Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-17T13:20:38.949Z Has data issue: true hasContentIssue false

References

Published online by Cambridge University Press:  14 November 2024

Stelios Rigopoulos
Affiliation:
Imperial College London
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Population Balance of Particles in Flows
From Aerosols to Crystallisation
, pp. 350 - 378
Publisher: Cambridge University Press
Print publication year: 2024

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abberger, T. 2007. Population balance modelling of granulation. Pages 1109–1186 of: Salman, A. D., Hounslow, M. J., and Seville, J. P. K. (eds), Handbook of Powder Technology, vol. 11. Elsevier.Google Scholar
Aiyer, A. K., Yang, D., Chamecki, M., and Meneveau, C. 2019. A population balance model for large eddy simulation of polydisperse droplet evolution. Journal of Fluid Mechanics, 878, 700739.Google Scholar
Akhtar, M. K., Xiong, Y., and Pratsinis, S. E. 1991. Vapor synthesis of titania powder by titanium tetrachloride oxidation. AIChE Journal, 37(10), 15611570.Google Scholar
Akridis, P., and Rigopoulos, S. 2017. Modelling of soot formation in laminar diffusion flames using a comprehensive CFD-PBE model with detailed gas-phase chemistry. Combustion Theory and Modelling, 21(1), 3548.Google Scholar
Amsden, A., O’Rourke, P. J., and Butler, T. D. 1989. KIVA-II: A computer program for chemically reactive flows with sprays. Tech. rept. LA-11560-MS. Los Alamos National Laboratory.Google Scholar
Angerhöfer, A. 1994. Untersuchungen zur Kinetik der Fällungskristallisation von Bariumsulfat. Ph.D. thesis, Technische Univetsität München.Google Scholar
Appel, J., Bockhorn, H., and Frenklach, M. 2000. Kinetic modeling of soot formation with detailed chemistry and physics: laminar premixed flames of C2 hydrocarbons. Combustion and Flame, 121(1–2), 122136.Google Scholar
Attili, A., and Bisetti, F. 2013. Application of a robust and efficient Lagrangian particle scheme to soot transport in turbulent flames. Computers and Fluids, 84, 164175.Google Scholar
Austin, L., Shoji, K., Bhatia, V., Jindal, V., Savage, K., and Klimpel, R. 1976. Some results on the description of size reduction as a rate process in various mills. Industrial and Engineering Chemistry Process Design and Development, 15(1), 187196.Google Scholar
Balachandar, S., and Eaton, J. K. 2010. Turbulent dispersed multiphase flow. Annual Review of Fluid Mechanics, 42, 111133.Google Scholar
Bałdyga, J. 2016. Mixing and fluid dynamics effects in particle precipitation processes. KONA Powder and Particle Journal, 2016(33), 127149.Google Scholar
Bałdyga, J., and Bourne, J. R. 1984. A fluid mechanical approach to turbulent mixing and chemical reaction – Part II: micromixing in the light of turbulence theory. Chemical Engineering Communications, 28(4–6), 243258.Google Scholar
Bałdyga, J., and Bourne, J. R. 1989. Simplification of micromixing calculations. I. Derivation and application of new model. The Chemical Engineering Journal, 42(2), 8392.Google Scholar
Bałdyga, J., and Bourne, J. R. 1999. Turbulent Mixing and Chemical Reactions. John Wiley & Sons.Google Scholar
Bałdyga, J., and Orciuch, W. 1997. Closure problem for precipitation. Chemical Engineering Research and Design, 75(2), 160170.Google Scholar
Bałdyga, J., and Orciuch, W. 2001. Barium sulphate precipitation in a pipe – an experimental study and CFD modelling. Chemical Engineering Science, 56(7), 24352444.Google Scholar
Bałdyga, J., Jasińska, M., and Orciuch, W. 2003. Barium sulphate agglomeration in a pipe – an experimental study and CFD modeling. Chemical Engineering and Technology, 26(3), 334340.Google Scholar
Bałdyga, J., Makowski, Ł., and Orciuch, W. 2007. Double-feed semibatch precipitation: effects of mixing. Chemical Engineering Research and Design, 85(A5), 745752.Google Scholar
Ball, R. C., and Jullien, R. 1984. Finite size effects in cluster-cluster aggregation. Journal de Physique Lettres, 45(21), 10311035.Google Scholar
Balthasar, M., and Frenklach, M. 2005a. Detailed kinetic modeling of soot aggregate formation in laminar premixed flames. Combustion and Flame, 140(1–2), 130145.Google Scholar
Balthasar, M., and Frenklach, M. 2005b. Monte-Carlo simulation of soot particle coagulation and aggregation: the effect of a realistic size distribution. Proceedings of the Combustion Institute, 30(1), 14671475.Google Scholar
Balthasar, M., and Kraft, M. 2003. A stochastic approach to calculate the particle size distribution function of soot particles in laminar premixed flames. Combustion and Flame, 133(3), 289298.Google Scholar
Balthasar, M., Mauss, F., Knobel, A., and Kraft, M. 2002. Detailed modeling of soot formation in a partially stirred plug flow reactor. Combustion and Flame, 128(4), 395409.Google Scholar
Banasiak, J., Lamb, W., and Laurençot, P. 2020a. Analytic Methods for Coagulation-Fragmentation Models. Vol. I. CRC Press.Google Scholar
Banasiak, J., Lamb, W., and Laurençot, P. 2020b. Analytic Methods for Coagulation-Fragmentation Models. Vol. II. CRC Press.Google Scholar
Barrett, J. C., and Jheeta, J. S. 1996. Improving the accuracy of the moments method for solving the aerosol general dynamic equation. Journal of Aerosol Science, 27(8), 11351142.Google Scholar
Barrett, J. C., and Webb, N. A. 1998. A comparison of some approximate methods for solving the aerosol general dynamic equation. Journal of Aerosol Science, 29(1–2), 3139.Google Scholar
Batterham, R. J., Hall, J. S., and Barton, G. 1981. Pelletizing kinetics and simulation of full scale balling circuits. Pages A136–A150 of: 3rd International Symposium on Agglomeration, vol. 1.Google Scholar
Beckett, F. M., Witham, C. S., Leadbetter, S. J., Crocker, R., Webster, H. N., Hort, M. C., Jones, A. R., Devenish, B. J., and Thomson, D. J. 2020. Atmospheric dispersion modelling at the London VAAC: a review of developments since the 2010 Eyjafjallajökull volcano ash cloud. Atmosphere, 11(4), 352.Google Scholar
Bemrose, C. R., and Bridgwater, J. 1987. A review of attrition and attrition test methods. Powder Technology, 49(2), 97126.Google Scholar
Bergthorson, J. M. 2018. Recyclable metal fuels for clean and compact zero-carbon power. Progress in Energy and Combustion Science, 68, 169196.Google Scholar
Bernard, P. S., and Wallace, J. M. 2002. Turbulent Flow: Analysis, Measurement, and Prediction. John Wiley & Sons.Google Scholar
Berry, E. X. 1967. Cloud droplet growth by collection. Journal of the Atmospheric Sciences, 24, 688701.Google Scholar
Berry, E. X. 1969. A mathematical framework for cloud models. Journal of the Atmospheric Sciences, 26, 109111.Google Scholar
Bini, M., and Jones, W. P. 2007. Particle acceleration in turbulent flows: a class of nonlinear stochastic models for intermittency. Physics of Fluids, 19(3), 035104.Google Scholar
Bini, M., and Jones, W. P. 2008. Large-eddy simulation of particle-laden turbulent flows. Journal of Fluid Mechanics, 614, 207252.Google Scholar
Bird, R. B., Stewart, W. E., and Lightfoot, E. N. 1960. Transport Phenomena. John Wiley & Sons.Google Scholar
Blanquart, G., and Pitsch, H. 2009. A joint volume-surface-hydrogen multi-variate model for soot formation. Pages 437–463 of: Bockhorn, H., D’Anna, A., Sarofim, A., and Wang, H. (eds), Combustion Generated Fine Carbonaceous Particles. KIT Scientific Publishing.Google Scholar
Blanquart, G., Pepiot-Desjardins, P., and Pitsch, H. 2009. Chemical mechanism for high temperature combustion of engine relevant fuels with emphasis on soot precursors. Combustion and Flame, 156(3), 588607.Google Scholar
Bleck, R. 1970. A fast, approximative method for integrating the stochastic coalescence equation. Journal of Geophysical Research, 75(27), 51655171.Google Scholar
Bonadonna, C., Genco, R., Gouhier, M., Pistolesi, M., Cioni, R., Alfano, F., Hoskuldsson, A., and Ripepe, M. 2011. Tephra sedimentation during the 2010 Eyjafjallajökull eruption (Iceland) from deposit, radar, and satellite observations. Journal of Geophysical Research: Solid Earth, 116(12), B12202.Google Scholar
Bouaniche, A., Vervisch, L., and Domingo, P. 2019. A hybrid stochastic/fixed-sectional method for solving the population balance equation. Chemical Engineering Science, 209, 115198.Google Scholar
Bouaniche, A., Yon, J., Domingo, P., and Vervisch, L. 2020. Analysis of the soot particle size distribution in a laminar premixed flame: a hybrid stochastic/fixed-sectional approach. Flow, Turbulence and Combustion, 104(2–3), 753775.Google Scholar
Bourouiba, L. 2020. Turbulent gas clouds and respiratory pathogen emissions: potential implications for reducing transmission of COVID-19. JAMA – Journal of the American Medical Association, 323(18), 18371838.Google Scholar
Bramley, A. S., Hounslow, M. J., and Ryall, R. L. 1996. Aggregation during precipitation from solution: a method for extracting rates from experimental data. Journal of Colloid and Interface Science, 183(1), 155165.Google Scholar
Brasil, A. M., Farias, T. L., and Carvalho, M. G. 1999. A recipe for image characterization of fractal-like aggregates. Journal of Aerosol Science, 30(10), 13791389.Google Scholar
Brock, J. R. 1972. Condensational growth of atmospheric aerosols. Journal of Colloid and Interface Science, 39(1), 3236.Google Scholar
Brock, J. R., and Hidy, G. M. 1965. Collision-rate theory and the coagulation of freemolecule aerosols. Journal of Applied Physics, 36(6), 18571862.Google Scholar
Brookes, S. J., and Moss, J. B. 1999. Predictions of soot and thermal radiation properties in confined turbulent jet diffusion flames. Combustion and Flame, 116(4), 486503.Google Scholar
Brown, R. J., Bonadonna, C., and Durant, A. J. 2012. A review of volcanic ash aggregation. Physics and Chemistry of the Earth, 45–46, 6578.Google Scholar
Buaria, D., Clay, M. P., Sreenivasan, K. R., and Yeung, P. K. 2021. Small-scale isotropy and ramp-cliff structures in scalar turbulence. Physical Review Letters, 126(3), 034504.Google Scholar
Buesser, B., and Gröhn, A. J. 2012. Multiscale aspects of modeling gas-phase nanoparticle synthesis. Chemical Engineering and Technology, 35(7), 11331143.Google Scholar
Buesser, B., and Pratsinis, S. E. 2012. Design of nanomaterial synthesis by aerosol processes. Annual Review of Chemical and Biomolecular Engineering, 3, 103127.Google Scholar
Calderón, S. M., Tonttila, J., Buchholz, A., Joutsensaari, J., Komppula, M., Leskinen, A., Hao, L., Moisseev, D., Pullinen, I., Tiitta, P., Xu, J., Virtanen, A., Kokkola, H., and Romakkaniemi, S. 2022. Aerosol-stratocumulus interactions: towards a better process understanding using closures between observations and large eddy simulations. Atmospheric Chemistry and Physics, 22(18), 1241712441.Google Scholar
Camenzind, A., Schulz, H., Teleki, A., Beaucage, G., Narayanan, T., and Pratsinis, S. E. 2008. Nanostructure evolution: from aggregated to spherical SiO2 particles made in diffusion flames. European Journal of Inorganic Chemistry, 6, 911918.Google Scholar
Campos, F. B., and Lage, P. L. C. 2003. A numerical method for solving the transient multidimensional population balance equation using an Euler-Lagrange formulation. Chemical Engineering Science, 58(12), 27252744.Google Scholar
Cant, R. S., and Mastorakos, E. 2008. An Introduction to Turbulent Reacting Flows. Imperial College Press.Google Scholar
Chatzopoulos, A. K., and Rigopoulos, S. 2013. A chemistry tabulation approach via ratecontrolled constrained equilibrium (RCCE) and artificial neural networks (ANNs), with application to turbulent non-premixed CH4/H2/N2 flames. Proceedings of the Combustion Institute, 34(1), 14651473.Google Scholar
Chen, D., and Luo, K. H. 2020. Reactive sites on the surface of polycyclic aromatic hydrocarbon clusters: a numerical study. Combustion and Flame, 211, 362373.Google Scholar
Chen, D., Zainuddin, Z., Yapp, E., Akroyd, J., Mosbach, S., and Kraft, M. 2013. A fully coupled simulation of PAH and soot growth with a population balance model. Proceedings of the Combustion Institute, 34(1), 18271835.Google Scholar
Chen, J.-Y. 1997. Stochastic modeling of partially stirred reactors. Combustion Science and Technology, 122(1–6), 6394.Google Scholar
Cichocki, B. (ed). 2017. Marian Smoluchowski: Selected Scientific Works. Wydawnictwa Uniwersytetu Warszawskiego.Google Scholar
Cifuentes, L., Sellmann, J., Wlokas, I., and Kempf, A. 2020. Direct numerical simulations of nanoparticle formation in premixed and non-premixed flame-vortex interactions. Physics of Fluids, 32(9), 093605.Google Scholar
Clift, R., Grace, J. R., and Weber, M. E. 1978. Bubbles, Drops, and Particles. Academic Press.Google Scholar
Coelho, P. J. 2007. Numerical simulation of the interaction between turbulence and radiation in reactive flows. Progress in Energy and Combustion Science, 33(4), 311383.Google Scholar
Coulaloglou, C. A., and Tavlarides, L. L. 1977. Description of interaction processes in agitated liquid-liquid dispersions. Chemical Engineering Science, 32(11), 12891297.Google Scholar
Crank, J. 1975. The Mathematics of Diffusion. 2nd edn. Oxford University Press.Google Scholar
