Skip to main content Accessibility help
×
Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-22T10:57:24.045Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  05 August 2015

David F. Buscher
Affiliation:
University of Cambridge
Malcolm Longair
Affiliation:
University of Cambridge
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Practical Optical Interferometry
Imaging at Visible and Infrared Wavelengths
, pp. 257 - 264
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Angel, J. R. P., J. M., Hill, P. A., Strittmatter, P., Salinari and G., Weigelt. Interferometry with the large binocular telescope. Proc. SPIE, 3350:881–889, 1998.Google Scholar
Armstrong, J. T., D., Mozurkewich, L. J, Rickard et al. The Navy Prototype Optical Interferometer. Astrophys. J., 496:550–572, 1998.CrossRefGoogle Scholar
Baldwin, J. E., M. G., Beckett, R. C., Boysen et al. The first images from an optical aperture synthesis array – mapping of Capella with COAST at 2 epochs. Astron. Astrophys., 306:L13–L16, 1996.Google Scholar
Baldwin, J. E., P. J., Warner and C. D., Mackay. The point spread function in lucky imaging and variations in seeing on short timescales. Astron. Astrophys., 480:589–597, 2008.CrossRefGoogle Scholar
Baron, F., D., Monnier and B., Kloppenborg. A novel image reconstruction software for optical/infrared interferometry. Proc. SPIE, 7734: doi: 10.1117/12.857364, 2010.Google Scholar
Basden, A. H. and D. F, Buscher. Improvements for group delay fringe tracking.MNRAS, 357:656–668, 2005.CrossRefGoogle Scholar
Benisty, M., J.-P., Berger, L., Jocou et al. An integrated optics beam combiner for the second generation VLTI instruments. Astron. Astrophys., 498:601–613, 2009.CrossRefGoogle Scholar
Berger, D. H., J. D., Monnier, R., Millan-Gabet et al. CHARA michigan phasetracker (CHAMP): a preliminary performance report.Proc. SPIE., 7013:701319.1–701319.10, 2008.CrossRefGoogle Scholar
Bernat, D., A. H., Bouchez, M., Ireland et al. A close companion search around l dwarfs using aperture masking interferometry and Palomar laser guide star adaptive optics.Astrophys. J., 715:724, 2010.CrossRefGoogle Scholar
Bessell, M. S., F., Castelli and B., Plez. Model atmospheres broad-band colors, bolometric corrections and temperature calibrations for o-m stars. Astron. Astrophys, 333:231–250, 1998.Google Scholar
Birks, T. A., J. C., Knight and P. S., Russell. Endlessly single-mode photonic crystal fiber. Opt. Lett., 22:961–963, 1997.CrossRefGoogle ScholarPubMed
Boden, A. F., G. T., van Belle, M. M., Colavita et al. An interferometric search for bright companions to 51 pegasi. Astrophys. J. Lett., 504:L39, 1998.CrossRefGoogle Scholar
Bohec, S. Le and J., Holder. Optical intensity interferometry with atmospheric Cherenkov telescope arrays. Astrophys. J., 649(1):399, 2006.CrossRefGoogle Scholar
Bracewell, R. N.Fourier Transform and its Applications. McGraw Hill, Boston, MA, 3rd edition, 2000.Google Scholar
Breckinridge, J. B.Measurement of the amplitude of phase excursions in the Earth' atmosphere. J. Opt. Soc. Am., 66:143–144, 1976.Google Scholar
Buscher, D. F.Optimising a ground–based optical interferometer for sensitivity at low light levels. MNRAS, 235:1203–1226, 1988a.CrossRefGoogle Scholar
Buscher, D. F.Getting the most out of COAST. PhD thesis, Cambridge University, 1988b.Google Scholar
Buscher, D. F.Direct Maximum-Entropy image reconstruction from the bispectrum. In J. G., Robertson and W. J. Tango, editors, Very High Angular Resolution Imaging (IAU Symposium 158), pages 91–93, Sydney, 1993.Google Scholar
Buscher, D. F.A thousand and one nights of seeing measurements on MtWilson. Proc. SPIE., 2200:260–271, 1994.Google Scholar
