Skip to main content Accessibility help
×
Hostname: page-component-5cf477f64f-xc2pj Total loading time: 0 Render date: 2025-04-07T22:36:13.716Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  18 March 2025

Dimitri Ara
Affiliation:
Aix-Marseille Université
Albert Burroni
Affiliation:
Université Paris Cité
Yves Guiraud
Affiliation:
Université Paris Cité
Philippe Malbos
Affiliation:
Université Claude Bernard Lyon 1
François Métayer
Affiliation:
Université Paris Cité
Samuel Mimram
Affiliation:
École Polytechnique, Paris
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2025

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abramsky, Samson. Temperley-Lieb algebra: from knot theory to logic and computation via quantum mechanics. In Mathematics of quantum computation and quantum technology, pages 533576. Chapman & Hall/CRC, 2007.Google Scholar
Adámek, Jiří and Rosický, Jiří. Locally presentable and accessible categories. Cambridge University Press, 1994.CrossRefGoogle Scholar
Adámek, Jiří, Rosický, Jiří, and Vitale, Enrico. Algebraic theories. Cambridge Tracts in Mathematics, 184:1, 2011.Google Scholar
Ageron, Pierre. The logic of structures. Journal of Pure and Applied Algebra, 79:1534, 1992.CrossRefGoogle Scholar
Ali, Fahd Al-Agl and Richard Steiner. Nerves of multiple categories. Proceedings of the London Mathematical Society, 66(1):92128, 1993.Google Scholar
Alleaume, Clément. Rewriting in higher dimensional linear categories and application to the affine oriented Brauer category. Journal of Pure and Applied Algebra, 222(3):636673, 2018.CrossRefGoogle Scholar
Anick, David J.. On monomial algebras of finite global dimension. Transactions of the American Mathematical Society, 291(1):291310, 1985.CrossRefGoogle Scholar
Anick, David J.. On the homology of associative algebras. Transactions of the American Mathematical Society, 296(2):641659, 1986.CrossRefGoogle Scholar
Anick, David J. and Green, Edward L.. On the homology of quotients of path algebras. Communications in Algebra, 15(1–2):309341, 1987.CrossRefGoogle Scholar
Ara, Dimitri. A Quillen Theorem B for strict ∞-categories. Journal of the London Mathematical Society, 100(2):470497, 2019.CrossRefGoogle Scholar
Ara, Dimitri, Gagna, Andrea, Ozornova, Viktoriya, and Rovelli, Martina. A categorical characterization of strong Steiner ω-categories. Journal of Pure and Applied Algebra, 227(7):24, 2023.CrossRefGoogle Scholar
Ara, Dimitri and Lucas, Maxime. The folk model category structure on strict ω-categories is monoidal. Theory and Applications of Categories, 35:745808, 2020.Google Scholar
Ara, Dimitri and Maltsiniotis, Georges. Vers une structure de catégorie de modèles à la Thomason sur la catégorie des n-catégories strictes. Advances in Mathematics, 259:557664, 2014.CrossRefGoogle Scholar
Ara, Dimitri and Maltsiniotis, Georges. Le type d’homotopie de la ∞-catégorie associée à un complexe simplicial. Preprint, 2015.Google Scholar
Ara, Dimitri and Maltsiniotis, Georges. Joint et tranches pour les ∞-catégories strictes. Mémoires de la Société Mathématique de France, 165:1213, 2020.Google Scholar
Ara, Dimitri and Métayer, François. The Brown-Golasiński model structure on strict ∞-groupoids revisited. Homology Homotopy and Applications, 13(1):121142, 2011.CrossRefGoogle Scholar
Artin, Emil. Theorie der Zöpfe. Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, 4(1):4772, 1925.CrossRefGoogle Scholar
Avenhaus, Juergen and Madlener, Klaus. Subrekursive Komplexität bei Gruppen. Acta Informatica, 9(1):87104, 1977.CrossRefGoogle Scholar
Avenhaus, Jürgen and Madlener, Klaus. Algorithmische Probleme bei Einrelatorgruppen und ihre Komplexität. Archive for Mathematical Logic, 19(1):312, 1978.CrossRefGoogle Scholar
