Book contents
- Frontmatter
- Contents
- List of contributors
- List of abbreviations
- Preface
- Some roles of post-translational modifications in plants
- Signal transduction and protein phosphorylation in bacteria
- Roles of protein phosphorylation in animal cells
- The significance of post-translational modification of proteins by phosphorylation in the regulation of plant development and metabolism
- Post-translational modification of chloroplast proteins and the regulation of protein turnover
- Purification of a small phosphoprotein from chloroplasts and characterisation of its phosphoryl group
- Use of synthetic peptides to study G proteins and protein kinases within plant cells
- Activation of membrane-associated protein kinase by lipids, its substrates, and its function in signal transduction
- Distribution and function of Ca2+-dependent, calmodulin-independent protein kinases
- Phosphorylation of the plasma membrane proton pump
- The regulation of phosphoenolpyruvate carboxylase by reversible phosphorylation
- Protein phosphorylation and circadian rhythms
- Control of translation by phosphorylation of mRNP proteins in Fucus and Xenopus
- Regulation of plant metabolism by reversible protein (serine/threonine) phosphorylation
- Detection, biosynthesis and some functions of glycans N-linked to plant secreted proteins
- Biosynthesis, intracellular transport and processing of ricin
- Post-translational processing of concanavalin A
- The role of cell surface glycoproteins in differentiation and morphogenesis
- Ubiquitination of proteins during floral development and senescence
- Index
The role of cell surface glycoproteins in differentiation and morphogenesis
Published online by Cambridge University Press: 06 July 2010
- Frontmatter
- Contents
- List of contributors
- List of abbreviations
- Preface
- Some roles of post-translational modifications in plants
- Signal transduction and protein phosphorylation in bacteria
- Roles of protein phosphorylation in animal cells
- The significance of post-translational modification of proteins by phosphorylation in the regulation of plant development and metabolism
- Post-translational modification of chloroplast proteins and the regulation of protein turnover
- Purification of a small phosphoprotein from chloroplasts and characterisation of its phosphoryl group
- Use of synthetic peptides to study G proteins and protein kinases within plant cells
- Activation of membrane-associated protein kinase by lipids, its substrates, and its function in signal transduction
- Distribution and function of Ca2+-dependent, calmodulin-independent protein kinases
- Phosphorylation of the plasma membrane proton pump
- The regulation of phosphoenolpyruvate carboxylase by reversible phosphorylation
- Protein phosphorylation and circadian rhythms
- Control of translation by phosphorylation of mRNP proteins in Fucus and Xenopus
- Regulation of plant metabolism by reversible protein (serine/threonine) phosphorylation
- Detection, biosynthesis and some functions of glycans N-linked to plant secreted proteins
- Biosynthesis, intracellular transport and processing of ricin
- Post-translational processing of concanavalin A
- The role of cell surface glycoproteins in differentiation and morphogenesis
- Ubiquitination of proteins during floral development and senescence
- Index
Summary
Introduction
The differentiation of a plant cell subsequent to its origin in a meristem involves the alteration of its surface in terms of both cell shape and molecular composition. It is the anatomical complexity resulting from the highly ordered arrangement of differing cell morphologies that we can perceive as cell and tissue patterns. A useful starting point in understanding the mechanisms that lie behind the development of such complexity is to identify changes in the cell wall associated with these diverging cell morphologies and fates. Although the molecular architecture of the plant cell wall principally involves the organisation of polysaccharides there is an increasing awareness that glycoconjugates, although less abundant than polysaccharides, are likely to be extremely important for the integration of wall functions and cellular processes.
When considering cell surface glycoproteins it is useful to consider those associated with the outer face of the plasma membrane in addition to those clearly occurring in the wall. It is molecules at this location that will be involved in wall–cytoplasm interactions and are thus likely to mediate the assembly of specific wall architectures. In many cases we do not yet fully understand the functions of cell surface proteins in a biochemical or a developmental sense; the most abundant classes of surface proteins are still currently named in relation to aspects of their protein or carbohydrate structure. At this stage it is possible only to categorise their roles broadly as structural, enzymic or signalling.
- Type
- Chapter
- Information
- Post-translational Modifications in Plants , pp. 267 - 284Publisher: Cambridge University PressPrint publication year: 1993
- 11
- Cited by