Crowe, C. T., Sommerfeld, M., and Tsuji, Y. 1998. Multiphase Flows with Droplets and Particles. CRC Press.Google Scholar
Curl, R. L. 1963. Dispersed phase mixing: I. Theory and effects in simple reactors. AIChE Journal, 9(2), 175181.Google Scholar
D’Anna, A. 2008. Detailed kinetic modeling of particulate formation in rich premixed flames of ethylene. Energy and Fuels, 22(3), 16101619.Google Scholar
D’Anna, A. 2009. Combustion-formed nanoparticles. Proceedings of the Combustion Institute, 32(1), 593613.Google Scholar
D’Anna, A., and Kent, J. H. 2003. Aromatic formation pathways in non-premixed methane flames. Combustion and Flame, 132(4), 715722.Google Scholar
D’Anna, A., and Kent, J. H. 2008. A model of particulate and species formation applied to laminar, nonpremixed flames for three aliphatic-hydrocarbon fuels. Combustion and Flame, 152(4), 573587.Google Scholar
D’Anna, A., Sirignano, M., and Kent, J. 2010. A model of particle nucleation in premixed ethylene flames. Combustion and Flame, 157(11), 21062115.Google Scholar
Davidson, P. A. 2004. Turbulence: An Introduction for Scientists and Engineers. Oxford University Press.Google Scholar
Davies, S. C., King, J. R., and Wattis, J. A. D. 1999. Self-similar behaviour in the coagulation equations. Journal of Engineering Mathematics, 36(1–2), 5788.Google Scholar
De La Mora, J. F., and Rosner, D. E. 1982. Effects of inertia on the diffusional deposition of small particles to spheres and cylinders at low Reynolds numbers. Journal of Fluid Mechanics, 125, 379395.Google Scholar
De Oliveira, P. M., Mesquita, L. C. C., Gkantonas, S., Giusti, A., and Mastorakos, E. 2021. Evolution of spray and aerosol from respiratory releases: theoretical estimates for insight on viral transmission. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 477, 20200584.Google Scholar
Derksen, J. J. 2012. Direct simulations of mixing of liquids with density and viscosity differences. Industrial & Engineering Chemistry Research, 51(19), 69486957.Google Scholar
Di Veroli, G., and Rigopoulos, S. 2009. A study of turbulence–chemistry interaction in reactive precipitation via a Population Balance-transported PDF method. In: Hanjalić, K, Nagano, Y, and Jakirlić, S (eds), Turbulence, Heat and Mass Transfer 6. Proceedings of the Sixth International Symposium on Turbulence, Heat and Mass Transfer, Rome, Italy. Begell House, Inc.Google Scholar
Di Veroli, G., and Rigopoulos, S. 2010. Modeling of turbulent precipitation: a transported population balance-PDF method. AIChE Journal, 56(4), 878892.Google Scholar
Di Veroli, G. Y. 2009. Stochastic modelling of particle formation in turbulent flows via the transported population balance – PDF method. Ph.D. thesis, The University of Manchester.Google Scholar
Di Veroli, G. Y., and Rigopoulos, S. 2011. Modeling of aerosol formation in a turbulent jet with the transported population balance equation-probability density function approach. Physics of Fluids, 23(4), 043305.Google Scholar
Diemer, R. B., Jr. 2023. Simplifying population balance models to promote broader use in industry. Chemical Engineering Research and Design, 190, 91105.Google Scholar
Diemer, R. B., and Olson, J. H. 2002. A moment methodology for coagulation and breakage problems: Part 3 – generalized daughter distribution functions. Chemical Engineering Science, 57(19), 41874198.Google Scholar
Ding, T., Readshaw, T., Rigopoulos, S., and Jones, W. P. 2021. Machine learning tabulation of thermochemistry in turbulent combustion: an approach based on hybrid flamelet/random data and multiple multilayer perceptrons. Combustion and Flame, 231, 111493.Google Scholar
Ding, T., Rigopoulos, S., and Jones, W. P. 2022. Machine learning tabulation of thermochemistry of fuel blends. Applications in Energy and Combustion Science, 12, 100086.Google Scholar
Dobbins, R. A., and Mulholland, G. W. 1984. Interpretation of optical measurements of flame generated particles. Combustion Science and Technology, 40(5–6), 175191.Google Scholar
Donde, P., Raman, V., Mueller, M. E., and Pitsch, H. 2013. LES/PDF based modeling of soot-turbulence interactions in turbulent flames. Proceedings of the Combustion Institute, 34(1), 11831192.Google Scholar
Donzis, D. A., and Yeung, P. K. 2010. Resolution effects and scaling in numerical simulations of passive scalar mixing in turbulence. Physica D: Nonlinear Phenomena, 239(14), 12781287.Google Scholar
Donzis, D. A., Sreenivasan, K. R., and Yeung, P. K. 2010. The Batchelor spectrum for mixing of passive scalars in isotropic turbulence: submitted for the special issue dedicated to S. B. Pope. Flow, Turbulence and Combustion, 85(3–4), 549566.Google Scholar
Donzis, D. A., Aditya, K., Sreenivasan, K. R., and Yeung, P. K. 2014. The turbulent Schmidt number. Journal of Fluids Engineering, Transactions of the ASME, 136(6), 060912.Google Scholar
Dopazo, C. 1994. Recent developments in pdf methods. Pages 375–474 of: Libby, P. A., and Williams, F. A. (eds), Turbulent Reacting Flows. Academic Press London.Google Scholar
Dopazo, C., and O’Brien, E. E. 1974. An approach to the autoignition of a turbulent mixture. Acta Astronautica, 1(9–10), 12391266.Google Scholar
Drake, R. 1972. A general mathematical survey of the coagulation equation. Pages 201–376 of: Hidy, G. M., and Brock, J. R. (eds), Topics in Current Aerosol Research (Part 2). Pergamon Press.Google Scholar
Drew, D. A., and Passman, S. L. 1998. Theory of Multicomponent Fluids, Applied Mathematical Sciences, 135. Springer.Google Scholar
Drossinos, Y., and Housiadas, C. 2017. Aerosols. Pages 1251–1320 of: Michaelides, E. E., Crowe, C. T., and Schwarzkopf, J. D. (eds), Multiphase Flow Handbook, 2nd edn. CRC Press.Google Scholar
Drossinos, Y., and Stilianakis, N. I. 2020. What aerosol physics tells us about airborne pathogen transmission. Aerosol Science and Technology, 54(6), 639643.Google Scholar
Drossinos, Y., Reid, J. P., Hugentobler, W., and Stilianakis, N. I. 2022. Challenges of integrating aerosol dynamics into SARS-CoV-2 transmission models. Aerosol Science and Technology, 56(9), 777784.Google Scholar
Druzhinin, O. A. 1995. On the two-way interaction in two-dimensional particle-laden flows: the accumulation of particles and flow modification. Journal of Fluid Mechanics, 297, 4976.Google Scholar
Duboc, B., Ribert, G., and Domingo, P. 2019. Hybrid transported-tabulated chemistry for partially premixed combustion. Computers and Fluids, 179, 206227.Google Scholar
Dukowicz, J. K. 1980. A particle-fluid numerical model for liquid sprays. Journal of Computational Physics, 35(2), 229253.Google Scholar
Dworkin, S. B., Zhang, Q., Thomson, M. J., Slavinskaya, N. A., and Riedel, U. 2011. Application of an enhanced PAH growth model to soot formation in a laminar coflow ethylene/air diffusion flame. Combustion and Flame, 158(9), 16821695.Google Scholar
Eibeck, A., and Wagner, W. 2000a. Approximative solution of the coagulation-fragmentation equation by stochastic particle systems. Stochastic Analysis and Applications, 18(6), 921948.Google Scholar
Eibeck, A., and Wagner, W. 2000b. An efficient stochastic algorithm for studying coagulation dynamics and gelation phenomena. SIAM Journal on Scientific Computing, 22(3), 802821.Google Scholar
Eibeck, A., and Wagner, W. 2001. Stochastic particle approximations for Smoluchoski’s coagulation equation. Annals of Applied Probability, 11(4), 11371165.Google Scholar
Eibeck, A., and Wagner, W. 2003. Stochastic interacting particle systems and nonlinear kinetic equations. Annals of Applied Probability, 13(3), 845889.Google Scholar
Einstein, A. 1926. Investigations on the Theory of the Brownian Movement, Edited by Fürth, R.. Dover Publications, Inc. (1956 republication).Google Scholar
Elimelech, M., Gregory, J., Jia, X., and Williams, R. 1995. Particle Deposition and Aggregation: Measurement, Modelling and Simulation. Butterworth-Heinemann.Google Scholar
Enukashvili, I. M. 1964. On the solution of the kinetic coagulation equation. Izv. Geophys. Ser., 10, 944948.Google Scholar
Epstein, P. S. 1924. On the resistance experienced by spheres in their motion through gases. Physical Review, 23(6), 710733.Google Scholar
Ernst, F. O., and Pratsinis, S. E. 2006. Self-preservation and gelation during turbulenceinduced coagulation. Journal of Aerosol Science, 37(2), 123142.Google Scholar
Falk, L., and Schaer, E. 2001. A PDF modelling of precipitation reactors. Chemical Engineering Science, 56(7), 24452457.Google Scholar
Favre, A. 1969. Statistical equations of turbulent gases. Pages 231–266 of: Problems of Hydrodynamics and Continuum Mechanics. SIAM, Philadelphia.Google Scholar
Feroughi, O. M., Deng, L., Kluge, S., Dreier, T., Wiggers, H., Wlokas, I., and Schulz, C. 2017. Experimental and numerical study of a HMDSO-seeded premixed laminar low-pressure flame for SiO2 nanoparticle synthesis. Proceedings of the Combustion Institute, 36(1), 10451053.Google Scholar
Ferry, J., and Balachandar, S. 2001. A fast Eulerian method for disperse two-phase flow. International Journal of Multiphase Flow, 27(7), 11991226.Google Scholar
Ferziger, J. H., Perić, M., and Street, R. L. 2020. Computational Methods for Fluid Dynamics. 4th edn. Springer.Google Scholar
Filbet, F., and Laurençot, P. 2004. Numerical simulation of the Smoluchowski coagulation equation. SIAM Journal on Scientific Computing, 25(6), 20042028.Google Scholar
Finke, J., and Sewerin, F. 2023. Combining a population balance approach with detailed chemistry to model the condensation of oxide smoke during aluminum combustion in spatially homogeneous reactors. Combustion and Flame, 248, 112510.Google Scholar
Finlayson, B. A. 2014. The Method of Weighted Residuals and Variational Principles. SIAM, republication of the work first published by Academic Press in 1972.Google Scholar
Fletcher, T. H., Ma, J., Rigby, J. R., Brown, A. L., and Webb, B. W. 1997. Soot in coal combustion systems. Progress in Energy and Combustion Science, 23(3), 283301.Google Scholar
Ford, I. J. 2004. Statistical mechanics of nucleation: a review. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 218(8), 883899.Google Scholar
Fox, R. O. 1998. On the relationship between Lagrangian micromixing models and computational fluid dynamics. Chemical Engineering and Processing: Process Intensification, 37(6), 521535.Google Scholar
Fox, R. O. 2003. Computational Models for Turbulent Reacting Flows. Cambridge University Press.Google Scholar
Fox, R. O. 2007. Introduction and fundamentals of modeling approaches for polydisperse multiphase flows. Pages 1–40 of: Marchisio, D. L., and Fox, R. O. (eds), Multiphase Reacting Flows: Modelling and Simulation. SpringerWienNewYork.Google Scholar
Franke, L. L. C., Chatzopoulos, A. K., and Rigopoulos, S. 2017. Tabulation of combustion chemistry via Artificial Neural Networks (ANNs): methodology and application to LES-PDF simulation of Sydney flame L. Combustion and Flame, 185, 245260.Google Scholar
Fredrickson, A. G., and Tsuchiya, H. M. 1963. Continuous propagation of microorganisms. AIChE Journal, 9(4), 459468.Google Scholar
Fredrickson, A. G., Ramkrishna, D., and Tsuchiya, H. M. 1967. Statistics and dynamics of procaryotic cell populations. Mathematical Biosciences, 1(3), 327374.Google Scholar
Frenkel, J. 1945. Viscous flow of crystalline bodies under the action of surface tension. Journal of Physics, 9, 385.Google Scholar
Frenklach, M. 1985. Computer modeling of infinite reaction sequences: a chemical lumping. Chemical Engineering Science, 40(10), 18431849.Google Scholar
Frenklach, M. 2002a. Method of moments with interpolative closure. Chemical Engineering Science, 57(12), 22292239.Google Scholar
Frenklach, M. 2002b. Reaction mechanism of soot formation in flames. Physical Chemistry Chemical Physics, 4(11), 20282037.Google Scholar
Frenklach, M., and Harris, S. J. 1987. Aerosol dynamics modeling using the method of moments. Journal of Colloid and Interface Science, 118(1), 252261.Google Scholar
Frenklach, M., and Wang, H. 1991. Detailed modeling of soot particle nucleation and growth. Symposium (International) on Combustion, 23(1), 15591566.Google Scholar
Frenklach, M., and Wang, H. 1994. Detailed mechanism and modeling of soot particle formation. Pages 165–192 of: Bockhorn, H. (ed), Soot Formation in Combustion. Springer Series in Chemical Physics 59. Springer-Verlag.Google Scholar
Frenklach, M. and Wang, H. and Goldenberg, M. and Smith, G. P. and Golden, D. M., and Bowman, C. T., and Hanson, R. K., and Gardiner, W. C., and Lissianski, V. 1995. GRI-MECH: An optimized detailed chemical reaction mechanism for methane combustion. Gas Research Institute Topical Report No. GRI-95/0058.Google Scholar
Friedlander, S. K. 1960. On the particle size spectrum of a condensing vapor. Physics of Fluids, 3(5), 693696.Google Scholar
Friedlander, S. K. 2000. Smoke, Dust, and Haze: Fundamentals of Aerosol Dynamics. 2nd edn. Oxford University Press.Google Scholar
Friedlander, S. K., and Wang, C. S. 1966. The self-preserving particle size distribution for coagulation by Brownian motion. Journal of Colloid and Interface Science, 22(2), 126132.Google Scholar