Buscher, D. F., C. A., Haniff, J. E., Baldwin and P. J., Warner. Detection of a bright feature on the surface of Betelgeuse. MNRAS, 245:7–11P, 1990.Google Scholar
Buscher, D. F., J. T., Armstrong, C. A., Hummel et al. Interferometric seeing measurements on Mt. Wilson – power spectra and outer scales. Appl. Opt., 34:1081–1096, 1995.CrossRefGoogle ScholarPubMed
Buscher, D. F., J. S., Young, F., Baron, and C. A., Haniff. Fringe tracking and spatial filtering: phase jumps and dropouts. Proc. SPIE., 7013:10.1117/12.789869, 2008.CrossRefGoogle Scholar
Buscher, D. F., M., Creech-Eakman, A., Farris, C. A., Haniff and J. S., Young. The conceptual design of the Magdalena Ridge Observatory Interferometer. J. Astron. Instrum., 02(02):1340001, 2013.CrossRefGoogle Scholar
Caves, C. M.Quantum limits on noise in linear amplifiers. Phys. Rev. D, 26:1817–1839, 1982.CrossRefGoogle Scholar
Ceus, D., L., Delage, L., Grossard et al. Contrast and phase closure acquisitions in photon counting regimes using a frequency upconversion interferometer for high angular resolution imaging. MNRAS, 430:1529–1537, 2013.Google Scholar
Chiavassa, A., B., Freytag, T., Masseron and B., Plez. Radiative hydrodynamics simulations of red supergiant stars: IV. Gray versus non-gray opacities. Astron. Astrophys., 535:A22, 2011.CrossRefGoogle Scholar
Colavita, M. M., J. K., Wallace, B. E., Hines et al. The Palomar Testbed Interferometer. Astrophys. J., 510:505–521, 1999.CrossRefGoogle Scholar
Colavita, M. M., M. R., Swain, R. L., Akeson, C. D., Koresko and R. J., Hill. Effects of atmospheric water vapor on infrared interferometry. PASP, 116(823):876–885, 2004.CrossRefGoogle Scholar
Connes, P. and G., Michel. Astronomical Fourier spectrometer. Appl. Opt., 14:2067–2084, 1975.CrossRefGoogle ScholarPubMed
Coudé du Foresto, V., P. J., Bordé, A., Mérand et al. FLUOR fibered beam combiner at the CHARA array. Proc. SPIE, 4838:280–285, 2003.Google Scholar
Dainty, J. C. and A. H., Greenaway. Estimation of spatial power spectra in speckle interferometry. J. Opt. Soc. Am., 69:786–790, 1979.CrossRefGoogle Scholar
Dali Ali, W., A., Ziad, A., Berdja et al. Multi-instrument measurement campaign at paranal in 2007: characterization of the outer scale and the seeing of the surface layer. Astron. Astrophys., 524:A73, 2010.CrossRefGoogle Scholar
Davis, J., P. R., Lawson, A. J., Booth, W. J. Tangoand E. D., Thorvaldson. Atmospheric path variations for baselines up to 80 m measured with the Sydney University Stellar Interferometer. MNRAS, 273:L53–58, 1995.Google Scholar
Davis, J., W. J., Tango and E. D., Thorvaldson. Dispersion in stellar interferometry: simultaneous optimization for delay tracking and visibility measurements. Appl. Opt., 37:5132–5136, 1998.CrossRefGoogle ScholarPubMed
Davis, J., W. J., Tango, A. J., Booth et al. The Sydney University Stellar Interferometer – I. The instrument. MNRAS, 303:773–782, 1999.Google Scholar
Faucherre, M., B., Delabre, P., Dierickx and F., Merkle. Michelson- versus Fizeau-type beam combination: is there a difference?Proc. SPIE, 1237:206–217, 1990.Google Scholar
Ferrari, M., G. R., Lemaitre, S. P., Mazzanti et al. VLTI pupil transfer: variable curvature mirrors: I. final results and performances and interferometric laboratory optical layout. Proc. SPIE, 4006:104–115, 2000.Google Scholar
Finger, G., I., Baker, D., Alvarez et al. Evaluation and optimization of NIR HgCdTe avalanche photodiode arrays for adaptive optics and interferometry. Proc. SPIE, 84530:84530T–84530T, 2012.Google Scholar
Fisher, M., R. C., Boysen, D. F., Buscher et al. Design of the MROI delay line optical path compensator. Proc. SPIE., 7734: doi: 10.1117/12.857168, 2010.CrossRefGoogle Scholar