Baader, Franz and Nipkow, Tobias. Term rewriting and all that. Cambridge University Press, 1998.CrossRefGoogle Scholar
Baez, John C., Coya, Brandon, and Rebro, Franciscus. PROPs in network theory. Theory and Applications of Categories, 33(25):727783, 2018.Google Scholar
Baez, John C. and Erbele, Jason. Categories in control. Theory and Applications of Categories, 30(24):836881, 2015.Google Scholar
Baez, John C. and Fong, Brendan. A compositional framework for passive linear networks. Theory and Applications of Categories, 33(38):11581222, 2018.Google Scholar
Baez, John C. and Lauda, Aaron. A prehistory of n-categorical physics. In Deep beauty: understanding the quantum world through mathematical innovation, pages 13128. Cambridge University Press, 2011.CrossRefGoogle Scholar
Balteanu, Cornel, Zbigniew Fiedorowicz, Roland Schwänzl, and Rainer Vogt. Iterated monoidal categories. Advances in Mathematics, 176(2):277349, 2003.CrossRefGoogle Scholar
Barr, Michael and Wells, Charles. Toposes, triples and theories, volume 278 of Grundlehren der mathematischen Wissenschaften. Springer-Verlag, 1985.CrossRefGoogle Scholar
Barr, Michael and Wells, Charles. Category theory for computing science, volume 1 in Prentice Hall International Series in Computer Science. Prentice Hall, 1990.Google Scholar
Batanin, Michael A.. Computads for finitary monads on globular sets. Contemporary Mathematics, 230:3758, 1998.CrossRefGoogle Scholar
Batanin, Michael A.. Monoidal globular categories as a natural environment for the theory of weak n-categories. Advances in Mathematics, 136(1):39103, 1998.CrossRefGoogle Scholar
Batanin, Michael A.. Computads and slices of operads. arXiv preprint math/0209035, 2002.Google Scholar
Batanin, Michael A.. On the Penon method of weakening algebraic structures. Journal of Pure and Applied Algebra, 172(1):123, 2002.CrossRefGoogle Scholar
Bauer, Günther and Otto, Friedrich. Finite complete rewriting systems and the complexity of the word problem. Acta Informatica, 21(5):521540, 1984.CrossRefGoogle Scholar
Baues, Hans-Joachim and Jibladze, Mamuka. Classification of abelian track categories. K-Theory, 25(3):299311, 2002.CrossRefGoogle Scholar
Baues, Hans-Joachim and Wirsching, Günther. Cohomology of small categories. Journal of Pure and Applied Algebra, 38(2–3):187211, 1985.CrossRefGoogle Scholar
Baumslag, Gilbert and Solitar, Donald. Some two-generator one-relator non- Hopfian groups. Bulletin of the American Mathematical Society, 68(3):199201, 1962.CrossRefGoogle Scholar
Beck, Jon. Distributive laws. In Seminar on triples and categorical homology theory, pages 119140. Springer, 1969.CrossRefGoogle Scholar
Bednarczyk, Marek A., Borzyszkowski, Andrzej M., and Pawlowski, Wieslaw. Generalized congruences: epimorphisms in Cat. Theory and Applications of Categories, 5(11):266280, 1999.Google Scholar
Beke, Tibor. Categorification, term rewriting and the Knuth–Bendix procedure. Journal of Pure and Applied Algebra, 215(5):728740, 2011.CrossRefGoogle Scholar
Bergman, George M.. The diamond lemma for ring theory. Advances in Mathematics, 29(2):178218, 1978.CrossRefGoogle Scholar
Bieri, Robert. Homological dimension of discrete groups, Queen Mary College Mathematics Notes. Mathematics Department, Queen Mary College, London, 1976.Google Scholar
Bigelow, Stephen. The Burau representation is not faithful for n = 5. Geometry & Topology, 3(1):397404, 1999.CrossRefGoogle Scholar
Bigelow, Stephen. Braid groups are linear. Journal of the American Mathematical Society, 14(2):471486, 2001.CrossRefGoogle Scholar