Fröhlich, J., and Rodi, W. 2002. Introduction to large eddy simulation of turbulent flows. Pages 267–298 of: Launder, B. E., and Sandham, N. D. (eds), Closure Strategies for Turbulent and Transitional Flows. Cambridge University Press.Google Scholar
Froment, G. F., Bischoff, K. B., and De Wilde, J. 2011. Chemical Reactor Analysis and Design. 3rd edn. John Wiley & Sons.Google Scholar
Fuchs, N. A. 1964. The Mechanics of Aerosols. Pergamon, New York.Google Scholar
Fuchs, N. A., and Sutugin, A. G. 1971. High-dispersed aerosols. Pages 1–60 of: Hidy, G. M., and Brock, J. R. (eds), Topics in Current Aerosol Research. Pergamon Press.Google Scholar
Gany, A., Manheimer-Timnat, Y., and Wolfshtein, M. 1976. Two-phase flow effects on hybrid combustion. Acta Astronautica, 3(3–4), 241263.Google Scholar
Gao, F., and O’Brien, E. E. 1993. A large-eddy simulation scheme for turbulent reacting flows. Physics of Fluids A, 5(6), 12821284.Google Scholar
Garcia Gonzalez, C. E. 2018. Characterization of nanoparticles generated in reacting flows. Ph.D. thesis, Imperial College London.Google Scholar
Gardiner, C. W. 1985. Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences. Springer.Google Scholar
Garmory, A., and Mastorakos, E. 2008. Aerosol nucleation and growth in a turbulent jet using the Stochastic Fields method. Chemical Engineering Science, 63(16), 40784089.Google Scholar
Garrick, S. C., and Khakpour, M. 2004. The effects of differential diffusion on nanoparticle coagulation in temporal mixing layers. Aerosol Science and Technology, 38(8), 851860.Google Scholar
Gavi, E., Marchisio, D. L., and Barresi, A. A. 2007a. CFD modelling and scaleup of Confined Impinging Jet Reactors. Chemical Engineering Science, 62(8), 22282241.Google Scholar
Gavi, E., Rivautella, L., Marchisio, D. L., Vanni, M., Barresi, A. A., and Baldi, G. 2007b. CFD modelling of nano-particle precipitation in confined impinging jet reactors. Chemical Engineering Research and Design, 85(5 A), 735744.Google Scholar
Gelbard, F. 1990. Modeling multicomponent aerosol particle growth by vapor condensation. Aerosol Science and Technology, 12(2), 399412.Google Scholar
Gelbard, F., and Seinfeld, J. H. 1978a. Numerical solution of the dynamic equation for particulate systems. Journal of Computational Physics, 28(3), 357375.Google Scholar
Gelbard, F. M., and Seinfeld, J. H. 1978b. Coagulation and growth of a multicomponent aerosol. Journal of Colloid And Interface Science, 63(3), 472479.Google Scholar
Gelbard, F., and Seinfeld, J. H. 1979. The general dynamic equation for aerosols. Theory and application to aerosol formation and growth. Journal of Colloid and Interface Science, 68(2), 363382.Google Scholar
Gelbard, F., and Seinfeld, J. H. 1980. Simulation of multicomponent aerosol dynamics. Journal of Colloid and Interface Science, 78(2), 485501.Google Scholar
Gelbard, F., Tambour, Y., and Seinfeld, J. H. 1980. Sectional representations for simulating aerosol dynamics. Journal of Colloid and Interface Science, 76(2), 541556.Google Scholar
Ghadiri, M., and Zhang, Z. 2002. Impact attrition of particulate solids. Part 1: a theoretical model of chipping. Chemical Engineering Science, 57(17), 36593669.Google Scholar
Gillespie, D. T. 1975. An exact method for numerically simulating the stochastic coalescence process in a cloud. Journal of the Atmospheric Sciences, 32(10), 19771989.Google Scholar
Glassman, I. 1988. Soot formation in combustion processes. Symposium (International) on Combustion, 22(1), 295311.Google Scholar
Golovin, A. M. 1963. On the spectrum of coagulating cloud droplets, II. Izv. Geophys. Ser., 9, 880884.Google Scholar
Goodson, M., and Kraft, M. 2002. An efficient stochastic algorithm for simulating nanoparticle dynamics. Journal of Computational Physics, 183(1), 210232.Google Scholar
Gosman, A. D., and Ioannides, E. 1983. Aspects of computer simulation of liquid-fueled combustors. Journal of Energy, 7(6), 482490.Google Scholar
Goudeli, E., Eggersdorfer, M. L., and Pratsinis, S. E. 2015. Aggregate characteristics accounting for the evolving fractal-like structure during coagulation and sintering. Journal of Aerosol Science, 89, 5868.Google Scholar
Gradl, J., and Peukert, W. 2009. Simultaneous 3D observation of different kinetic subprocesses for precipitation in a T-mixer. Chemical Engineering Science, 64(4), 709720.Google Scholar
Greenberg, J. B., Silverman, I., and Tambour, Y. 1993. On the origins of spray sectional conservation equations. Combustion and Flame, 93(1–2), 9096.Google Scholar
Griffiths, P. R., and De Haseth, J. A. 2007. Fourier Transform Infrared Spectrometry. John Wiley & Sons.Google Scholar
Grimmett, G., and Stirzaker, D. 2001. Probability and Random Processes. 3rd edn. Oxford University Press.Google Scholar
Grinstein, F. F., Margolin, L. G., and Rider, W. J. 2007. Implicit Large Eddy Simulation: Computing Turbulent Fluid Dynamics. Cambridge University Press.Google Scholar
Grosshandler, W. L. 1993. RADCAL: A narrow-band model for radiation calculations in a combustion environment. NIST Technical Note 1402. National Institute of Standards and Technology.Google Scholar
Gunawan, R., Fusman, I., and Braatz, R. D. 2004. High resolution algorithms for multidimensional population balance equations. AIChE Journal, 50(11), 27382749.Google Scholar
Guo, H., Liu, F., Smallwood, G. J., and Gülder, Ö. L. 2002. The flame preheating effect on numerical modelling of soot formation in a two-dimensional laminar ethylene-air diffusion flame. Combustion Theory and Modelling, 6(2), 173187.Google Scholar
Guo, H., Liu, F., Smallwood, G. J., and Gülder, Ö. L. 2006. Numerical study on the influence of hydrogen addition on soot formation in a laminar ethylene-air diffusion flame. Combustion and Flame, 145(1–2), 324338.Google Scholar
Gupta, H. C., and Bracco, F. V. 1978. Numerical computations of two-dimensional unsteady sprays for application to engines. AIAA Journal, 16(10), 10531061.Google Scholar
Hall, R. J., Smooke, M. D., and Colket, M. B. 1997. Predictions of soot dynamics in opposed jet diffusion flames. Pages 189–229 of: Dryer, F. L., and Sawyer, R. F. (eds), Physical and Chemical Aspects of Combustion: A Tribute to Irvin Glassman. Combustion Science and Technology Book Series, vol. 4. Gordon and Breach.Google Scholar
Hanjalić, K., and Launder, B. 2022. Modelling Turbulence in Engineering and the Environment: Rational Alternative Routes to Closure. 2nd edn. Cambridge University Press.Google Scholar
Harris, S. J., and Kennedy, I. M. 1988. The coagulation of soot particles with van der Waals forces. Combustion Science and Technology, 59(4–6), 443454.Google Scholar
Harris, S. J., and Weiner, A. M. 1983a. Surface growth of soot particles in premixed ethylene/air flames. Combustion Science and Technology, 31(3–4), 155167.Google Scholar
Harris, S. J., and Weiner, A. M. 1983b. Determination of the rate constant for soot surface growth. Combustion Science and Technology, 32(5–6), 267275.Google Scholar
Harris, S. J., and Weiner, A. M. 1985. Chemical kinetics of soot particle growth. Annual Review of Physical Chemistry, 36, 3152.Google Scholar
Haworth, D.C. 2010. Progress in probability density function methods for turbulent reacting flows. Progress in Energy and Combustion Science, 36(2), 168259.Google Scholar
Haynes, B. S., and Wagner, H. Gg. 1981. Soot formation. Progress in Energy and Combustion Science, 7(4), 229273.Google Scholar
Heath, M. T. 2002. Scientific Computing: An Introductory Survey. 2nd edn. McGraw-Hill.Google Scholar
Hidy, G. M. 1965. On the theory of the coagulation of noninteracting particles in Brownian motion. Journal of Colloid Science, 20(2), 123144.Google Scholar
Hidy, G. M., and Brock, J. R. 1970. The Dynamics of Aerocolloidal Systems. Pergamon Press.Google Scholar
Hill, P. J., and Ng, K. M. 1995. New discretization procedure for the breakage equation. AIChE Journal, 41(5), 12041216.Google Scholar
Hill, P. J., and Ng, K. M. 1996a. New discretization procedure for the agglomeration equation. AIChE Journal, 42(3), 727741.Google Scholar
Hill, P. J., and Ng, K. M. 1996b. Statistics of multiple particle breakage. AIChE Journal, 42(6), 16001611.Google Scholar
Hirsch, C. 2007. Numerical Computation of Internal and External Flows: Volume 1, Fundamentals of Computational Fluid Dynamics. 2nd edn. Butterworth-Heinemann.Google Scholar
Hirschfelder, J. O., Curtiss, C. F., and Bird, R. B. 1964. Molecular Theory of Gases and Liquids. John Wiley & Sons.Google Scholar
Hjertager, B. H. 2007. Multi-fluid CFD analysis of chemical reactors. Pages 125–179 of: Marchisio, D. L., and Fox, R. O. (eds), Multiphase Reacting Flows: Modelling and Simulation. SpringerWienNewYork.Google Scholar
Hjortsø, M. A. 2004. Population Balances in Biomedical Engineering: Segregation Through the Distribution of Cell States. McGraw-Hill.Google Scholar
Hounslow, M. J. 1990. Nucleation, growth, and aggregation rates from steady-state experimental data. AIChE Journal, 36(11), 17481752.Google Scholar
Hounslow, M. J. 1998. The population balance as a tool for understanding particle rate processes. KONA Powder and Particle Journal, 16(May), 179193.Google Scholar
Hounslow, M. J., Ryall, R. L., and Marshall, V. R. 1988. A discretized population balance for nucleation, growth, and aggregation. AIChE Journal, 34(11), 18211832.Google Scholar
Hulburt, H. M., and Akiyama, T. 1969. Liouville equations for agglomeration and dispersion processes. Industrial & Engineering Chemistry Fundamentals, 8(2), 319324.Google Scholar
Hulburt, H. M., and Katz, S. 1964. Some problems in particle technology. A statistical mechanical formulation. Chemical Engineering Science, 19(8), 555574.Google Scholar
Workshop, ISF. 2018. ‘Accessed on 01/04/2024’ www.adelaide.edu.au/cet/isfworkshop/.Google Scholar
Ishii, M., and Hibiki, T. 2005. Thermo-fluid Dynamics of Two-Phase Flow. Springer.Google Scholar
Iyer, S. S., Litzinger, T. A., Lee, S.-Y., and Santoro, R. J. 2007. Determination of soot scattering coefficient from extinction and three-angle scattering in a laminar diffusion flame. Combustion and Flame, 149(1–2), 206216.Google Scholar
Jain, A., and Xuan, Y. 2019. Effects of large aromatic precursors on soot formation in turbulent non-premixed sooting jet flames. Combustion Theory and Modelling, 23(3), 439466.Google Scholar
Jakobsen, H. A. 2014. Chemical Reactor Modeling: Multiphase Reactive Flows. 2nd edn. Springer.Google Scholar
Jakobsen, H. A., Lindborg, H., and Dorao, C. A. 2005. Modeling of bubble column reactors: progress and limitations. Industrial & Engineering Chemistry Research, 44(14), 51075151.Google Scholar
Jensen, D. E. 1974. Prediction of soot formation rates: a new approach. Proceedings of the Royal Society of London A, 338, 375396.Google Scholar
Jeong, J. I., and Choi, M. 2001. A sectional method for the analysis of growth of polydisperse non-spherical particles undergoing coagulation and coalescence. Journal of Aerosol Science, 32(5), 565582.Google Scholar
Jones, W. P. 2002. The joint scalar probability density function method. Pages 582–625 of: Launder, B. E., and Sandham, N. D. (eds), Closure Strategies for Turbulent and Transitional Flows. Cambridge University Press.Google Scholar
Jones, W. P., and Launder, B. E. 1972. The prediction of laminarization with a two-equation model of turbulence. International Journal of Heat and Mass Transfer, 15(2), 301314.Google Scholar
Jones, W. P., and Navarro-Martinez, S. 2007. Large eddy simulation of autoignition with a subgrid probability density function method. Combustion and Flame, 150(3), 170187.Google Scholar
Jones, W. P., and Prasad, V. N. 2010. Large eddy simulation of the Sandia flame series (D-F) using the Eulerian stochastic field method. Combustion and Flame, 157(9), 16211636.Google Scholar
Jones, W. P., and Sheen, D.-H. 2000. Probability density function method for modelling liquid fuel sprays. Flow, Turbulence and Combustion, 63(1), 379394.Google Scholar
Jones, W. P., di Mare, F., and Marquis, A. J. 2002. LES-BOFFIN: User’s Guide.Google Scholar
Kammler, H. K., Pratsinis, S. E., MorrisonJr., P. W., and Hemmerling, B. 2002. Flame temperature measurements during electrically assisted aerosol synthesis of nanoparticles. Combustion and Flame, 128(4), 369381.Google Scholar
Kaplan, C. R., and Gentry, J. W. 1988. Agglomeration of chain-like combustion aerosols due to Brownian motion. Aerosol Science and Technology, 8(1), 1128.Google Scholar
Kazakov, A., and Frenklach, M. 1998. Dynamic modeling of soot particle coagulation and aggregation: implementation with the method of moments and application to high-pressure laminar premixed flames. Combustion and Flame, 114(3–4), 484501.Google Scholar
Kearney, S. P., Guildenbecher, D. R., Winters, C., Farias, P. A., Grasser, T. W., and Hewson, J. C. 2015. Temperature, oxygen, and soot-volume-fraction measurements in a turbulent C2H4-fueled jet flame. Tech. rept. SAND2015-7968. Sandia National Laboratories.Google Scholar