Fried, D. L.Optical resolution through a randomly inhomogeneous medium for very long and very short exposures. J. Opt. Soc. Am., 56:1372–1379, 1966.CrossRefGoogle Scholar
Fried, D. L.The nature of atmospheric turbulence effects on imaging and pseudoimaging systems, and its quantification. In J., Davis and W. J, Tango, editors, High Angular Resolution Stellar Interferometry, IAUC 50, American Physical Society, College Park, MD, pages 4–1–4–44, 1978.Google Scholar
Gaskill, J. D.Linear Systems, Fourier Transforms, and Optics.Wiley, New York, 1978.Google Scholar
Giffin, A.Maximum entropy: the universal method for inference. PhD, State University of New York at Albany, 2008.Google Scholar
Gordon, J. A. and D. F., Buscher. Detection noise bias and variance in the power spectrum and bispectrum in optical interferometry. Astron. Astrophys., 541:A46, May 2012. doi: 10.1051/0004-6361/201117335.CrossRefGoogle Scholar
Greco, V. G. Molesini and F., Quercioli. Telescopes of Galileo. Applied Optics, 32 (31):6219, November 1993. ISSN 0003-6935. doi: 10.1364/AO.32.006219.CrossRefGoogle ScholarPubMed
Gull, S. F. and J., Skilling. Quantified maximum entropy: MemSys5 users' manual, 1999.
Hale, D. D. S., M., Bester, W. C., Danchi, W., Fitelson, S., Hoss, E. A., Lipman, J. D., Monnier, P. G., Tuthill, and C. H., Townes. The Berkeley Infrared Spatial Interferometer: A heterodyne stellar interferometer for the mid-infrared. Astrophys. J., 537:998–1012, 2000.CrossRefGoogle Scholar
Hanbury-Brown, R. and R. Q., Twiss. Correlation between photons in two coherent beams of light. Nature, 177:27–29, 1956.Google Scholar
Hanbury-Brown, R., J., Davis and L. R., Allen. The stellar interferometer at Narrabri Observatory-I: a description of the instrument and the observational procedure. MNRAS, 137:375–392, 1967.Google Scholar
Hanbury-Brown, R., J., Davis, D., Herbison-Evans and L. R., Allen. A study of Gamma 2 Velorum with a stellar intensity interferometer. MNRAS, 148:103–117, 1970.CrossRefGoogle Scholar
Haniff, C. A. and D. F., Buscher. Speckle imaging with partially redundant masks: preliminary results. In J. M., Beckers and F., Merkle, editors, Proceedings of High Resolution Imaging by Interferometry II, ESO, Garching bei München, 1992.Google Scholar
Haniff, C. A., C. D., Mackay, D. J., Titterington et al. The first images from optical aperture synthesis. Nature, 328:694–696, 1987.CrossRefGoogle Scholar
Hofmann, K.-H., G., Weigelt and D., Schertl. An image reconstruction method (IRBis) for optical/infrared interferometry. Astron. Astrophys., 565:A48, 2014.CrossRefGoogle Scholar
Hogbom, J.Aperture synthesis with a non-regular distribution of interferometer baselines. Ap. J. Suppl. Ser., 15:417–426, 1974.Google Scholar
Horton, A. J., D. F, Buscher and C. A, Haniff. Diffraction losses in ground-based optical interferometers. MNRAS, 327:217–226, 2001.CrossRefGoogle Scholar
Hummel, C. A., D., Mozurkewich, N. M., Elias et al. Four years of astrometric measurements with the Mark III optical interferometer. Astron. J., 108:326–336,1994.Google Scholar
Ireland, M. J. and J. D., Monnier. A dispersed heterodyne design for the Planet Formation Imager. Proc. SPIE, 9146:914612–914612, 2014.Google Scholar
Ireland, M. J., J. D., Monnier and N., Thureau. Monte-Carlo imaging for optical interferometry. Proc. SPIE, 6268:doi: 10.1117/12.670940, 2006.Google Scholar
Jennison, R. C.A phase sensitive interferometer technique for the measurement of the Fourier transforms of spatial brightness distribution of small angular extent. MNRAS, 118:276–284, 1958.Google Scholar