Birkhoff, Garrett. On the structure of abstract algebras. Mathematical Proceedings of the Cambridge Philosophical Society, 31(4):433454, 1935.CrossRefGoogle Scholar
Bokut, Leonid A.. Imbeddings into simple associative algebras. Algebra i Logika, 15(2):117142, 245, 1976.Google Scholar
Bokut, Leonid A. and Chen, Yuqun. Gröbner–Shirshov bases and their calculation. Bulletin of Mathematical Sciences, 4(3):325395, 2014.CrossRefGoogle Scholar
Bokut, Leonid A., Chen, Yuqun, Chen, Weiping, and Li, Jing. New approaches to plactic monoid via Gröbner–Shirshov bases. Journal of Algebra, 423:301317, 2015.CrossRefGoogle Scholar
Bonchi, Filippo, Sobociński, Paweł, and Zanasi, Fabio. The calculus of signal flow diagrams I: linear relations on streams. Information and Computation, 252:229, 2017.CrossRefGoogle Scholar
Bonchi, Filippo, Sobociński, Paweł, and Zanasi, Fabio. Interacting Hopf algebras. Journal of Pure and Applied Algebra, 221(1):144184, 2017.CrossRefGoogle Scholar
Book, Ronald V.. Confluent and other types of Thue systems. Journal of the ACM (JACM), 29(1):171182, 1982.CrossRefGoogle Scholar
Book, Ronald V. and Otto, Friedrich. String-rewriting systems. Springer, 1993.CrossRefGoogle Scholar
Boone, William W.. The word problem. Proceedings of the National Academy of Sciences of the United States of America, 44(10):1061, 1958.Google Scholar
Borceux, Francis. Handbook of categorical algebra 1: basic category theory. Number 50 in Encyclopedia of Mathematics and Its Applications. Cambridge University Press, 2008.Google Scholar
Bourbaki, Nicolas. Éléments de mathématique. Fascicule XXXIV. Groupes et algèbres de Lie. Chapitre IV : Groupes de Coxeter et systèmes de Tits. Chapitre V : Groupes engendrés par des réflexions. Chapitre VI : systèmes de racines. Number 1337 in Actualités Scientifiques et Industrielles. Hermann, 1968.Google Scholar
Bourn, Dominique. Another denormalization theorem for abelian chain complexes. Journal of Pure and Applied Algebra, 66(3):229249, 1990.CrossRefGoogle Scholar
Brauer, Richard. On algebras which are connected with the semisimple continuous groups. Annals of Mathematics, 38(4):857872, 1937.CrossRefGoogle Scholar
Brieskorn, Egbert and Saito, Kyoji. Artin-Gruppen und Coxeter-Gruppen. Inventiones mathematicae, 17:245271, 1972.CrossRefGoogle Scholar
Brin, Matthew G.. Higher dimensional Thompson groups. Geometriae Dedicata, 108(1):163192, 2004.CrossRefGoogle Scholar
Brin, Matthew G.. The algebra of strand splitting. I. A braided version of Thompson’s group V. Journal of Group Theory, 10(6):757788, 2007.CrossRefGoogle Scholar
Brown, Kenneth S.. Finiteness properties of groups. Journal of Pure and Applied Algebra, 44(1):4575, 1987.CrossRefGoogle Scholar
Brown, Kenneth S.. The geometry of rewriting systems: a proof of the Anick– Groves–Squier theorem. In Algorithms and classification in combinatorial group theory, pages 137163. Springer, 1992.CrossRefGoogle Scholar
Brown, Kenneth S. and Geoghegan, Ross. An infinite-dimensional torsion-free FP group. Inventiones mathematicae, 77(2):367381, 1984.CrossRefGoogle Scholar
Brown, Ronald and Golasiński, Marek. A model structure for the homotopy theory of crossed complexes. Cahiers de Topologie et Géométrie Différentielle Catégoriques, 30(1):6182, 1989.Google Scholar
Brown, Ronald and Higgins, Philip J.. The equivalence of ∞-groupoids and crossed complexes. Cahiers de Topologie et Géométrie Différentielle Catégoriques, 22(4):371386, 1981.Google Scholar
Brown, Ronald and Huebschmann, Johannes. Identities among relations. In Low-dimensional topology (Bangor, 1979), volume 48 of London Mathematical Society Lecture Note Series, pages 153202. Cambridge University Press, 1982.CrossRefGoogle Scholar