Kee, R. J., Coltrin, M. E., and Glarborg, P. 2003. Chemically Reacting Flow: Theory and Practice. 1st edn. Wiley.Google Scholar
Kelesidis, G. A., and Pratsinis, S. E. 2021. Determination of the volume fraction of soot accounting for its composition and morphology. Proceedings of the Combustion Institute, 38(1), 11891196.Google Scholar
Kelesidis, G. A., Goudeli, E., and Pratsinis, S. E. 2017. Flame synthesis of functional nanostructured materials and devices: surface growth and aggregation. Proceedings of the Combustion Institute, 36(1), 2950.Google Scholar
Kendall, D. G. 1950. An artificial realization of a simple ‘birth-and-death’ process. Journal of the Royal Statistical Society, Series B: (Methodological), 12(1), 116119.Google Scholar
Kennedy, I. M. 1990. Enhancement of silica aerosol coagulation by Van der Waals forces. Aerosol Science and Technology, 12(4), 869875.Google Scholar
Kennedy, I. M. 1997. Models of soot formation and oxidation. Progress in Energy and Combustion Science, 23(2), 95132.Google Scholar
Kennedy, I. M., Yam, C., Rapp, D. C., and Santoro, R. J. 1996. Modeling and measurements of soot and species in a laminar diffusion flame. Combustion and Flame, 107(4), 368382.Google Scholar
Kholghy, M. R., Veshkini, A., and Thomson, M. J. 2016. The core-shell internal nanostructure of soot – a criterion to model soot maturity. Carbon, 100, 508536.Google Scholar
Khosousi, A., and Dworkin, S. B. 2015. Soot surface reactivity during surface growth and oxidation in laminar diffusion flames. Combustion and Flame, 162(12), 45234532.Google Scholar
Kim, Y. P., and Seinfeld, J. H. 1990. Simulation of multicomponent aerosol condensation by the moving sectional method. Journal of Colloid and Interface Science, 135(1), 185199.Google Scholar
Kiparissides, C. 2006. Challenges in particulate polymerization reactor modeling and optimization: a population balance perspective. Journal of Process Control, 16(3), 205224.Google Scholar
Kittelson, D. B. 1998. Engines and nanoparticles: a review. Journal of Aerosol Science, 29(5–6), 575588.Google Scholar
Kloeden, P. E., and Platen, E. 1992. Numerical Solution of Stochastic Differential Equations. Springer.Google Scholar
Kobata, A., Kusakabe, K., and Morooka, S. 1991. Growth and transformation of TiO2 crystallites in aerosol reactor. AIChE Journal, 37(3), 347359.Google Scholar
Koch, W., and Friedlander, S. K. 1990. The effect of particle coalescence on the surface area of a coagulating aerosol. Journal of Colloid and Interface Science, 140(2), 419427.Google Scholar
Kodas, T. T., and Hampden-Smith, M. J. 1999. Aerosol Processing of Materials. Wiley-VCH.Google Scholar
Kollmann, W. 1990. The pdf approach to turbulent flow. Theoretical and Computational Fluid Dynamics, 1(5), 249285.Google Scholar
Kollmann, W. 1995. Probability Density Function (PDF) closures for scalar transport in turbulent flows. Pages 621–654 of: Habashi, W. G., and Hafez, M. M. (eds), Computational Fluid Dynamics Techniques. Gordon and Breach Publishers.Google Scholar
Kollmann, W., Kennedy, I. M., Metternich, M., and Chen, J.-Y. 1994. Application of a soot model to a turbulent ethylene di usion flame. Pages 503–526 of: Bockhorn, H. (ed), Soot Formation in Combustion. Springer Series in Chemical Physics 59. Springer-Verlag.Google Scholar
Koren, B. 1993. A robust upwind discretization method for advection, diffusion and source terms. Pages 117–138 of: Vreugdenhil, C. B., and Koren, B. (eds), Numerical Methods for Advection-Diffusion Problems. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol. 45. Vieweg Verlag.Google Scholar
Kostoglou, M. 2007a. Extended cell average technique for the solution of coagulation equation. Journal of Colloid and Interface Science, 306(1), 7281.Google Scholar
Kostoglou, M. 2007b. The linear breakage equation: from fundamental issues to numerical solution techniques. Pages 793–835 of: Williams, J. C., Allen, T., Salman, A. D., Ghadiri, M., and Hounslow, M. J. (eds), Handbook of Powder Technology, Volume 12: Particle Breakage. Elsevier.Google Scholar
Kostoglou, M., and Karabelas, A. J. 1994. Evaluation of zero order methods for simulating particle coagulation. Journal of Colloid and Interface Science, 163(2), 420431.Google Scholar
Kostoglou, M., and Karabelas, A. J. 1995. Evaluation of numerical methods for simulating an evolving particle size distribution in growth processes. Chemical Engineering Communications, 136(1), 177199.Google Scholar
Kostoglou, M., and Karabelas, A. J. 2001. On the breakage problem with a homogeneous erosion type kernel. Journal of Physics A: Mathematical and General, 34(8), 17251740.Google Scholar
Kostoglou, M., and Karabelas, A. J. 2004. Optimal low order methods of moments for solving the fragmentation equation. Powder Technology, 143–144, 280290.Google Scholar
Kostoglou, M., and Karabelas, A. J. 2005. Toward a unified framework for the derivation of breakage functions based on the statistical theory of turbulence. Chemical Engineering Science, 60(23), 65846595.Google Scholar
Kostoglou, M., and Konstandopoulos, A. G. 2001. Evolution of aggregate size and fractal dimension during Brownian coagulation. Journal of Aerosol Science, 32(12), 13991420.Google Scholar
Kostoglou, M., Dovas, S., and Karabelas, A. J. 1997. On the steady-state size distribution of dispersions in breakage processes. Chemical Engineering Science, 52(8), 12851299.Google Scholar
Kostoglou, M., Konstandopoulos, A. G., and Friedlander, S. K. 2006. Bivariate population dynamics simulation of fractal aerosol aggregate coagulation and restructuring. Journal of Aerosol Science, 37(9), 11021115.Google Scholar
Kotalczyk, G., and Kruis, F. E. 2020. Compartmental population balances by means of Monte Carlo methods. Page 519–548 of: Heinrich, S. (ed), Dynamic Flowsheet Simulation of Solids Processes. Springer Nature Switzerland AG.Google Scholar
Köylü, Ü. Ö., McEnally, C. S., Rosner, D. E., and Pfefferle, L. D. 1997. Simultaneous measurements of soot volume fraction and particle size / microstructure in flames using a thermophoretic sampling technique. Combustion and Flame, 110(4), 494507.Google Scholar
Kreyling, W. G., Semmler-Behnke, M., and Möller, W. 2006. Ultrafine particle – lung interactions: does size matter? Journal of Aerosol Medicine, 19(1), 7483.Google Scholar
Kronenburg, A., Bilger, R. W., and Kent, J. H. 2000. Modeling soot formation in turbulent methane-air jet diffusion flames. Combustion and Flame, 121(1–2), 2440.Google Scholar
Kruis, F. E., and Kusters, K. A. 1997. The collision rate of particles in turbulent flow. Chemical Engineering Communications, 158, 201230.Google Scholar
Kruis, F. E., Kusters, K. A., and Pratsinis, S. E. 1993. A simple model for the evolution of the characteristics of aggregate particles undergoing coagulation and sintering. Aerosol Science and Technology, 19(4), 514526.Google Scholar
Kruis, F. E., Fissan, H., and Peled, A. 1998. Synthesis of nanoparticles in the gas phase for electronic, optical and magnetic applications – a review. Journal of Aerosol Science, 29(5–6), 511535.Google Scholar
Kruis, F. E., Maisels, A., and Fissan, H. 2000. Direct simulation Monte Carlo method for particle coagulation and aggregation. AIChE Journal, 46(9), 17351742.Google Scholar
Kucher, M., Babic, D., and Kind, M. 2006. Precipitation of barium sulfate: experimental investigation about the influence of supersaturation and free lattice ion ratio on particle formation. Chemical Engineering and Processing: Process Intensification, 45(10), 900907.Google Scholar
Kumar, J., Peglow, M., Warnecke, G., Heinrich, S., and Mörl, L. 2006. Improved accuracy and convergence of discretized population balance for aggregation: the cell average technique. Chemical Engineering Science, 61(10), 33273342.Google Scholar
Kumar, S., and Ramkrishna, D. 1996a. On the solution of population balance equations by discretization – I. A fixed pivot technique. Chemical Engineering Science, 51(8), 13111332.Google Scholar
Kumar, S., and Ramkrishna, D. 1996b. On the solution of population balance equations by discretization – II. A moving pivot technique. Chemical Engineering Science, 51(8), 13331342.Google Scholar
Kumar, S., and Ramkrishna, D. 1997. On the solution of population balance equations by discretization – III. Nucleation, growth and aggregation of particles. Chemical Engineering Science, 52(24), 46594679.Google Scholar
Lage, P. L. C. 2002. Comments on the ‘An analytical solution to the population balance equation with coalescence and breakage – the special case with constant number of particles’ by D.P. Patil and J.R.G. Andrews [Chemical Engineering Science 53(3) 599–601]. Chemical Engineering Science, 57(19), 42534254.Google Scholar
Lai, F. S., Friedlander, S. K., Pich, J., and Hidy, G. M. 1972. The self-preserving particle size distribution for Brownian coagulation in the free-molecule regime. Journal of Colloid and Interface Science, 39(2), 395405.Google Scholar
Landgrebe, J. D., and Pratsinis, S. E. 1989. Gas-phase manufacture of particulates: interplay of chemical reaction and aerosol coagulation in the free-molecular regime. Industrial & Engineering Chemistry Research, 28(10), 14741481.Google Scholar
Landgrebe, J. D., and Pratsinis, S. E. 1990. A discrete-sectional model for particulate production by gas-phase chemical reaction and aerosol coagulation in the free-molecular regime. Journal of Colloid and Interface Science, 139(1), 6386.Google Scholar
Laurent, F., and Massot, M. 2001. Multi-fluid modelling of laminar polydisperse spray flames: origin, assumptions and comparison of sectional and sampling methods. Combustion Theory and Modelling, 5(4), 537572.Google Scholar
Lee, G., Meyer, X. M., Biscans, B., Le Lann, J. M., and Yoon, E. S. 1999. Adaptive finite difference method for the simulation of batch crystallization. Computers and Chemical Engineering, 23(SUPPL. 1), S363S366.Google Scholar
Lee, G., Yoon, E. S., Lim, Y.-I., Le Lann, J. M., Meyer, X.-M., and Joulia, X. 2001. Adaptive mesh method for the simulation of crystallization processes including agglomeration and breakage: the potassium sulfate system. Industrial and Engineering Chemistry Research, 40(26), 62286235.Google Scholar
Lee, J. 2011. Estimation of emission properties for silica particles using thermal radiation spectroscopy. Applied Optics, 50(22), 42624267.Google Scholar
Lee, K. B., Thring, M. W., and Beér, J. M. 1962. On the rate of combustion of soot in a laminar soot flame. Combustion and Flame, 6(C), 137145.Google Scholar
Lee, K. W. 1983. Change of particle size distribution during Brownian coagulation. Journal of Colloid and Interface Science, 92(2), 315325.Google Scholar
Lee, K. W., and Chen, H. 1984. Coagulation rate of polydisperse particles. Aerosol Science and Technology, 3(3), 327334.Google Scholar
Lee, K. W., Chen, H., and Gieseke, J. A. 1984. Log-normally preserving size distribution for Brownian coagulation in the free-molecule regime. Aerosol Science and Technology, 3(1), 5362.Google Scholar
Lee, M. H. 2000. On the validity of the coagulation equation and the nature of runaway growth. Icarus, 143(1), 7486.Google Scholar
Leer, M., Pettit, M. W. A., Lipkowicz, J. T., Domingo, P., Vervisch, L., and Kempf, A. M. 2022. A conservative Eulerian-Lagrangian decomposition principle for the solution of multi-scale flow problems at high Schmidt or Prandtl numbers. Journal of Computational Physics, 464, 111216.Google Scholar
Lemons, D. S., and Gythiel, A. 1997. Paul Langevin’s 1908 paper ‘on the theory of Brownian motion’ [‘Sur la théorie du mouvement brownien,’ C. R. Acad. Sci. (Paris) 146, 530–533 (1908)]. American Journal of Physics, 65(11), 10791080.Google Scholar
Leschziner, M. 2016. Statistical Turbulence Modelling for Fluid Dynamics – Demystified: An Introductory Text for Graduate Engineering Students. Imperial College Press.Google Scholar
Leung, K. M., Lindstedt, R. P., and Jones, W. P. 1991. A simplified reaction mechanism for soot formation in nonpremixed flames. Combustion and Flame, 87(3–4), 289305.Google Scholar
Leveque, R. J. 2002. Finite Volume Methods for Hyperbolic Problems. Cambridge University Press.Google Scholar
Lewis, A., Seckler, M., Kramer, H., and van Rosmalen, G. 2015. Industrial Crystallization: Fundamentals and Applications. Cambridge University Press.Google Scholar
Liao, Y., and Lucas, D. 2009. A literature review of theoretical models for drop and bubble breakup in turbulent dispersions. Chemical Engineering Science, 64(15), 33893406.Google Scholar
Libby, P. A., and Williams, F. A. 1980. Fundamental aspects. Pages 1–43 of: Libby, P. A., and Williams, F. A. (eds), Topics in Applied Physics, Volume 44: Turbulent Reacting Flows. Springer-Verlag.Google Scholar
Lifshitz, I. M., and Slyozov, V. V. 1961. The kinetics of precipitation from supersaturated solid solutions. Journal of Physics and Chemistry of Solids, 19(1–2), 3550.Google Scholar
Lindstedt, R. P., and Louloudi, S. A. 2005. Joint-scalar transported PDF modeling of soot formation and oxidation. Proceedings of the Combustion Institute, 30(1), 775782.Google Scholar