Jorgensen, A. M., H. R., Schmitt, J. T., Armstrong et al. Coherent integration results from the NPOI. Proc. SPIE, 7734:77342Q–77342Q–13, 2010.Google Scholar
Jovanovic, N., P. G., Tuthill, B., Norris et al. Starlight demonstration of the dragonfly instrument: an integrated photonic pupil-remapping interferometer for highcontrast imaging. MNRAS, 427:806–815, 2012.CrossRefGoogle Scholar
Kellerer, A. and A., Tokovinin. Atmospheric coherence times in interferometry: definition and measurement. Astron. Astrophys., 461:775–781, 2007.CrossRefGoogle Scholar
Koechlin, L.The i2t interferometer. In F., Merkle, editor, Proceedings of NOAO-ESO Conference on High Resolution Imaging by Interferometry, Garching bei München, ESO, 1988.Google Scholar
Kolmogorov, A. N.The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. In Dokl. Akad. Nauk SSSR, 30:301–305, 1941.Google Scholar
Korff, D.Analysis of a method for obtaining near-diffraction-limited information in the presence of atmospheric turbulence. J. Opt. Soc. Am., 63:971–980, 1973.CrossRefGoogle Scholar
Launhardt, R., T., Henning, D., Queloz et al. The ESPRI project: narrow-angle astrometry with VLTI-PRIMA. Proc. IAU, 3 (Symposium S248):417–420, 2007.CrossRefGoogle Scholar
Lawson, P., editor. Principles of Long-Baseline Stellar Interferometry. Jet Propulsion Laboratory, Pasadena, CA, 1999.Google Scholar
Le Bouquin, J.-B. and O., Absil. On the sensitivity of closure phases to faint companions in optical long baseline interferometry. Astron. Astrophys., 541:A89, 2012.CrossRefGoogle Scholar
Le Bouquin, J.-B., J.-P., Berger, B., Lazareff, PIONIER: a 4-telescope visitor instrument at VLTI. Astron. Astrophys., 535:A67, 2011.CrossRefGoogle Scholar
Lévêque, S., B., Koehler and O., Lühe. Longitudinal dispersion compensation for the very large telescope interferometer. Astrophys. Space Sci., 239:305–314, 1996.CrossRefGoogle Scholar
Ma, C., E. F., Arias, T. M., Eubanks et al. The international celestial reference frame as realized by very long baseline interferometry. Astron. J., 116:516–546, 1998.CrossRefGoogle Scholar
Mahajan, V. N.Strehl ratio for primary aberrations in terms of their aberration variance. J. Opt. Soc. Am., 73:860–861, 1983.CrossRefGoogle Scholar
Malvimat, V., O., Wucknitz and P., Saha. Intensity interferometry with more than two detectors?MNRAS, 437:798–803, 2014.CrossRefGoogle Scholar
Mandel, L.Photon degeneracy in light from optical maser and other sources. J. Opt. Soc. Am., 51:797–798, 1961.CrossRefGoogle Scholar
Mandel, L., E C G Sudarshan and E Wolf. Theory of photoelectric detection of light fluctuations. Proc. Phys. Soc., 84:435–444, 1964.CrossRefGoogle Scholar
Mariotti, J. M. and S. T., Ridgway. Double Fourier spatio-spectral interferometry: combining high spectral and high spatial resolution in the near infrared. Astron. Astrophys., 195:350–363, 1988.Google Scholar
Martin, F., A., Tokovinin, A., Ziad et al. First statistical data on wavefront outer scale at La Silla observatory from the GSM instrument. Astron. Astrophys., 336:L49–52, 1998.Google Scholar
McGlamery, B. L.Computer simulation studies of compensation of turbulence degraded images. Proc. SPIE, 74:225–233, 1976.Google Scholar
Meimon, S. C., L. M., Mugnier and G., Le Besnerais. Reconstruction method for weakphase optical interferometry. Opt. Lett., 30:1809–1811, 2005.CrossRefGoogle ScholarPubMed
Mérand, A., P., Bordé and V., Coudé du Foresto. A catalog of bright calibrator stars for 200-m baseline near-infrared stellar interferometry. Astron. Astrophys., 433:1155–1162, 2005.CrossRefGoogle Scholar
Michelson, A. A.On the application of interference methods to astronomical measurements. Astrophys.|J., 51:257–262, 1920.Google Scholar