Buchberger, Bruno. Ein Algorithmus zum Auffinden der Basiselemente des Restklassenringes nach einem nulldimensionalen Polynomideal (An Algorithm for Finding the Basis Elements in the Residue Class Ring Modulo a Zero Dimensional Polynomial Ideal). PhD thesis, Mathematical Institute, University of Innsbruck, Austria, 1965. English translation in Journal of Symbolic Computation, Special issue on Logic, mathematics, and computer science: interactions, 41(3–4):475– 511, 2006.Google Scholar
Buchberger, Bruno. Ein algorithmisches Kriterium für die Lösbarkeit eines algebraischen Gleichungssystems. Aequationes Mathematicae, 4:374383, 1970.CrossRefGoogle Scholar
Buchberger, Bruno. History and basic features of the critical-pair/completion procedure. Journal of Symbolic Computation, 3(1–2):338, 1987.CrossRefGoogle Scholar
Buchberger, Bruno. An algorithm for finding the basis elements of the residue class ring of a zero dimensional polynomial ideal. Journal of Symbolic Computation, 41(3–4):475511, 2006. Translated from the 1965 German original by Michael P. Abramson.CrossRefGoogle Scholar
Burau, Werner. Über Zopfgruppen und gleichsinnig verdrillte Verkettungen. Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, 11(1):179186, 1935.CrossRefGoogle Scholar
Burroni, Albert. Algèbres graphiques. Cahiers de Topologie et Géométrie Différentielle Catégoriques, 22(3):249265, 1981.Google Scholar
Burroni, Albert. Higher dimensional word problem. In Category theory and computer science, pages 94105. Springer, 1991.CrossRefGoogle Scholar
Burroni, Albert. Higher-dimensional word problems with applications to equational logic. Theoretical Computer Science, 115(1):4362, 1993.CrossRefGoogle Scholar
Cain, Alan J., Gray, Robert D., and Malheiro, António. Finite Gröbner–Shirshov bases for plactic algebras and biautomatic structures for plactic monoids. Journal of Algebra, 423:3753, 2015.CrossRefGoogle Scholar
Cannon, James W., Floyd, William J., and Parry, Walter R.. Introductory notes on Richard Thompson’s groups. Enseignement Mathématique, 42:215256, 1996.Google Scholar
Carboni, Aurelio and Johnstone, Peter. Connected limits, familial representability and Artin glueing. Mathematical Structures in Computer Science, 5(04):441459, 1995.CrossRefGoogle Scholar
Carboni, Aurelio and Johnstone, Peter. Corrigenda for “Connected limits, familial representability and Artin glueing”. Mathematical Structures in Computer Science, 14(01):185187, 2004.CrossRefGoogle Scholar
Carboni, Aurelio and Walters, Robert F. C.. Cartesian bicategories I. Journal of Pure and Applied Algebra, 49(1–2):1132, 1987.CrossRefGoogle Scholar
Cartier, Pierre and Foata, Dominique. Problemes combinatoires de commutation et réarrangements. Springer, 1969.CrossRefGoogle Scholar
Cassaigne, Julien, Espie, Marc, Krob, Daniel, Novelli, Jean-Christophe, and Hivert, Florent. The Chinese monoid. International Journal of Algebra and Computation, 11(3):301334, 2001.CrossRefGoogle Scholar
Chandler, Bruce and Magnus, Wilhelm. The history of combinatorial group theory, volume 9 of Studies in the History of Mathematics and Physical Sciences. Springer-Verlag, 1982.CrossRefGoogle Scholar
Chenavier, Cyrille, Dupont, Benjamin, and Malbos, Philippe. Confluence of algebraic rewriting systems. Mathematical Structures in Computer Science, 32(7):870897, 2022.CrossRefGoogle Scholar
Cheng, Eugenia. Iterated distributive laws. Mathematical Proceedings of the Cambridge Philosophical Society, 150(03):459487, 2011.CrossRefGoogle Scholar
Cheng, Eugenia. A direct proof that the category of 3-computads is not cartesian closed. Cahiers de Topologie et Géométrie Différentielle Catégoriques, LIV(1):312, 2013.Google Scholar