Link, O., Snelling, D. R., Thomson, K. A., and Smallwood, G. J. 2011. Development of absolute intensity multi-angle light scattering for the determination of polydisperse soot aggregate properties. Proceedings of the Combustion Institute, 33(1), 847854.Google Scholar
Litster, J. 2016. Design and Processing of Particulate Products. Cambridge University Press.Google Scholar
Litster, J., and Ennis, B. 2004. The Science and Engineering of Granulation Processes. Springer-Science+Business Media, B.V.Google Scholar
Litster, J. D., Smit, D. J., and Hounslow, M. J. 1995. Adjustable discretized population balance for growth and aggregation. AIChE Journal, 41(3), 591603.Google Scholar
Liu, A., and Rigopoulos, S. 2019. A conservative method for numerical solution of the population balance equation, and application to soot formation. Combustion and Flame, 205, 506521.Google Scholar
Liu, A., Garcia, C. E., Sewerin, F., Williams, B. A. O., and Rigopoulos, S. 2020. Population balance modelling and laser diagnostic validation of soot particle evolution in laminar ethylene diffusion flames. Combustion and Flame, 221, 384400.Google Scholar
Liu, F., Guo, H., Smallwood, G. J., and Gülder, Ö. L. 2003. Numerical modelling of soot formation and oxidation in laminar coflow non-smoking and smoking ethylene diffusion flames. Combustion Theory and Modelling, 7(2), 301315.Google Scholar
Lombart, M., and Laibe, G. 2021. Grain growth for astrophysics with discontinuous Galerkin schemes. Monthly Notices of the Royal Astronomical Society, 501(3), 42984316.Google Scholar
Lucchesi, M., Abdelgadir, A., Attili, A., and Bisetti, F. 2017. Simulation and analysis of the soot particle size distribution in a turbulent nonpremixed flame. Combustion and Flame, 178, 3545.Google Scholar
Lundgren, T. S. 1967. Distribution functions in the statistical theory of turbulence. Physics of Fluids, 10(5), 969975.Google Scholar
Ma, D. L., Tafti, D. K., and Braatz, R. D. 2002. High-resolution simulation of multidimensional crystal growth. Industrial & Engineering Chemistry Research, 41(25), 62176223.Google Scholar
Mahoney, A. W., and Ramkrishna, D. 2002. Efficient solution of population balance equations with discontinuities by finite elements. Chemical Engineering Science, 57(7), 11071119.Google Scholar
Mansurov, Z. A. 2005. Soot formation in combustion processes (review). Combustion, Explosion and Shock Waves, 41(6), 727744.Google Scholar
Mantzaris, N. V., Daoutidis, P., and Srienc, F. 2001a. Numerical solution of multivariable cell population balance models: I. Finite difference methods. Computers and Chemical Engineering, 25(11–12), 14111440.Google Scholar
Mantzaris, N. V., Daoutidis, P., and Srienc, F. 2001b. Numerical solution of multi-variable cell population balance models. II. Spectral methods. Computers and Chemical Engineering, 25(11–12), 14411462.Google Scholar
Mantzaris, N. V., Daoutidis, P., and Srienc, F. 2001c. Numerical solution of multivariable cell population balance models. III. Finite element methods. Computers and Chemical Engineering, 25(11–12), 14631481.Google Scholar
Marchal, C. 2008. Soot formation and oxidation modelling in an automotive engine. Ph.D. thesis, Université d’Orléans.Google Scholar
Marchal, P., David, R., Klein, J. P., and Villermaux, J. 1988. Crystallization and precipitation engineering – I. An efficient method for solving population balance in crystallization with agglomeration. Chemical Engineering Science, 43(1), 5967.Google Scholar
Marchisio, D. L., and Fox, R. O. 2005. Solution of population balance equations using the direct quadrature method of moments. Journal of Aerosol Science, 36(1), 4373.Google Scholar
Marchisio, D. L., and Fox, R. O. 2013. Computational Models for Polydisperse Particulate and Multiphase Systems. Cambridge University Press.Google Scholar
Marchisio, D. L., Fox, R. O., Barresi, A. A., and Baldi, G. 2001a. On the comparison between presumed and full PDF methods for turbulent precipitation. Industrial & Engineering Chemistry Research, 40(23), 51325139.Google Scholar
Marchisio, D. L., Fox, R. O., Barresi, A. A., Garbero, M., and Baldi, G. 2001b. On the simulation of turbulent precipitation in a tubular reactor via computational fluid dynamics (CFD). Chemical Engineering Research and Design, 79(8), 9981004.Google Scholar
Marchisio, D. L., Barresi, A. A., and Fox, R. O. 2001c. Simulation of turbulent precipitation in a semi-batch Taylor-Couette reactor using CFD. AIChE Journal, 47(3), 664676.Google Scholar
Marchisio, D. L., Vigil, R. D., and Fox, R. O. 2003. Quadrature method of moments for aggregation-breakage processes. Journal of Colloid and Interface Science, 258(2), 322334.Google Scholar
Marchisio, D. L., Rivautella, L., and Barresi, A. A. 2006. Design and scale-up of chemical reactors for nanoparticle precipitation. AIChE Journal, 52(5), 18771887.Google Scholar
Marinov, N. M., Pitz, W. J., Westbrook, C. K., Castaldi, M. J., and Senkan, S. M. 1996. Modeling of aromatic and polycyclic aromatic hydrocarbon formation in premixed methane and ethane flames. Combustion Science and Technology, 116–117(1–6), 211287.Google Scholar
Martynov, G. A., and Bakanov, S. P. 1961. Solution of the kinetic equation for coagulation. Pages 182–190 of: Derjaguin, B. (ed), Surface Forces.Google Scholar
Mashayek, F., and Pandya, R. V. R. 2003. Analytical description of particle/droplet-laden turbulent flows. Progress in Energy and Combustion Science, 29(4), 329378.Google Scholar
Massot, M. 2007. Eulerian multi-fluid models for polydisperse evaporating sprays. Pages 79–123 of: Marchisio, D. L., and Fox, R. O. (eds), Multiphase Reacting Flows: Modelling and Simulation. SpringerWienNewYork.Google Scholar
Mathieu, J., and Scott, J. 2000. An Introduction to Turbulent Flow. Cambridge University Press.Google Scholar
Matsoukas, T., and Friedlander, S. K. 1991. Dynamics of aerosol agglomerate formation. Journal of Colloid And Interface Science, 146(2), 495506.Google Scholar
Maxey, M. R. 1987. The gravitational settling of aerosol particles in homogeneous turbulence and random flow fields. Journal of Fluid Mechanics, 174, 441465.Google Scholar
Maxey, M. R., and Riley, J. J. 1983. Equation of motion for a small rigid sphere in a nonuniform flow. Physics of Fluids, 26(4), 883889.Google Scholar
McDermott, R., and Pope, S. B. 2007. A particle formulation for treating differential diffusion in filtered density function methods. Journal of Computational Physics, 226(1), 947993.Google Scholar
McEnally, C. S., Pfefferle, L. D., Atakan, B., and Kohse-Höinghaus, K. 2006. Studies of aromatic hydrocarbon formation mechanisms in flames: progress towards closing the fuel gap. Progress in Energy and Combustion Science, 32(3), 247294.Google Scholar
McGrady, E. D., and Ziff, R. M. 1987. ‘Shattering’ transition in fragmentation. Physical Review Letters, 58(9), 892895.Google Scholar
McGrady, E. D., and Ziff, R. M. 1988. Analytical solutions to fragmentation equations with flow. AIChE Journal, 34(12), 20732076.Google Scholar
McGraw, R. 1997. Description of aerosol dynamics by the quadrature method of moments. Aerosol Science and Technology, 27(2), 255265.Google Scholar
McLeod, J. B. 1962. On an infinite set of non-linear differential equations. Quarterly Journal of Mathematics, 13(1), 119128.Google Scholar
Megaridis, C. M., and Dobbins, R. A. 1989. Comparison of soot growth and oxidation in smoking and non-smoking ethylene diffusion flames. Combustion Science and Technology, 66(1–3), 116.Google Scholar
Meierhofer, F., and Fritsching, U. 2021. Synthesis of metal oxide nanoparticles in flame sprays: review on process technology, modeling, and diagnostics. Energy and Fuels, 35(7), 54955537.Google Scholar
Melzak, Z. A. 1957a. A scalar transport equation. Transactions of the American Mathematical Society, 85(2), 547560.Google Scholar
Melzak, Z. A. 1957b. A scalar transport equation, II. Michigan Mathematical Journal, 4(3), 193206.Google Scholar
Menz, W. J., Akroyd, J., and Kraft, M. 2014. Stochastic solution of population balance equations for reactor networks. Journal of Computational Physics, 256, 615629.Google Scholar
Mersmann, A. (ed). 2001. Crystallization Technology Handbook. 2nd edn. Marcel Dekker. Metzger, L., and Kind, M. 2017. The influence of mixing on fast precipitation processes – a coupled 3D CFD-PBE approach using the direct quadrature method of moments (DQMOM). Chemical Engineering Science, 169, 284–298.Google Scholar
Michaelides, E. E. 2003. Hydrodynamic force and heat/mass transfer from particles, bubbles, and drops – the Freeman Scholar Lecture. Journal of Fluids Engineering, Transactions of the ASME, 125(2), 209238.Google Scholar
Michaelides, E. E., and Feng, Z.-G. 2017. Fundamentals of multiphase flow. Pages 1–78 of: Michaelides, E. E., Crowe, C. T., and Schwarzkopf, J. D. (eds), Multiphase Flow Handbook. 2nd edn. CRC Press.Google Scholar
Michelsen, H. A., Colket, M. B., Bengtsson, P.-E., D’Anna, A., Desgroux, P., Haynes, B. S., Miller, J. H., Nathan, G. J., Pitsch, H., and Wang, H. 2020. A review of terminology used to describe soot formation and evolution under combustion and pyrolytic conditions. ACS Nano, 14(10), 1247012490.Google Scholar
Mitchell, P., and Frenklach, M. 1998. Monte Carlo simulation of soot aggregation with simultaneous surface growth – why primary particles appear spherical. Symposium (International) on Combustion, 27(1), 15071514.Google Scholar
Mitchell, P., and Frenklach, M. 2003. Particle aggregation with simultaneous surface growth. Physical Review E – Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 67(6), 061407.Google Scholar
Modest, M. F., and Mazumder, S. 2022. Radiative Heat Transfer. 4th edn. Academic Press. Moin, P., and Mahesh, K. 1998. Direct numerical simulation: a tool in turbulence research. Annual Review of Fluid Mechanics, 30, 539–578.Google Scholar
Monnin, C. 1999. A thermodynamic model for the solubility of barite and celestite in electrolyte solutions and seawater to 200C and to 1 kbar. Chemical Geology, 153(1–4), 187209.Google Scholar
MorrisonJr., P. W., Raghavan, R., Timpone, A. J., Artelt, C. P., and Pratsinis, S. E. 1997. In situ Fourier transform infrared characterization of the effect of electrical fields on the flame synthesis of TiO2 particles. Chemistry of Materials, 9(12), 27022708.Google Scholar
Mueller, M. E., Blanquart, G., and Pitsch, H. 2009a. Hybrid method of moments for modeling soot formation and growth. Combustion and Flame, 156(6), 11431155.Google Scholar
Mueller, M. E., Blanquart, G., and Pitsch, H. 2009b. A joint volume-surface model of soot aggregation with the method of moments. Proceedings of the Combustion Institute, 32(1), 785792.Google Scholar
Mühlenweg, H., Gutsch, A., Schild, A., and Pratsinis, S. E. 2002. Process simulation of gasto-particle-synthesis via population balances: investigation of three models. Chemical Engineering Science, 57(12), 23052322.Google Scholar
Müller, H. 1928. Zur allgemeinen Theorie ser raschen Koagulation. Kolloidchemische Beihefte, 27, 223250.Google Scholar
Mullin, J. W. 2001. Crystallization. 4th edn. Butterworth-Heinemann.Google Scholar
Mustata, R., Valiño, L., Jiménez, C., Jones, W. P., and Bondi, S. 2006. A probability density function Eulerian Monte Carlo field method for large eddy simulations: application to a turbulent piloted methane/air diffusion flame (Sandia D). Combustion and Flame, 145(1–2), 88104.Google Scholar
Myerson, A. S., Erdemir, D., and Lee, A. Y. (eds). 2019. Handbook of Industrial Crystallization. 3rd edn. Cambridge University Press.Google Scholar
Nagle, J., and Strickland-Constable, R. F. 1962. Oxidation of carbon between 1000-2000C. Pages 154–164 of: Proceedings of the Fifth Carbon Conference, vol. 1.Google Scholar
Narsimhan, G., Gupta, J. P., and Ramkrishna, D. 1979. A model for transitional break-age probability of droplets in agitated lean liquid-liquid dispersions. Chemical Engineering Science, 34(2), 257265.Google Scholar
Neoh, K. G., Howard, J. B., and Sarofim, A. F. 1985. Effect of oxidation on the physical structure of soot. Symposium (International) on Combustion, 20(1), 951957.Google Scholar
Neuber, G., Kronenburg, A., Stein, O. T., and Cleary, M. J. 2017. MMC-LES modelling of droplet nucleation and growth in turbulent jets. Chemical Engineering Science, 167, 204218.Google Scholar
Nicmanis, M., and Hounslow, M. J. 1998. Finite-element methods for steady-state population balance equations. AIChE Journal, 44(10), 22582272.Google Scholar
O’Brien, E. E. 1980. The probability density function (pdf) approach to reacting turbulent flows. Pages 185–218 of: Libby, P. A., and Williams, F. A. (eds), Topics in Applied Physics, Volume 44: Turbulent Reacting Flows. Springer-Verlag.Google Scholar
Olivieri, D. A., Fairweather, M., and Falle, S. A. E. G. 2009. An adaptive mesh refinement method for solution of the transported PDF equation. International Journal for Numerical Methods in Engineering, 79(12), 15361556.Google Scholar