Michelson, A. A. and F. G., Pease. Measurement of the diameter of Alpha Orionis with the interferometer. Astrophys. J., 53:249–259, 1921.CrossRefGoogle Scholar
Millour, F., O., Chesneau, M., Borges Fernandes et al. A binary engine fuelling HD 87643' complex circumstellar environment, determined using AMBER/VLTI imaging. Astron. Astrophys., 507:317–326, 2009.CrossRefGoogle Scholar
Monnier, J. D., F., Baron, M., Anderson et al. Tracking faint fringes with the CHARAMichigan phasetracker (CHAMP). Proc. SPIE., 8445:84451I–1–84451I–9, 2012.CrossRefGoogle Scholar
Monnier, J. D.J.-P., Berger, J.-B., Le Bouquin et al. The 2014 interferometric imaging beauty contest. Proc. SPIE, 9146:91461Q–91461Q–20, 2014.Google Scholar
Mourard, D., J. M., Clausse, A., Marcotto et al. VEGA: Visible spEctroGraph and polArimeter for the CHARA array: principle and performance. Astron. Astrophys., 508:1073–1083, 2009.CrossRefGoogle Scholar
Mozurkewich, D., J. T, Armstrong, R. B, Hindsley et al. Angular diameters of stars from the Mark III optical interferometer. Astron. J., 126:2502–2520, 2003.CrossRefGoogle Scholar
Nightingale, N.S., and D. F., Buscher. Interferometric seeing measurements at the La Palma Observatory. MNRAS, 251:155, 1991.CrossRefGoogle Scholar
Noll, R. J.Zernike polynomials and atmospheric turbulence. J. Opt. Soc. Am., 66:207–211, 1976.CrossRefGoogle Scholar
Pauls, T. A., J. S., Young, W. D., Cotton and J. D., Monnier. A data exchange standard for optical (visible/IR) interferometry. PASP, 117:1255–1262, 2005.CrossRefGoogle Scholar
Pearson, T. J. and A. C. S., Readhead. Image formation by self-calibration in radio astronomy. Ann. Rev. Astron. Astrophys, 22:97–130, 1984.CrossRefGoogle Scholar
Perrin, G.S., Lacour, J., Woillez and E., Thiébaut. High dynamic range imaging by pupil single-mode filtering and remapping. MNRAS, 373:747–751, 2006a.CrossRefGoogle Scholar
Perrin, G., J., Woillez, O., Lai et al. Interferometric coupling of the Keck telescopes with single-mode fibers. Science, 311:194–194, 2006b.CrossRefGoogle ScholarPubMed
Petrov, R. G., F., Millour, S., Lagarde et al. VLTI/AMBER differential interferometry of the broad-line region of the quasar 3C 273. Proc. SPIE, 8445:doi:10.1117/12.926595, 2012.CrossRefGoogle Scholar
Porro, I. L., W. A., Traub and N. P., Carleton. Effect of telescope alignment on a stellar interferometer. Appl. Opt., 38:6055–6067, 1999.CrossRefGoogle ScholarPubMed
Prasad, S.Implications of light amplification for astronomical imaging. J. Opt. Soc. Am. A, 11:2799–2803, 1994.CrossRefGoogle Scholar
Readhead, A. C. S., T. S., Nakajima, T. J., Pearson et al. Diffraction-limited imaging with ground-based optical telescopes. Astron. J., 95:1278–1296, 1988.CrossRefGoogle Scholar
Richichi, A. and I., Percheron. First results from the ESO VLTI calibrators program. Astron. Astrophys., 434:1201–1209, 2005.CrossRefGoogle Scholar
Roddier, F.The effects of atmospheric turbulence in optical astronomy. In E, Wolf, editor, Progress in Optics, Elsevier, Amsterdam, 1981, volume 19, pages 281–376.Google Scholar
Sandler, D. G., S., Stahl, J. R. P., Angel, M., Lloyd-Hart and D., McCarthy. Adaptive optics for diffraction-limited infrared imaging with 8-m telescopes. J. Opt. Soc. Am. A, 11:925–945, 1994.Google Scholar
Schöller, M.The Very Large Telescope Interferometer: current facility and prospects. New Astron. Rev., 51:628–638, 2007.CrossRefGoogle Scholar
Ségransan, D., P., Kervella, T., Forveille and D., Queloz. First radius measurements of very low mass stars with the VLTI. Astron. Astrophys., 397:L5–8, 2003.CrossRefGoogle Scholar
Shaklan, S. and F., Roddier. Coupling starlight into single-mode fiber optics. Appl. Opt., 27:2334–2338, 1988.