Cheng, Eugenia. Distributive laws for Lawvere theories. Compositionality, 2(1):130, 2020.CrossRefGoogle Scholar
Cheng, Eugenia and Makkai, Michael. A note on the Penon definition of n-category. Cahiers de Topologie et Géométrie Différentielle Catégoriques, 50(2):83101, 2009.Google Scholar
Church, Alonzo. An unsolvable problem of elementary number theory. American Journal of Mathematics, 58(2):345363, 1936.CrossRefGoogle Scholar
Clerc, Florence and Mimram, Samuel. Presenting a category modulo a rewriting system. In 26th International Conference on Rewriting Techniques and Applications (RTA 2015), volume 36 of Leibniz International Proceedings in Informatics (LIPIcs). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2015.Google Scholar
Coecke, Bob and Duncan, Ross. Interacting quantum observables. In International colloquium on automata, languages, and programming, pages 298310. Springer, 2008.CrossRefGoogle Scholar
Coecke, Bob and Kissinger, Aleks. Picturing quantum processes. Cambridge University Press, 2017.CrossRefGoogle Scholar
Cohen, Cyril, Thierry Coquand, Simon Huber, and Anders Mörtberg. Cubical type theory: a constructive interpretation of the univalence axiom. In 21st International Conference on Types for Proofs and Programs (TYPES 2015). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018.Google Scholar
Cohen, Daniel E.. A monoid which is right FP but not left FP1. Bulletin of the London Mathematical Society, 24(4):340342, 1992.CrossRefGoogle Scholar
Cohen, Jonathan A.. Coherence for rewriting 2-theories. PhD thesis, Australian National University, June 2008.Google Scholar
Cohn, Paul M.. Universal algebra. Harper & Row Publishers, 1965.Google Scholar
Coxeter, Harold S. M. and Moser, William O. J.. Generators and relations for discrete groups. Springer, 1972.CrossRefGoogle Scholar
Coya, Brandon and Fong, Brendan. Corelations are the PROP for extraspecial commutative Frobenius monoids. Theory and Applications of Categories, 32(11):380395, 2017.Google Scholar
Crans, Sjoerd. On combinatorial models for higher dimensional homotopies. PhD thesis, University of Utrecht, 1995.Google Scholar
Crans, Sjoerd. Quillen closed model structures for sheaves. Journal of Pure and Applied Algebra, 101(1):3557, 1995.CrossRefGoogle Scholar
Cremanns, Robert and Otto, Friedrich. Finite derivation type implies the homological finiteness condition FP3. Journal of Symbolic Computation, 18(2):91112, 1994.CrossRefGoogle Scholar
Cremanns, Robert and Otto, Friedrich. For groups the property of having finite derivation type is equivalent to the homological finiteness condition FP3. Journal of Symbolic Computation, 22(2):155177, 1996.CrossRefGoogle Scholar
Curien, Pierre-Louis and Mimram, Samuel. Coherent presentations of monoidal categories. Logical Methods in Computer Science, 13(3):139, 2017.Google Scholar
Curry, Haskell B.. Grundlagen der kombinatorischen Logik. American Journal of Mathematics, 52(4):789834, 1930.CrossRefGoogle Scholar
Curry, Haskell B., Hindley, J. Roger, and Seldin, Jonathan P.. Combinatory logic, Volume II. North-Holland Co., 1972.Google Scholar
de Witt, Christian Schröder and Zamdzhiev, Vladimir. The ZX-calculus is incomplete for quantum mechanics. arXiv preprint arXiv:1404.3633, 2014.Google Scholar
Dehn, Max. Über die Topologie des dreidimensionalen Raumes. Mathematische Annalen, 69(1):137168, 1910.CrossRefGoogle Scholar
Dehn, Max. Über unendliche diskontinuierliche Gruppen. Mathematische Annalen, 71(1):116144, 1911.CrossRefGoogle Scholar
Dehn, Max. Transformation der Kurven auf zweiseitigen Flächen. Mathematische Annalen, 72(3):413421, 1912.CrossRefGoogle Scholar