Oseen, C. W. 1910. Über die Stokes’sche Formel und über eine verwandte Aufgabe in der Hydrodynamik. Arkiv för Matematik, Astronomi och Fysik, 6(29).Google Scholar
O’Sullivan, D., and Rigopoulos, S. 2022. A conservative finite volume method for the population balance equation with aggregation, fragmentation, nucleation and growth. Chemical Engineering Science, 263, 117925.Google Scholar
Papoulis, A. 1991. Probability, Random Variables, and Stochastic Processes. 3rd edn. McGraw-Hill, Inc.Google Scholar
Park, S. H., and Rogak, S. N. 2003. A one-dimensional model for coagulation, sintering, and surface growth of aerosol agglomerates. Aerosol Science and Technology, 37(12), 947960.Google Scholar
Park, S. H., and Rogak, S. N. 2004. A novel fixed-sectional model for the formation and growth of aerosol agglomerates. Journal of Aerosol Science, 35(11), 13851404.Google Scholar
Park, S. H., Rogak, S. N., Bushe, W. K., Wen, J. Z., and Thomson, M. J. 2005. An aerosol model to predict size and structure of soot particles. Combustion Theory and Modelling, 9(3), 499513.Google Scholar
Partheniades, E. 2009. Cohesive Sediments in Open Channels. Elsevier Inc.Google Scholar
Patil, D. P., and Andrews, J. R. G. 1998. An analytical solution to continuous population balance model describing floc coalescence and breakage – a special case. Chemical Engineering Science, 53(3), 599601.Google Scholar
Patruno, L. E., Dorao, C. A., Svendsen, H. F., and Jakobsen, H. A. 2009. Analysis of breakage kernels for population balance modelling. Chemical Engineering Science, 64(3), 501508.Google Scholar
Patterson, R. I. A., and Kraft, M. 2007. Models for the aggregate structure of soot particles. Combustion and Flame, 151(1–2), 160172.Google Scholar
Pavliotis, G. A. 2014. Stochastic Processes and Applications: Diffusion Processes, the Fokker-Planck and Langevin Equations. Springer.Google Scholar
Peirano, E., Chibbaro, S., Pozorski, J., and Minier, J.-P. 2006. Mean-field/PDF numerical approach for polydispersed turbulent two-phase flows. Progress in Energy and Combustion Science, 32(3), 315371.Google Scholar
Pesmazoglou, I., Kempf, A. M., and Navarro-Martinez, S. 2014. Aerosol nucleation in a turbulent jet using Large Eddy Simulations. Chemical Engineering Science, 116, 383397.Google Scholar
Pesmazoglou, I., Kempf, A. M., and Navarro-Martinez, S. 2017. Large eddy simulation of particle aggregation in turbulent jets. Journal of Aerosol Science, 111, 117.Google Scholar
Peters, N. 2000. Turbulent Combustion. Cambridge University Press.Google Scholar
Peterson, T. W., Gelbard, F., and Seinfeld, J. H. 1978. Dynamics of source-reinforced, coagulating, and condensing aerosols. Journal of Colloid And Interface Science, 63(3), 426445.Google Scholar
Pilou, M., Tsangaris, S., Neofytou, P., Housiadas, C., and Drossinos, Y. 2011. Inertial particle deposition in a 90 laminar flow bend: an Eulerian fluid particle approach. Aerosol Science and Technology, 45(11), 13761387.Google Scholar
Piomelli, U., and Chasnov, J. R. 1996. Large eddy simulations: theory and applications. Pages 269–336 of: Hallbäck, M., Henningson, D. S., Johansson, A.V., and Alfredsson, P. H. (eds), ERCOFTAC Series: Turbulence and Transition Modelling. Kluwer Academic Publishers.Google Scholar
Piton, D., Fox, R. O., and Marcant, B. 2000. Simulation of fine particle formation by precipitation using computational fluid dynamics. Canadian Journal of Chemical Engineering, 78(5), 983993.Google Scholar
Poinsot, T., and Veynante, D. 2005. Theoretical and Numerical Combustion. 2nd edn. Edwards.Google Scholar
Pope, S. B. 1976. The probability approach to the modelling of turbulent reacting flows. Combustion and Flame, 27(C), 299312.Google Scholar
Pope, S. B. 1981. A Monte Carlo method for the PDF equations of turbulent reactive flow. Combustion Science and Technology, 25(5–6), 159174.Google Scholar
Pope, S. B. 1985. PDF methods for turbulent reactive flows. Progress in Energy and Combustion Science, 11(2), 119192.Google Scholar
Pope, S. B. 1991. Mapping closures for turbulent mixing and reaction. Theoretical and Computational Fluid Dynamics, 2(5–6), 255270.Google Scholar
Pope, S. B. 1997. Computationally efficient implementation of combustion chemistry using in situ adaptive tabulation. Combustion Theory and Modelling, 1(1), 4163.Google Scholar
Pope, S. B. 2000. Turbulent Flows. Cambridge University Press.Google Scholar
Prasad, V. N. 2011. Large Eddy simulation of partially premixed turbulent combustion. Ph.D. thesis, Imperial College London.Google Scholar
Pratsinis, S. E. 1988. Simultaneous nucleation, condensation, and coagulation in aerosol reactors. Journal of Colloid and Interface Science, 124(2), 416427.Google Scholar
Pratsinis, S. E. 1998. Flame aerosol synthesis of ceramic powders. Progress in Energy and Combustion Science, 24(3), 197219.Google Scholar
Pratsinis, S. E. 2010. Aerosol-based technologies in nanoscale manufacturing: from functional materials to devices through core chemical engineering. AIChE Journal, 56(12), 30283035.Google Scholar
Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P. 1997. Numerical Recipes in Fortran 77: The Art of Scientific Computing, Vol. 1 of Fortran Numerical Recipes. 2nd edn. Cambridge University Press.Google Scholar
Pruppacher, H. R., and Klett, J. D. 1996. Microphysics of Clouds and Precipitation. 2nd edn. Springer.Google Scholar
Qamar, S., Elsner, M. P., Angelov, I. A., Warnecke, G., and Seidel-Morgenstern, A. 2006. A comparative study of high resolution schemes for solving population balances in crystallization. Computers & Chemical Engineering, 30(6–7), 11191131.Google Scholar
Qamar, S., Ashfaq, A., Warnecke, G., Angelov, I., Elsner, M.P., and Seidel-Morgenstern, A. 2007. Adaptive high-resolution schemes for multidimensional population balances in crystallization processes. Computers & Chemical Engineering, 31(10), 12961311.Google Scholar
Rahmani, N. H. G., Masliyah, J. H., and Dabros, T. 2003. Characterization of asphaltenes aggregation and fragmentation in a shear field. AIChE Journal, 49(7), 16451655.Google Scholar
Raj, A., Celnik, M., Shirley, R., Sander, M., Patterson, R., West, R., and Kraft, M. 2009. A statistical approach to develop a detailed soot growth model using PAH characteristics. Combustion and Flame, 156(4), 896913.Google Scholar
Rajamani, K., Pate, W. T., and Kinneberg, D. J. 1986. Time-driven and event-driven Monte Carlo simulations of liquid-liquid dispersions: a comparison. Industrial & Engineering Chemistry Fundamentals, 25(4), 746752.Google Scholar
Ramabhadran, T. E., Peterson, T. W., and Seinfeld, J. H. 1976. Dynamics of aerosol coagulation and condensation. AIChE Journal, 22(5), 840851.Google Scholar
Raman, V., and Fox, R. O. 2016. Modeling of fine-particle formation in turbulent flames. Annual Review of Fluid Mechanics, 48, 159190.Google Scholar
Ramkrishna, D. 1971. Solution of population balance equations. Chemical Engineering Science, 26(7), 11341136.Google Scholar
Ramkrishna, D. 1981. Analysis of population balance-IV. The precise connection between Monte Carlo simulation and population balances. Chemical Engineering Science, 36(7), 12031209.Google Scholar
Ramkrishna, D. 1985. The status of population balances. Reviews in Chemical Engineering, 3(1), 4995.Google Scholar
Ramkrishna, D. 2000. Population Balances: Theory and Applications to Particulate Systems in Engineering. Academic Press.Google Scholar
Ramkrishna, D., and Mahoney, A. W. 2002. Population balance modeling. Promise for the future. Chemical Engineering Science, 57(4), 595606.Google Scholar
Ramkrishna, D., and Singh, M. R. 2014. Population balance modeling: current status and future prospects. Annual Review of Chemical and Biomolecular Engineering, 5, 123146.Google Scholar
Randolph, A. D. 1964. A population balance for countable entities. The Canadian Journal of Chemical Engineering, 42(6), 280281.Google Scholar
Randolph, A. D., and Larson, M. A. 1962. Transient and steady state size distributions in continuous mixed suspension crystallizers. AIChE Journal, 8(5), 639645.Google Scholar
Randolph, A. D., and Larson, M. A. 1971. Theory of Particulate Processes: Analysis and Techniques of Continuous Crystallization. 1st edn. Academic Press.Google Scholar
Randolph, A. D., and Larson, M. A. 1988. Theory of Particulate Processes: Analysis and Techniques of Continuous Crystallization. 2nd edn. Academic Press.Google Scholar
Randolph, A. D., and White, E. T. 1977. Modeling size dispersion in the prediction of crystal-size distribution. Chemical Engineering Science, 32(9), 10671076.Google Scholar
Ranjan, R., and Menon, S. 2021. Two level simulation of Schmidt number effect on passive scalar transport in wall-bounded turbulent flows. Physics of Fluids, 33(3), 035124.Google Scholar
Rawlings, J. B., and Ray, W. H. 1988. The modeling of batch and continuous emulsion polymerization reactors. Part I: model formulation and sensitivity to parameters. Polymer Engineering & Science, 28(5), 237256.Google Scholar
Readshaw, T., Ding, T., Rigopoulos, S., and Jones, W. P. 2021. Modeling of turbulent flames with the large eddy simulation-probability density function (LES-PDF) approach, stochastic fields, and artificial neural networks. Physics of Fluids, 33(3), 035154.Google Scholar
Readshaw, T., Jones, W. P., and Rigopoulos, S. 2023. On the incorporation of conservation laws in machine learning tabulation of kinetics for reacting flow simulation. Physics of Fluids, 35(4).Google Scholar
Reddy, J. N. 1993. An Introduction to the Finite Element Method. 2nd edn. McGraw-Hill, Inc.Google Scholar
Reeks, M. W. 2021. The development and application of a kinetic theory for modeling dispersed particle flows. Journal of Fluids Engineering, 143(8), 080803.Google Scholar
Reeks, M. W., Simonin, O., and Fede, P. 2017. PDF models for particle transport, mixing and collisions in turbulent gas flows. Pages 144–202 of: Michaelides, E. E., Crowe, C. T., and Schwarzkopf, J. D. (eds), Multiphase Flow Handbook. 2nd edn. CRC Press.Google Scholar
Reynolds, G. K., Fu, J. S., Cheong, Y. S., Hounslow, M. J., and Salman, A. D. 2005. Breakage in granulation: a review. Chemical Engineering Science, 60(14), 39693992.Google Scholar
Ribert, G., Vervisch, L., Domingo, P., and Niu, Y.-S. 2014. Hybrid transported-tabulated strategy to downsize detailed chemistry for numerical simulation of premixed flames. Flow, Turbulence and Combustion, 92(1–2), 175200.Google Scholar
Richter, H., and Howard, J. B. 2000. Formation of polycyclic aromatic hydrocarbons and their growth to soot – a review of chemical reaction pathways. Progress in Energy and Combustion Science, 26(4), 565608.Google Scholar
Richter, H., Granata, S., Green, W. H., and Howard, J. B. 2005. Detailed modeling of PAH and soot formation in a laminar premixed benzene/oxygen/argon low-pressure flame. Proceedings of the Combustion Institute, 30(1), 13971404.Google Scholar
Rigopoulos, S. 2007. PDF method for population balance in turbulent reactive flow. Chemical Engineering Science, 62(23), 68656878.Google Scholar
Rigopoulos, S. 2010. Population balance modelling of polydispersed particles in reactive flows. Progress in Energy and Combustion Science, 36(4), 412443.Google Scholar
Rigopoulos, S. 2019. Modelling of soot aerosol dynamics in turbulent flow. Flow, Turbulence and Combustion, 103(3), 565604.Google Scholar
Rigopoulos, S. 2020. Sooting flames. In: Vervisch, L., and Roekaerts, D. (eds), Computational Fluid Dynamics of Turbulent Combustion. 2nd edn. ERCOFTAC.Google Scholar
Rigopoulos, S., and Jones, A.G. 2001. Dynamic modelling of a bubble column for particle formation via a gas-liquid reaction. Chemical Engineering Science, 56(21–22), 61776184.Google Scholar
Rigopoulos, S., and Jones, A. 2003a. A hybrid CFD-reaction engineering framework for multiphase reactor modelling: basic concept and application to bubble column reactors. Chemical Engineering Science, 58(14), 30773089.Google Scholar
Rigopoulos, S., and Jones, A. 2003b. Modeling of semibatch agglomerative gas-liquid precipitation of CaCO3 in a bubble column reactor. Industrial & Engineering Chemistry Research, 42(25), 65676575.Google Scholar
Rigopoulos, S., and Jones, A.G. 2003c. Finite-element scheme for solution of the dynamic population balance equation. AIChE Journal, 49(5), 11271139.Google Scholar
Rittler, A., Deng, L., Wlokas, I., and Kempf, A. M. 2017. Large eddy simulations of nanoparticle synthesis from flame spray pyrolysis. Proceedings of the Combustion Institute, 36(1), 10771087.Google Scholar
Robinson, M., Stilianakis, N. I., and Drossinos, Y. 2012. Spatial dynamics of airborne infectious diseases. Journal of Theoretical Biology, 297, 116126.Google Scholar
Rod, V., and Míšek, T. 1982. Stochastic modelling of dispersion formation in agitated liquid-liquid systems. Transactions of the Institution of Chemical Engineers, 60(1), 4853.Google Scholar
Rodrigues, P., Franzelli, B., Vicquelin, R., Gicquel, O., and Darabiha, N. 2018. Coupling an LES approach and a soot sectional model for the study of sooting turbulent non-premixed flames. Combustion and Flame, 190, 477499.Google Scholar
