Published online by Cambridge University Press: 17 March 2022
It is usually easier to study problems over the complex than over the reals. Discrete geometry problems are an exception, often being significantly simpler over the reals. While there are several simple proofs of the Szemerédi–Trotter theorem over the reals, we only have rather involved proofs for the complex variant of the theorem. To avoid such involved proofs, we prove a slightly weaker variant of the complex Szemerédi–Trotter theorem. Our analysis is based on thinking of C^2 as R^4.
In Chapter 7, we began to prove the distinct distances theorem by studying the ESGK framework. We complete this proof in Chapter 9, by relying on the constant-degree polynomial partitioning technique. In the current chapter we introduce this technique by studying incidences with lines in the complex plane. This is a warm-up towards Chapter 9, where we use constant-degree polynomial partitioning in more involved ways.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.