Shao, M., M. M., Colavita, B. E., Hines et al. TheMark III stellar interferometer. Astron. Astrophys., 193:357–371, 1988.Google Scholar
Shao, M.SIM: the space interferometry mission. Proc. SPIE, 3350:536–540, 1998.Google Scholar
Simohamed, L. M. and F., Reynaud. A 2 m stroke optical fibre delay line. Pure Appl. Opt.: J. Eur. Opt. Soc. A, 6:L37, 1997.CrossRefGoogle Scholar
Sivia, D. S. and J., Skilling. Data Analysis: A Bayesian Tutorial. Oxford University Press, Oxford, 2nd edition, 2006.Google Scholar
Sivia, D. S.Phase extension methods. PhD thesis, Cambridge University, 1987.Google Scholar
Skilling, J.The axioms of maximum entropy. In Maximum-Entropy and Bayesian Methods in Science and Engineering, Springer, Dordrecht, 1988a, pages 173–187.Google Scholar
Skilling, J.Classic maximum entropy. In J., Skilling, editor, Maximum Entropy and Bayesian Methods, 45–52. Springer, Dordrecht, 1988b.Google Scholar
Stephan, E.Sur l'extreme petitesse du diametre apparent des etoiles fixes. C. R. Acad. Sc. (Paris), 78:1008–1112, 1874.Google Scholar
Strano, G.Galileo' telescope: history, scientific analysis, and replicated observations. Exp. Astron., 25:17–31, 2009.CrossRefGoogle Scholar
Stürmer, J. and A., Quirrenbach. Simulating aperture masking at the Large Binocular Telescope. Proc. SPIE., 8445:84452H–1–84452H–8, 2012.CrossRefGoogle Scholar
Tallon-Bosc, I., M., Tallon, E., Thiébaut et al. LITpro: a model-fitting software for optical interferometry. Proc. SPIE, 7013:70131–70131J, 2008.Google Scholar
Tango, R. J.Dispersion in stellar interferometry. Appl. Opt., 29:516–521, 1990.CrossRefGoogle ScholarPubMed
Tango, R. J. and R. Q., Twiss. Diffraction effects in long path interferometers. Appl. Opt., 13:1814–1819, 1974.Google ScholarPubMed
Tango, R. J. and R. Q., Twiss. Michelson stellar interferometry. Progr. Opt., XVII:239–277, 1980.Google Scholar
Tatarski, V. I.Wave Propagation in a Turbulent Medium.McGraw-Hill Book Company, Inc, New York 1961.Google Scholar
Tatulli, E. and G., Duvert. AMBER data reduction. New Astron. Rev., 51:682–696, 2007.CrossRefGoogle Scholar
Tatulli, E., F., Millour and A., Chelli, Interferometric data reduction with AMBER/VLTI. Principle, estimators, and illustration. Astron. Astrophys., 464:29–42, 2007.CrossRefGoogle Scholar
ten Brummelaar, T. A.Differential path considerations in optical stellar interferometry. App. Opt., 34:2214–2219, 1995.CrossRefGoogle ScholarPubMed
ten Brummelaar, T. A., H. A., McAlister, S. T., Ridgway et al. First results from the CHARA array. II. A description of the instrument. Astrophys.|J., 628:453–465, 2005.Google Scholar
Thiébaut, E.MIRA: an effective imaging algorithm for optical interferometry. Proc. SPIE, 7013, doi: 10.1117/12.788822, 2008.CrossRefGoogle Scholar
Thompson, A. R., Moran, I. M. and G. W., Swenson Jr. Interferometry and Synthesis in Radio Astronomy, 2nd edition, John Wiley & Sons, New York, 2008.Google Scholar
Thureau, N. Compensation of longitudinal dispersion for the GI2T-REGAIN optical interferometer. J. Op. A: Pure Appl. Opt., 3:440, 2001.CrossRefGoogle Scholar
Thureau, N. D., R. C., Boysen, D. F., Buscher et al. Fringe envelope tracking at COAST. Proc. SPIE., 4838:956–963, 2003.Google Scholar
Traub, W. A.Polarization effects in stellar interferometers. In NOAO-ESO Conference on High-Resolution Imaging by Interferometry: Ground-based Interferometry at Visible and Infrared Wavelenghts, ESD, Gerching bei München, volume 29, pages 1029–1038, 1988.Google Scholar