Rogak, S. N. 1997. Modeling small cluster deposition on the primary particles of aerosol agglomerates. Aerosol Science and Technology, 26(2), 127140.Google Scholar
Rogallo, R. S., and Moin, P. 1984. Numerical simulation of turbulent flows. Annual Review of Fluid Mechanics, 16, 99137.Google Scholar
Roussos, A. I., Alexopoulos, A. H., and Kiparissides, C. 2005. Part III: Dynamic evolution of the particle size distribution in batch and continuous particulate processes: a Galerkin on finite elements approach. Chemical Engineering Science, 60(24), 69987010.Google Scholar
Sabel’nikov, V., and Soulard, O. 2005. Rapidly decorrelating velocity-field model as a tool for solving one-point Fokker-Planck equations for probability density functions of turbulent reactive scalars. Physical Review E – Statistical, Nonlinear, and Soft Matter Physics, 72(1), 016301.Google Scholar
Saffman, P. G., and Turner, J. S. 1956. On the collision of drops in turbulent clouds. Journal of Fluid Mechanics, 1(1), 1630.Google Scholar
Sagaut, P. 2006. Large Eddy Simulation for Incompressible Flows: An Introduction. 3rd edn. Springer.Google Scholar
Saggese, C., Ferrario, S., Camacho, J., Cuoci, A., Frassoldati, A., Ranzi, E., Wang, H., and Faravelli, T. 2015. Kinetic modeling of particle size distribution of soot in a premixed burner-stabilized stagnation ethylene flame. Combustion and Flame, 162(9), 33563369.Google Scholar
Salehi, F., Cleary, M. J., and Masri, A. R. 2017. Population balance equation for turbulent polydispersed inertial droplets and particles. Journal of Fluid Mechanics, 831, 719742.Google Scholar
Samaras, S. N. 2006. Modelling of microstructure evolution during precipitation processes: a population balance approach of the KWN model. Modelling and Simulation in Materials Science and Engineering, 14(8), 12711292.Google Scholar
Santoro, R. J., Semerjian, H. G., and Dobbins, R. A. 1983. Soot particle measurements in diffusion flames. Combustion and Flame, 51(C), 203218.Google Scholar
Santoro, R. J., Yeh, T. T., Horvath, J. J., and Semerjian, H. G. 1987. The transport and growth of soot particles in laminar diffusion flames. Combustion Science and Technology, 53(2–3), 89115.Google Scholar
Sathyagal, A. N., Ramkrishna, D., and Narsimhan, G. 1995. Solution of inverse problems in population balances – II. Particle break-up. Computers and Chemical Engineering, 19(4), 437451.Google Scholar
Schenk, M., Lieb, S., Vieker, H., Beyer, A., Gölzhäuser, A., Wang, H., and Kohse-Höinghaus, K. 2015. Morphology of nascent soot in ethylene flames. Proceedings of the Combustion Institute, 35(2), 18791886.Google Scholar
Schlichting, H. 1979. Boundary-Layer Theory. 7th edn. McGraw-Hill.Google Scholar
Schubert, H. 1998. Keimbildung bei der Kristallisation schwerlöslicher Feststoffe. Ph.D. thesis, Technische Univetsität München.Google Scholar
Schumann, T. E. W. 1940. Theoretical aspects of the size distribution of fog particles. Quarterly Journal of the Royal Meteorological Society, 66(285), 195208.Google Scholar
Schwarzer, H.-C., and Peukert, W. 2002. Experimental investigation into the influence of mixing on nanoparticle precipitation. Chemical Engineering and Technology, 25(6), 657661.Google Scholar
Schwarzer, H.-C., and Peukert, W. 2004. Combined experimental/numerical study on the precipitation of nanoparticles. AIChE Journal, 50(12), 32343247.Google Scholar
Schwarzer, H.-C., and Peukert, W. 2005. Prediction of aggregation kinetics based on surface properties of nanoparticles. Chemical Engineering Science, 60(1), 1125.Google Scholar
Schwarzer, H.-C., Schwertfirm, F., Manhart, M., Schmid, H.-J., and Peukert, W. 2006. Predictive simulation of nanoparticle precipitation based on the population balance equation. Chemical Engineering Science, 61(1), 167181.Google Scholar
Schwertfirm, F., Gradl, J., Schwarzer, H. C., Peukert, W., and Manhart, M. 2007. The low Reynolds number turbulent flow and mixing in a confined impinging jet reactor. International Journal of Heat and Fluid Flow, 28(6), 14291442.Google Scholar
Scott, W. T. 1968. Analytic studies of cloud droplet coalescence I. Journal of the Atmospheric Sciences, 25(1), 5465.Google Scholar
Seinfeld, J. H., and Pandis, S. N. 2016. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change. 3rd edn. Wiley.Google Scholar
Seltz, A., Domingo, P., and Vervisch, L. 2021. Solving the population balance equation for non-inertial particles dynamics using probability density function and neural networks: application to a sooting flame. Physics of Fluids, 33(1), 013311.Google Scholar
Settumba, N., and Garrick, S. C. 2003. Direct numerical simulation of nanoparticle coagulation in a temporal mixing layer via a moment method. Journal of Aerosol Science, 34(2), 149167.Google Scholar
Settumba, N., and Garrick, S. C. 2004. A comparison of diffusive transport in a moment method for nanoparticle coagulation. Journal of Aerosol Science, 35(1), 93101.Google Scholar
Sewerin, F. 2022. A methodology for solving the population balance equation based on an embedded reduced order representation. Chemical Engineering Science, 252, 117101.Google Scholar
Sewerin, F. 2023. An efficient implementation of a conservative finite volume scheme with constant and linear reconstructions for solving the coagulation equation. Chemical Engineering Science, 280, 119020.Google Scholar
Sewerin, F., and Rigopoulos, S. 2017a. An explicit adaptive grid approach for the numerical solution of the population balance equation. Chemical Engineering Science, 168, 250270.Google Scholar
Sewerin, F., and Rigopoulos, S. 2017b. An LES-PBE-PDF approach for modeling particle formation in turbulent reacting flows. Physics of Fluids, 29(10), 105105.Google Scholar
Sewerin, F., and Rigopoulos, S. 2018. An LES-PBE-PDF approach for predicting the soot particle size distribution in turbulent flames. Combustion and Flame, 189, 6276.Google Scholar
Sewerin, F., and Rigopoulos, S. 2019. Algorithmic aspects of the LES-PBE-PDF method for modeling soot particle size distributions in turbulent flames. Combustion Science and Technology, 191(5–6), 766796.Google Scholar
Shaddix, C. R., Zhang, J., Schefer, R. W., Doom, J., Oefelein, J. C., Kook, S., Pickett, L. M., and Wang, H. 2010. Understanding and predicting soot generation in turbulent non-premixed jet flames. Tech. rept. SAND2010-7178. Sandia National Laboratories.Google Scholar
Shah, B. H., Ramkrishna, D., and Borwanker, J. D. 1977. Simulation of particulate systems using the concept of the interval of quiescence. AIChE Journal, 23(6), 897904.Google Scholar
Shekar, S., Smith, A. J., Menz, W. J., Sander, M., and Kraft, M. 2012. A multidimensional population balance model to describe the aerosol synthesis of silica nanoparticles. Journal of Aerosol Science, 44, 8398.Google Scholar
Sheth, R. K., and Pitman, J. 1997. Coagulation and branching process models of gravitational clustering. Monthly Notices of the Royal Astronomical Society, 289(1), 6682.Google Scholar
Shohat, J. A., and Tamarkin, J. D. 1970. The Problem of Moments. 4th edn. American Mathematical Society.Google Scholar
Sirignano, M., Kent, J., and D’Anna, A. 2010. Detailed modeling of size distribution functions and hydrogen content in combustion-formed particles. Combustion and Flame, 157(6), 12111219.Google Scholar
Sirignano, M., Kent, J., and D’Anna, A. 2013. Modeling formation and oxidation of soot in nonpremixed flames. Energy and Fuels, 27(4), 23032315.Google Scholar
Sirignano, W. A. 2010. Fluid Dynamics and Transport of Droplets and Sprays. 2nd edn. Cambridge University Press.Google Scholar
Slavinskaya, N. A., and Frank, P. 2009. A modelling study of aromatic soot precursors formation in laminar methane and ethene flames. Combustion and Flame, 156(9), 17051722.Google Scholar
Smagorinsky, J. 1963. General circulation experiments with the primitive equations: I. The basic experiment. Monthly Weather Review, 91(3), 99164.Google Scholar
Smith, M., and Matsoukas, T. 1998. Constant-number Monte Carlo simulation of population balances. Chemical Engineering Science, 53(9), 17771786.Google Scholar
Smoluchowski, M. v. 1917. Versuch einer mathematischen Theorie der Koagulationskinetik kolloider Lösungen. Zeitschrift für Physikalische Chemie, 92, 129168.Google Scholar
Söhnel, O., and Garside, J. 1992. Precipitation: Basic Principles and Industrial Applications. Butterworth-Heinemann.Google Scholar
Solsvik, J., and Jakobsen, H. A. 2015. The foundation of the population balance equation: a review. Journal of Dispersion Science and Technology, 36(4), 510520.Google Scholar
Spalding, D. B. 1996. Multi-fluid models of turbulent combustion. Pages 59–81 of: May, R. L., and Easton, A. K. (eds), Computational Techniques and Applications: CTAC 95. World Scientific Publishing Co.Google Scholar
Spielman, L. A., and Levenspiel, O. 1965. A Monte Carlo treatment for reacting and coalescing dispersed phase systems. Chemical Engineering Science, 20(3), 247254.Google Scholar
Sporleder, F., Borka, Z., Solsvik, J., and Jakobsen, H. A. 2012. On the population balance equation. Reviews in Chemical Engineering, 28(2–3), 149169.Google Scholar
Stanmore, B. R., Brilhac, J. F., and Gilot, P. 2001. The oxidation of soot: a review of experiments, mechanisms and models. Carbon, 39(15), 22472268.Google Scholar
Stettler, M. E. J., Boies, A. M., Petzold, A., and Barrett, S. R. H. 2013a. Global civil aviation black carbon emissions. Environmental Science and Technology, 47(18), 1039710404.Google Scholar
Stettler, M. E. J., Swanson, J. J., Barrett, S. R. H., and Boies, A. M. 2013b. Updated correlation between aircraft smoke number and black carbon concentration. Aerosol Science and Technology, 47(11), 12051214.Google Scholar
Stieltjes, T. J. 1894. Recherches sur les fractions continues. Annales de la Faculté des sciences de Toulouse : Mathématiques, 1e série, 8(4), J1J122.Google Scholar
Stieltjes, T. J. 1895. Recherches sur les fractions continues [Suite et fin]. Annales de la Faculté des sciences de Toulouse : Mathématiques, 1e série, 9(1), A5A47.Google Scholar
Stilianakis, N. I., and Drossinos, Y. 2010. Dynamics of infectious disease transmission by inhalable respiratory droplets. Journal of the Royal Society Interface, 7(50), 13551366.Google Scholar
Stirzaker, D. 2005. Stochastic Processes & Models. Oxford University Press.Google Scholar
Stokes, G. G. 1851. On the effect of the internal friction of fluids on the motion of pendulums. Transactions of the Cambridge Philosophical Society, Part II, 9, 8106.Google Scholar
Subramaniam, S. 2001. Statistical modeling of sprays using the droplet distribution function. Physics of Fluids, 13(3), 624642.Google Scholar
Subramaniam, S., and Pope, S. B. 1998. A mixing model for turbulent reactive flows based on Euclidean minimum spanning trees. Combustion and Flame, 115(4), 487514.Google Scholar
Suman, A., Casari, N., Fabbri, E., di Mare, L., Montomoli, F., and Pinelli, M. 2019. Generalization of particle impact behavior in gas turbine via non-dimensional grouping. Progress in Energy and Combustion Science, 74, 103151.Google Scholar
Sun, B., and Rigopoulos, S. 2022. Modelling of soot formation and aggregation in turbulent flows with the LES-PBE-PDF approach and a conservative sectional method. Combustion and Flame, 242, 112152.Google Scholar
Sun, B., Rigopoulos, S., and Liu, A. 2021. Modelling of soot coalescence and aggregation with a two-population balance equation model and a conservative finite volume method. Combustion and Flame, 229, 111382.Google Scholar
Sutton, R. D., Hines, W. S., and Combs, L. P. 1972. Development and application of a comprehensive analysis of liquid-rocket combustion. AIAA Journal, 10(2), 194203.Google Scholar
Swift, D. L., and Friedlander, S. K. 1964. The coagulation of hydrosols by Brownian motion and laminar shear flow. Journal of Colloid Science, 19(7), 621647.Google Scholar
Sztucki, M., Narayanan, T., and Beaucage, G. 2007. In situ study of aggregation of soot particles in an acetylene flame by small-angle x-ray scattering. Journal of Applied Physics, 101(11), 114304.Google Scholar
Tang, H. Y., Rigopoulos, S., and Papadakis, G. 2020. A methodology for coupling DNS and discretised population balance for modelling turbulent precipitation. International Journal of Heat and Fluid Flow, 86, 108689.Google Scholar
Tang, H. Y., Rigopoulos, S., and Papadakis, G. 2022. On the interaction of turbulence with nucleation and growth in reaction crystallisation. Journal of Fluid Mechanics, 944, A48.Google Scholar
Tang, H. Y., Rigopoulos, S., and Papadakis, G. 2023. On the effect of turbulent fluctuations on precipitation: a direct numerical simulation – population balance study. Chemical Engineering Science, 270, 118511.Google Scholar
Tavare, N. S. 1985. Crystal growth rate dispersion. The Canadian Journal of Chemical Engineering, 63(3), 436442.Google Scholar
Tavare, N. S. 1986. Mixing in continuous crystallizers. AIChE Journal, 32(5), 705732.Google Scholar
Telib, H., Manhart, M., and Iollo, A. 2004. Analysis and low-order modeling of the inhomogeneous transitional flow inside a T-mixer. Physics of Fluids, 16(8), 27172731.Google Scholar