Dehornoy, Patrick. Groups with a complemented presentation. Journal of Pure and Applied Algebra, 116(1–3):115137, 1997.CrossRefGoogle Scholar
Dehornoy, Patrick. On completeness of word reversing. Discrete Mathematics, 225(1):93119, 2000.CrossRefGoogle Scholar
Dehornoy, Patrick. Foundations of Garside theory. European Mathematical Society, 2015.CrossRefGoogle Scholar
Deligne, Pierre. Action du groupe des tresses sur une catégorie. Inventiones mathematicae, 128(1):159175, 1997.CrossRefGoogle Scholar
Dershowitz, Nachum. Termination of rewriting. Journal of Symbolic Computation, 3(1–2):69115, 1987.CrossRefGoogle Scholar
Dershowitz, Nachum and Manna, Zohar. Proving termination with multiset orderings. Communications of the ACM, 22(8):465476, 1979.CrossRefGoogle Scholar
Diekert, Volker. Complete semi-Thue systems for abelian groups. Theoretical Computer Science, 44(2):199208, 1986.CrossRefGoogle Scholar
Diekert, Volker and Rozenberg, Grzegorz. The book of traces, volume 15. World Scientific, 1995.CrossRefGoogle Scholar
Dotsenko, Vladimir and Khoroshkin, Anton. Gröbner bases for operads. Duke Mathematical Journal, 153(2):363396, 2010.CrossRefGoogle Scholar
Dubuc, Eduardo J.. Adjoint triangles. In Reports of the Midwest Category Seminar II, pages volume 61 of Lecture Notes in Mathematics (LNM) 6991. Springer, 1968.CrossRefGoogle Scholar
Duchamp, Gérard and Krob, Daniel. Plactic-growth-like monoids. In Words, Languages and Combinatorics, II (Kyoto, 1992), pages 124142. World Scientific, 1994.Google Scholar
Dupont, Benjamin and Malbos, Philippe. Coherent confluence modulo relations and double groupoids. Journal of Pure and Applied Algebra, 226(10), 2022.CrossRefGoogle Scholar
Eckmann, Beno and Hilton, Peter J.. Group-like structures in general categories. I. Multiplications and comultiplications. Mathematische Annalen, 145(3):227255, 1962.CrossRefGoogle Scholar
Eilenberg, Samuel and Street, Ross. Rewrite systems, algebraic structures, and higher-order categories. Untitled handwritten manuscript, 1986.Google Scholar
Elgueta, Josep. Representation theory of 2-groups on Kapranov and Voevodsky’s 2-vector spaces. Advances in Mathematics, 213(1):5392, 2008.CrossRefGoogle Scholar
Endrullis, Jörg, Klop, Jan Willem, and Overbeek, Roy. Decreasing diagrams: two labels suffice. In 5th International Workshop on Confluence, pages 4145. Obergurgl, Austria, September 89, 2016.Google Scholar
Fajstrup, Lisbeth, Goubault, Eric, Haucourt, Emmanuel, Mimram, Samuel, and Raussen, Martin. Directed algebraic topology and concurrency, volume 138 of Springerbriefs in Applied Sciences and Technology. Springer, 2016.CrossRefGoogle Scholar
Faugère, Jean-Charles. A new efficient algorithm for computing Gröbner bases (F4). Journal of Pure and Applied Algebra, 139(1–3):6188, 1999.CrossRefGoogle Scholar
Faugère, Jean-Charles. A new efficient algorithm for computing Gröbner bases without reduction to zero (F5). In Proceedings of the 2002 International Symposium on Symbolic and Algebraic Computation, pages 7583. Association for Computing Machinery, 2002.CrossRefGoogle Scholar
Felgenhauer, Bertram and van Oostrom, Vincent. Proof orders for decreasing diagrams. In 24th International Conference on Rewriting Techniques and Applications (RTA 2013). Schloss-Dagstuhl-Leibniz Zentrum für Informatik, 2013.Google Scholar
Feynman, Richard P.. Space-time approach to quantum electrodynamics. Physical Review, 76(6):769, 1949.CrossRefGoogle Scholar
Fiore, Marcelo. Towards a mathematical theory of substitution. In Invited talk for the Annual International Conference on Category Theory. Carvoeiro, Algarve, 2007.Google Scholar
