Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-27T13:57:15.150Z Has data issue: false hasContentIssue false

1 - Introduction

Published online by Cambridge University Press:  14 March 2024

Guillermo Pineda Villavicencio
Affiliation:
Deakin University, Victoria
HTML view is not available for this content. However, as you have access to this content, a full PDF is available via the 'Save PDF' action button.

Summary

Convex polytopes, or simply polytopes, are geometric objects in some space $\R^{d}$; in fact, they are bounded intersections of finitely many closed halfspaces in $\R^{d}$.The space $\R^{d}$ can be regarded as a linear space or an affine space, and its linear or affine subspaces can be described by linear or affine equations. We introduce the basic concepts and results from linear algebra that allow the description and analysis of these subspaces. A polytope can alternatively be described as the convex hull of a finite set of points in $\R^{d}$, and so it is a convex set. Convex sets are therefore introduced, as well as their topological properties, with emphasis on relative notions as these are based on a more natural setting, the affine hull of the set. We then review the separation and support of convex sets by hyperplanes. A convex set is formed by fitting together other polytopes of smaller dimensions, its faces; Section 1.7 discusses them.Finally, the chapter studies convex cones and lineality spaces of convex sets; these sets are closely connected to the structure of unbounded convex sets.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2024

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×