Tennekes, H., and Lumley, J. L. 1974. A First Course in Turbulence. The MIT Press.Google Scholar
Thomas, D. N., Judd, S. J., and Fawcett, N. 1999. Flocculation modelling: a review. Water Research, 33(7), 15791592.Google Scholar
Thompson, P. D. 1968. A transformation of the stochastic equation for droplet coalescence. Pages 115–126 of: Proceedings of the International Conference on Cloud Physics.Google Scholar
Tian, K., Thomson, K. A., Liu, F., Snelling, D. R., Smallwood, G. J., and Wang, D. 2006. Determination of the morphology of soot aggregates using the relative optical density method for the analysis of TEM images. Combustion and Flame, 144(4), 782791.Google Scholar
Tree, D. R., and Svensson, K. I. 2007. Soot processes in compression ignition engines. Progress in Energy and Combustion Science, 33(3), 272309.Google Scholar
Tsagkaridis, M., Rigopoulos, S., and Papadakis, G. 2022. Analysis of turbulent coagulation in a jet with discretised population balance and DNS. Journal of Fluid Mechanics, 937, A25.Google Scholar
Tsagkaridis, M., Rigopoulos, S., and Papadakis, G. 2023. Modeling of silica synthesis in a laminar flame by coupling an extended population balance model with computational fluid dynamics. Aerosol Science and Technology, 57(4), 296317.Google Scholar
Tsang, T. H., and Brock, J. R. 1983. Simulation of condensation aerosol growth by condensation and evaporation. Aerosol Science and Technology, 2(3), 311320.Google Scholar
Tsang, T. H., and Rao, A. 1990. A moving finite element method for the population balance equation. International Journal for Numerical Methods in Fluids, 10(7), 753769.Google Scholar
Tsantilis, S., and Pratsinis, S. E. 2000. Evolution of primary and aggregate particle-size distributions by coagulation and sintering. AIChE Journal, 46(2), 407415.Google Scholar
Tsantilis, S., and Pratsinis, S. E. 2004. Soft- and hard-agglomerate aerosols made at high temperatures. Langmuir, 20(14), 59335939.Google Scholar
Tsantilis, S., Pratsinis, S. E., and Briesen, H. 2001. Sintering time for silica particle growth. Aerosol Science and Technology, 34(3), 237246.Google Scholar
Tsuchiya, H. M., Fredrickson, A. G., and Aris, R. 1966. Dynamics of microbial cell populations. Advances in Chemical Engineering, 6(C), 125206.Google Scholar
Valentas, K. J., Bilous, O., and Amundson, N. R. 1966. Analysis of breakage in dispersed phase systems. Industrial & Engineering Chemistry Fundamentals, 5(2), 271279.Google Scholar
Valiño, L. 1998. Field Monte Carlo formulation for calculating the probability density function of a single scalar in a turbulent flow. Flow, Turbulence and Combustion, 60(2), 157172.Google Scholar
Van Peborgh Gooch, J. R., and Hounslow, M. J. 1996. Monte Carlo simulation of sizeenlargement mechanisms in crystallization. AIChE Journal, 42(7), 18641874.Google Scholar
Vanni, M. 2000. Approximate population balance equations for aggregation-breakage processes. Journal of Colloid and Interface Science, 221(2), 143160.Google Scholar
Vanni, M., and Baldi, G. 2002. Coagulation efficiency of colloidal particles in shear flow. Advances in Colloid and Interface Science, 97(1–3), 151177.Google Scholar
Versteeg, H. K., and Malalasekera, W. 2007. An Introduction to Computational Fluid Dynamics: The Finite Volume Method. 2nd edn. Pearson Education Limited.Google Scholar
Vervisch, L., Lodato, G., and Domingo, P. 2023. High-order polynomial approximations for solving non-inertial particle size density in flames. Proceedings of the Combustion Institute, 39(4), 53855393.Google Scholar
Veshkini, A., Dworkin, S. B., and Thomson, M. J. 2014. A soot particle surface reactivity model applied to a wide range of laminar ethylene/air flames. Combustion and Flame, 161(12), 31913200.Google Scholar
Veshkini, A., Dworkin, S. B., and Thomson, M. J. 2016. Understanding soot particle size evolution in laminar ethylene/air diffusion flames using novel soot coalescence models. Combustion Theory and Modelling, 20(4), 707734.Google Scholar
Veynante, D., and Vervisch, L. 2002. Turbulent combustion modeling. Progress in Energy and Combustion Science, 28(3), 193266.Google Scholar
Vicum, L., and Mazzotti, M. 2007. Multi-scale modeling of a mixing-precipitation process in a semibatch stirred tank. Chemical Engineering Science, 62(13), 35133527.Google Scholar
Vicum, L., Mazzotti, M., and Bałdyga, J. 2003. Applying a thermodynamic model to the non-stoichiometric precipitation of barium sulfate. Chemical Engineering and Technology, 26(3), 325333.Google Scholar
Vilas Bôas Fávero, C., Maqbool, T., Hoepfner, M., Haji-Akbari, N., and Fogler, H. S. 2017. Revisiting the flocculation kinetics of destabilized asphaltenes. Advances in Colloid and Interface Science, 244, 267280.Google Scholar
Villermaux, J., and Devillon, J. C. 1972. Représentation de la coalescence et de la redispersion des domaines de ségrégation dans un fluide par un modèle d’interaction phénoménologique. Pages 1–13 of: Proceedings of the 2nd International Symposium on Chemical Reaction Engineering, vol. 26. Elsevier New York.Google Scholar
Vogel, L., and Peukert, W. 2003. Breakage behaviour of different materials – construction of a mastercurve for the breakage probability. Powder Technology, 129(1–3), 101110.Google Scholar
Vovelle, C., Delfau, J-L., and Reuillon, M. 1994. Formation of aromatic hydrocarbons in decane and kerosene flames at reduced pressure. Pages 50–65 of: Bockhorn, H. (ed), Soot Formation in Combustion. Springer Series in Chemical Physics 59. Springer-Verlag.Google Scholar
Wang, H. 2011. Formation of nascent soot and other condensed-phase materials in flames. Proceedings of the Combustion Institute, 33(1), 4167.Google Scholar
Wang, H., and Frenklach, M. 1997. A detailed kinetic modeling study of aromatics formation in laminar premixed acetylene and ethylene flames. Combustion and Flame, 110(1–2), 173221.Google Scholar
Warshaw, M. 1967. Cloud droplet coalescence: statistical foundations and a one-dimensional sedimentation model. Journal of the Atmospheric Sciences, 24, 278286.Google Scholar
Wen, J. Z., Thomson, M. J., Park, S. H., Rogak, S. N., and Lightstone, M. F. 2005. Study of soot growth in a plug flow reactor using a moving sectional model. Proceedings of the Combustion Institute, 30(1), 14771483.Google Scholar
Wen, J. Z., Thomson, M. J., Lightstone, M. F., Park, S. H., and Rogak, S. N. 2006. An improved moving sectional aerosol model of soot formation in a plug flow reactor. Combustion Science and Technology, 178(5), 921951.Google Scholar
Westbrook, C. K. 1977. Three dimensional numerical modeling of liquid fuel sprays. Symposium (International) on Combustion, 16(1), 15171526.Google Scholar
Whitby, E. R., and McMurry, P. H. 1997. Modal aerosol dynamics modeling. Aerosol Science and Technology, 27(6), 673688.Google Scholar
White, F. M. 2006. Viscous Fluid Flow. 3rd edn. McGraw-Hill.Google Scholar
Williams, F. A. 1958. Spray combustion and atomization. Physics of Fluids, 1(6), 541545.Google Scholar
Williams, F. A. 1961. Progress in spray-combustion analysis. Symposium (International) on Combustion, 8(1), 5069.Google Scholar
Williams, J. C., Allen, T., Salman, A. D., Ghadiri, M., and Hounslow, M. J. (eds). 2007. Handbook of Powder Technology, Volume 12: Particle Breakage. Elsevier.Google Scholar
Williams, M. M. R. 1986. Some topics in nuclear aerosol dynamics. Progress in Nuclear Energy, 17(1), 152.Google Scholar
Williams, M. M. R. 1990. An exact solution of the fragmentation equation. Aerosol Science and Technology, 12(3), 538546.Google Scholar
Williams, M. M. R., and Loyalka, S. K. 1991. Aerosol Science – Theory and Practice: With Special Applications to the Nuclear Industry. Pergamon Press, Oxford.Google Scholar
Wright, D. L., McGraw, R., and Rosner, D. E. 2001. Bivariate extension of the quadrature method of moments for modeling simultaneous coagulation and sintering of particle populations. Journal of Colloid and Interface Science, 236(2), 242251.Google Scholar
Wright, H., and Ramkrishna, D. 1992. Solutions of inverse problems in population balances – I. Aggregation kinetics. Computers and Chemical Engineering, 16(12), 10191038.Google Scholar
Wu, J. J., and Flagan, R. C. 1988. A discrete-sectional solution to the aerosol dynamic equation. Journal of Colloid and Interface Science, 123(2), 339352.Google Scholar
Wulkow, M. 1996. The simulation of molecular weight distributions in polyreaction kinetics by discrete Galerkin methods. Macromolecular Theory and Simulations, 5(3), 393416.Google Scholar
Xiong, Y., and Pratsinis, S. E. 1993. Formation of agglomerate particles by coagulation and sintering – Part I. A two-dimensional solution of the population balance equation. Journal of Aerosol Science, 24(3), 283300.Google Scholar
Xiong, Y., Kamal Akhtar, M., and Pratsinis, S. E. 1993. Formation of agglomerate particles by coagulation and sintering – Part II. The evolution of the morphology of aerosolmade titania, silica and silica-doped titania powders. Journal of Aerosol Science, 24(3), 301313.Google Scholar
Xuan, Y., and Blanquart, G. 2015. Effects of aromatic chemistry-turbulence interactions on soot formation in a turbulent non-premixed flame. Proceedings of the Combustion Institute, 35(2), 19111919.Google Scholar
Yang, D., Chen, B., Socolofsky, S. A., Chamecki, M., and Meneveau, C. 2016. Largeeddy simulation and parameterization of buoyant plume dynamics in stratified flow. Journal of Fluid Mechanics, 794, 798833.Google Scholar
Yang, S., Lew, J. K., and Mueller, M. E. 2019. Large Eddy Simulation of soot evolution in turbulent reacting flows: presumed subfilter PDF model for soot–turbulence– chemistry interactions. Combustion and Flame, 209, 200213.Google Scholar
Yashima, S., Kanda, Y., and Sano, S. 1987. Relationships between particle size and fracture energy or impact velocity required to fracture as estimated from single particle crushing. Powder Technology, 51(3), 277282.Google Scholar
Yeoh, G. H., Cheung, C. P., and Tu, J. 2014. Multiphase Flow Analysis Using Population Balance Modeling: Bubbles, Drops and Particles. Elsevier.Google Scholar
Yu, M., Lin, J., and Chan, T. 2008. A new moment method for solving the coagulation equation for particles in Brownian motion. Aerosol Science and Technology, 42(9), 705713.Google Scholar
Zamuner, B., and Dupoirieux, F. 2000. Numerical simulation of soot formation in a turbulent flame with a Monte-Carlo PDF approach and detailed chemistry. Combustion Science and Technology, 158, 407438.Google Scholar
Zhang, J., Shaddix, C. R., and Schefer, R. W. 2011. Design of ‘model-friendly’ turbulent non-premixed jet burners for C2+ hydrocarbon fuels. Review of Scientific Instruments, 82(7), 074101.Google Scholar
Zhang, Q., Guo, H., Liu, F., Smallwood, G. J., and Thomson, M. J. 2008. Implementation of an advanced fixed sectional aerosol dynamics model with soot aggregate formation in a laminar methane/air coflow diffusion flame. Combustion Theory and Modelling, 12(4), 621641.Google Scholar
Zhang, Q., Guo, H., Liu, F., Smallwood, G.J., and Thomson, M.J. 2009a. Modeling of soot aggregate formation and size distribution in a laminar ethylene/air coflow diffusion flame with detailed PAH chemistry and an advanced sectional aerosol dynamics model. Proceedings of the Combustion Institute, 32(1), 761768.Google Scholar
Zhang, Q., Thomson, M. J., Guo, H., Liu, F., and Smallwood, G. J. 2009b. A numerical study of soot aggregate formation in a laminar coflow diffusion flame. Combustion and Flame, 156(3), 697705.Google Scholar
Zhang, X., Chen, X., and Wang, J. 2019. A number-based inventory of size-resolved black carbon particle emissions by global civil aviation. Nature Communications, 10(1), 534.Google Scholar
Zhang, Z., and Ghadiri, M. 2002. Impact attrition of particulate solids. Part 2: Experimental work. Chemical Engineering Science, 57(17), 36713686.Google Scholar
Ziff, R. M. 1980. Kinetics of polymerization. Journal of Statistical Physics, 23(2), 241263.Google Scholar
Ziff, R. M. 1991. New solutions to the fragmentation equation. Journal of Physics A: General Physics, 24(12), 28212828.Google Scholar
Ziff, R. M., and McGrady, E. D. 1985. The kinetics of cluster fragmentation and depolymerisation. Journal of Physics A: Mathematical and General, 18, 30273037.Google Scholar
Ziff, R. M., and McGrady, E. D. 1986. Kinetics of polymer degradation. Macromolecules, 19(10), 25132519.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Stelios Rigopoulos, Imperial College London
  • Book: Population Balance of Particles in Flows
  • Online publication: 14 November 2024
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Stelios Rigopoulos, Imperial College London
  • Book: Population Balance of Particles in Flows
  • Online publication: 14 November 2024
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Stelios Rigopoulos, Imperial College London
  • Book: Population Balance of Particles in Flows
  • Online publication: 14 November 2024
Available formats
×