Fiore, Marcelo and Campos, Marco Devesas. The algebra of directed acyclic graphs. In Computation, logic, games, and quantum foundations. The many facets of Samson Abramsky, pages 3751. Springer, 2013.CrossRefGoogle Scholar
Fiore, Marcelo and Leinster, Tom. An abstract characterization of Thompson’s group F. Semigroup Forum, 80(2):325340, 2010.CrossRefGoogle Scholar
Fiore, Marcelo, Plotkin, Gordon, and Turi, Daniele. Abstract syntax and variable binding. In Proceedings of the 14th Annual IEEE Symposium on Logic in Computer Science, pages 193202. IEEE, 1999.Google Scholar
Fong, Brendan and Zanasi, Fabio. A universal construction for (co)relations. In 7th Conference on Algebra and Coalgebra in Computer Science (CALCO 2017). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2017.Google Scholar
Forest, Simon. Cateq, 2020. Software available at https://github.com/SimonForest/cateq.Google Scholar
Forest, Simon. Computational descriptions of higher categories. PhD thesis, Institut Polytechnique de Paris, 2021.Google Scholar
Forest, Simon and Mimram, Samuel. Coherence of Gray categories via rewriting. In 3rd International Conference on Formal Structures for Computation and Deduction (FSCD 2018), volume 108 of Leibniz International Proceedings in Informatics (LIPIcs). Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2018.Google Scholar
Fox, Thomas. Coalgebras and cartesian categories. Communications in Algebra, 4(7):665667, 1976.CrossRefGoogle Scholar
Freyd, Peter J. and Yetter, David N.. Braided compact closed categories with applications to low dimensional topology. Advances in Mathematics, 77(2):156182, 1989.CrossRefGoogle Scholar
Freyd, Peter J. and Yetter, David N.. Coherence theorems via knot theory. Journal of Pure and Applied Algebra, 78(1):4976, 1992.CrossRefGoogle Scholar
Friedman, Haya and Tamari, Dov. Problèmes d’associativité: Une structure de treillis finis induite par une loi demi-associative. Journal of Combinatorial Theory, 2(3):215242, 1967.CrossRefGoogle Scholar
Fritz, Tobias. A presentation of the category of stochastic matrices. arXiv preprint arXiv:0902.2554, 2009.Google Scholar
Fulton, William. Young tableaux: With applications to representation theory and geometry. Number 35 in London Mathematical Society Student Texts. Cambridge University Press, 1997.Google Scholar
Gabriel, Peter and Ulmer, Friedrich. Lokal präsentierbare Kategorien. Springer, 1971.CrossRefGoogle Scholar
Gabriel, Peter and Zisman, Michael. Calculus of fractions and homotopy theory, volume 35 of Ergebnisse der Mathematik und ihrer Grenzgebiete. Springer-Verlag New York, Inc., 1967.CrossRefGoogle Scholar
Gagna, Andrea. Strict n-categories and augmented directed complexes model homotopy types. Advances in Mathematics, 331:542564, 2018.CrossRefGoogle Scholar
Gaussent, Stéphane, Guiraud, Yves, and Malbos, Philippe. Coherent presentations of Artin monoids. Compositio Mathematica, 151(5):957998, 2015.CrossRefGoogle Scholar
Geck, Meinolf and Pfeiffer, Götz. Characters of finite Coxeter groups and Iwahori-Hecke algebras. Number 21 in London Mathematical Society Monographs. Oxford University Press, 2000.CrossRefGoogle Scholar
Gilbert, Nick D.. Monoid presentations and associated groupoids. International Journal of Algebra and Computation, 8(02):141152, 1998.CrossRefGoogle Scholar
Grandis, Marco. Finite sets and symmetric simplicial sets. Theory and Applications of Categories, 8(8):244252, 2001.Google Scholar
Grandis, Marco and Mauri, Luca. Cubical sets and their site. Theory and Applications of Categories, 11(8):185211, 2003.Google Scholar
Grauert, Hans. Über die Deformation isolierter Singularitäten analytischer Mengen. Inventiones mathematicae, 15:171198, 1972.CrossRefGoogle Scholar