Tubbs, R.Effect of wavefront corrugations on fringe motion in an astronomical interferometer with spatial filters. Appl. Opt., 44:6253–6257, 2005.CrossRefGoogle Scholar
Tuthill, P. G.The unlikely rise of masking interferometry: leading the way with 19th century technology. Proc. SPIE., 8445:844502–1–844502–11, 2012.CrossRefGoogle Scholar
Tuthill, P. G., J. D., Monnier, W. C., Danchi and B., Lopez. Smoke signals from IRC+10216. I. Milliarcsecond proper motions of the dust. Astrophys. J., 543:284, 2000a.CrossRefGoogle Scholar
Tuthill, P. G., J. D., Monnier,W. C., Danchi, E. H., Wishnow and C. A., Haniff. Michelson interferometry with the Keck I telescope. PASP, 112:555–565, 2000b.CrossRefGoogle Scholar
van Cittert, P. H.Die wahrscheinliche Schwingungsverteilung in einer von einer lichtquelle direkt oder mittels einer Linse beleuchteten Ebene. Physica, 1:201–210, 1934.CrossRefGoogle Scholar
van Dam, M., E., Johansson, P., Stomski et al. Performance of the Keck II AO system. Technical Report 489, W. M. Keck Observatory, 2007.
Wagner, R. E. and W. J., Tomlinson. Coupling efficiency of optics in single-mode fiber components. Appl. Opt., 21:2671–2688, 1982.CrossRefGoogle ScholarPubMed
Wang, J. Y. and J. K., Markey. Modal compensation of atmospheric turbulence phase distortion. J. Opt. Soc. Am., 68:78–87, 1978.CrossRefGoogle Scholar
Wheelon, A. D.Electromagnetic Scintillation. I. Geometrical Optics. Cambridge University Press, Cambridge, 2001.CrossRefGoogle Scholar
Wilson, R. W. and C. R., Jenkins. Adaptive optics for astronomy: theoretical performance and limitations. MNRAS, 278:39–61, 1996.CrossRefGoogle Scholar
Wilson, R. W., V. S., Dhillon and C. A., Haniff. The changing face of Betelgeuse. MNRAS, 291:819+, 1997.CrossRefGoogle Scholar
Woan, G. and P. J., Duffett-Smith. Determination of closure phase in noisy conditions. Astron. Astrophys., 198:375, 1988.Google Scholar
Young, J. S., J. E., Baldwin, R. C., Boysen et al. New views of Betelgeuse: multi-wavelength surface imaging and implications for models of hotspot generation. MNRAS, 315:635–645, 2000.CrossRefGoogle Scholar
Zernike, F.The concept of degree of coherence and its application to optical problems. Physica, 5:785–795, 1938.CrossRefGoogle Scholar
Zhao, M., J. D., Monnier, E., Pedretti et al. Imaging and modeling rapidly rotating stars: α Cephei and α Ophiuchi. Astrophys. J., 701:209–224, 2009.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • David F. Buscher, University of Cambridge
  • Foreword by Malcolm Longair, University of Cambridge
  • Book: Practical Optical Interferometry
  • Online publication: 05 August 2015
  • Chapter DOI: https://doi.org/10.1017/CBO9781107323933.014
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • David F. Buscher, University of Cambridge
  • Foreword by Malcolm Longair, University of Cambridge
  • Book: Practical Optical Interferometry
  • Online publication: 05 August 2015
  • Chapter DOI: https://doi.org/10.1017/CBO9781107323933.014
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • David F. Buscher, University of Cambridge
  • Foreword by Malcolm Longair, University of Cambridge
  • Book: Practical Optical Interferometry
  • Online publication: 05 August 2015
  • Chapter DOI: https://doi.org/10.1017/CBO9781107323933.014
Available formats
×