>CrossRefGoogle Scholar
Houtekamer, P. L., Mitchell, H. L., Pellerin, G., et al. (2005). Atmospheric data assimilation with the ensemble Kalman filter: Results with real observations. Mon. Weather Rev., 133, 604–20CrossRefGoogle Scholar
Hunt, B. R., Kalnay, E., Kostelich, E. J., J. et al. (2004). Four-dimensional ensemble Kalman filtering. Tellus, 56A, 273–7CrossRefGoogle Scholar
Kaas, E., Guldberg, A., May, W. and Decque, M. (1999). Using tendency errors to tune the parameterization of unresolved dynamical scale interactions in atmospheric general circulation models. Tellus, 51A, 612–29CrossRefGoogle Scholar
Kalnay, E. (2003). Atmospheric Modeling, Data Assimilation, and Predictability. Cambridge University PressGoogle Scholar
Kalnay, E. and Ham, M. (1989). Forecasting forecast skill in the Southern Hemisphere. In Preprints of the 3rd International Conference on Southern Hemisphere Meteorology and Oceanography, Buenos Aires, 13–17 November 1989. Boston, MA: American Meteorological Society.
Krishnamurti, T. N., Kishtawal, C. M., LaRow, T. E., et al. (1999): Improved weather and seasonal climate forecasts from multimodel superensemble. Science, 285(5433), 1548–50CrossRefGoogle ScholarPubMed
Kumar, T. S. V., Krishnamurti, T. N., Fiorino, M. and Nagata, M. (2003). Numerical prediction of typhoon tracks and intensity using a multimodel superensemble. Mon. Weather Rev., 131, 574–83Google Scholar
Kyouda, M. and Kusunoki, S. (2002). Ensemble Prediction System. In Outline of the Operational Numerical Weather Prediction at the Japan Meteorological Society, pp. 59–63. Appendix to the WMO Numerical Weather Prediction Progress ReportGoogle Scholar
Leith, C. (1974). Theoretical skill of Monte Carlo forecasts. Mon. Weather Rev., 102, 409–182.0.CO;2>CrossRefGoogle Scholar
Lorenz, E. (1963). Deterministic nonperiodic flow. J. Atoms. Sci., 20, 130–412.0.CO;2>CrossRef
Lorenz, E. N. (1965). A study of the predictability of a 28-variable atmospheric model. Tellus, 17, 321–33CrossRefGoogle Scholar
Lorenz, E. N. (1996). Predictability: a problem partly solved. In Proceedings of Seminar on Predictability, Vol. 1. European Centre for Medium-Range Weather Forecasts, Shinfield Park, Reading, Berkshire, RG2 9AX, United KingdomGoogle Scholar
Molteni, F. and Palmer, T. N. (1993). Predictability and finite time instability of the northern winter circulation. Quart. J. Roy. Meteor. Soc., 119, 269–98CrossRefGoogle Scholar
Molteni, F., Buizza, R., Palmer, T. N. and Petroliagis, T. (1996). The ECMWF ensemble prediction system: methodology and validation. Quart. J. Roy. Meteor. Soc., 122, 73–119CrossRefGoogle Scholar
Morss, R. E., Emanuel, K. A. and Snyder, C. (2001). Idealized adaptive observation strategies for improving numerical weather prediction. J. Atmos. Sci., 58, 210–342.0.CO;2>CrossRefGoogle Scholar
Ott, E., Hunt, B. H., Szunyogh, I., et al. (2002). Exploiting local low dimensionality of the atmospheric dynamics for efficient Kalman filtering. arXiv:archive/paper 0203058, http://arxiv.org/abs/physics/0203058
Ott, E., Hunt, B. H., Szunyogh, I., et al. (2004). A local ensemble Kalman filter for atmospheric data assimilation. Tellus, 56A, 415–28CrossRefGoogle Scholar
Palmer, T. N., Gelaro, R., Barkmeijer, J. and Buizza, R. (1998). Singular vectors, metrics and adaptive observations. J. Atmos. Sci., 55, 633–532.0.CO;2>CrossRefGoogle Scholar
Patil, D. J., Hunt, B. R., Kalnay, E., Yorke, J. A. and Ott, E. (2001). Local low dimension- ality of atmospheric dynamics. Phys. Rev. Lett., 86, 5878–81CrossRefGoogle Scholar
Peña, M. and Kalnay, E. (2004). Separating fast and slow modes in coupled chaotic systems. Nonlinear Proc. Geoph., 19, 319–27CrossRefGoogle Scholar
Rabier, F., Järvinen, H., Klinker, E., Mahfouf, J. F. and Simmons, A. (2000). The ECMWF operational implementation of four-dimensional variational assimilation. I: Experimental results with simplified physics. Quart. J. Roy. Meteor. Soc., 126, 1143–70CrossRefGoogle Scholar
Roulston, M. S. and Smith, L. A. (2003). Combining dynamical and statistical ensembles. Tellus, 55A, 16–30CrossRefGoogle Scholar
Stensrud, D. J., Bao, J.-W. and Warner, T. T. (2000). Using initial condition and model physics perturbations in short-range ensembles. Mon. Weather Rev., 128, 2077–1072.0.CO;2>CrossRefGoogle Scholar
Szunyogh, I. and Toth, Z. (2002). The effect of increased horizontal resolution on the NCEP global ensemble mean forecasts. Mon. Weather Rev., 130, 1125–432.0.CO;2>CrossRefGoogle Scholar
Szunyogh, I., , E. J. Kostelich, Gyarmati, G., et al. (2005). Assessing a local ensemble Kalman filter: perfect model experiments with the NCEP global model. Tellus, 57A, 528–45CrossRefGoogle Scholar
Tippett, M. K., Anderson, J. L., Bishop, C. H., Hammill, T. M. and Whitaker, J. S. (2002). Ensemble square-root filters. Mon. Weather Rev., 131, 1485–902.0.CO;2>CrossRefGoogle Scholar
Toth, Z. and Kalnay, E. (1993). Ensemble forecasting at NMC: the generation of perturbations. Bull. Am. Meteorol. Soc., 74, 2317–302.0.CO;2>CrossRefGoogle Scholar
Toth, Z. and Kalnay, E. (1997). Ensemble forecasting at NCEP and the breeding method. Mon. Weather Rev., 125, 3297–3192.0.CO;2>CrossRefGoogle Scholar
Tracton, M. and Kalnay, E. (1993). Ensemble forecasting at NMC: practical aspects. Weather Forecast., 8, 379–982.0.CO;2>CrossRef
Wang, X. and , C. H. Bishop (2004). Ensemble augmentation with a new dressing kernel. In 20th AMS Conference on Weather Analysis and Forecasting, Seattle, January 2004. American Meteorological Society
Whitaker, J. S. and Hamill, T. H. (2002). Ensemble data assimilation without perturbed observations. Mon. Weather Rev., 130, 1913–242.0.CO;2>CrossRefGoogle Scholar
Whitaker, J. S., Compo, G. P., Wei, X. and , T.Hamill, H. (2004). Reanalysis without radiosondes using ensemble data assimilation. Mon. Weather Rev., 132, 1190–2002.0.CO;2>CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×