Gray, John W.. Formal category theory: adjointness for 2-categories, volume 391 of Lecture Notes in Mathematics. Springer-Verlag, 1974.CrossRefGoogle Scholar
Green, Edward L.. Noncommutative Gröbner bases, and projective resolutions. In Computational methods for representations of groups and algebras, volume 173 of Progress in Mathematics, pages 2960. Birkhäuser, 1999.CrossRefGoogle Scholar
Grothendieck, Alexander. À la poursuite des champs (volume 1), volume 20 of Documents Mathématiques. Société Mathématique de France, 2022.Google Scholar
Groves, John R. J.. Rewriting systems and homology of groups. In Groups – Canberra 1989, volume 1456 of Lecture Notes in Mathematics, pages 114141. Springer, 1990.CrossRefGoogle Scholar
Guetta, Léonard. Homology of categories via polygraphic resolutions. Journal of Pure and Applied Algebra, 225(10):106688, 33, 2021.CrossRefGoogle Scholar
Guiraud, Yves. Présentations d’opérades et systèmes de réécriture. PhD thesis, Université Montpellier 2, 2004.Google Scholar
Guiraud, Yves. Termination orders for 3-dimensional rewriting. Journal of Pure and Applied Algebra, 207(2):341371, 2006.CrossRefGoogle Scholar
Guiraud, Yves. Rewriting methods in higher algebra. Habilitation à diriger des recherches, Université Paris 7, 2019.Google Scholar
Guiraud, Yves, Hoffbeck, Eric, and Malbos, Philippe. Convergent presentations and polygraphic resolutions of associative algebras. Mathematische Zeitschrift, 293(1–2):113179, 2019.CrossRefGoogle Scholar
Guiraud, Yves and Malbos, Philippe. Higher-dimensional categories with finite derivation type. Theory and Applications of Categories, 22(18):420478, 2009.Google Scholar
Guiraud, Yves and Malbos, Philippe. Coherence in monoidal track categories. Mathematical Structures in Computer Science, 22(6):931969, 2012.CrossRefGoogle Scholar
Guiraud, Yves and Malbos, Philippe. Higher-dimensional normalisation strategies for acyclicity. Advances in Mathematics, 231(3–4):22942351, 2012.CrossRefGoogle Scholar
Guiraud, Yves and Malbos, Philippe. Identities among relations for higherdimensional rewriting systems. In Operads 2009, volume 26 of Séminaires et congrès, pages 145161. Société Mathématique de France, 2013.Google Scholar
Guiraud, Yves and Malbos, Philippe. Polygraphs of finite derivation type. Mathematical Structures in Computer Science, 28(2):155201, 2018.CrossRefGoogle Scholar
Guiraud, Yves, Malbos, Philippe, and Mimram, Samuel. A homotopical completion procedure with applications to coherence of monoids. In RTA-24th International Conference on Rewriting Techniques and Applications-2013, volume 21 of Leibniz International Proceedings in Informatics (LIPIcs), pages 223238. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2013.Google Scholar
Hadzihasanovic, Amar. A diagrammatic axiomatisation for qubit entanglement. In Proceedings of the 2015 30th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), pages 573584. IEEE Computer Society, 2015.CrossRefGoogle Scholar
Hadzihasanovic, Amar. The algebra of entanglement and the geometry of composition. PhD thesis, University of Oxford, 2017.Google Scholar
Hadzihasanovic, Amar. Representable diagrammatic sets as a model of weak higher categories. arXiv preprint arXiv:1909.07639, 2019.Google Scholar
Hadzihasanovic, Amar. Weak units, universal cells, and coherence via universality for bicategories. Theory and Applications of Categories, 34(29):883960, 2019.Google Scholar
Hadzihasanovic, Amar. A combinatorial-topological shape category for polygraphs. Applied Categorical Structures, 28(3):419476, 2020.CrossRefGoogle Scholar
Hage, Nohra. Finite convergent presentation of plactic monoid for type C. International Journal of Algebra and Computation, 25(8):12391263, 2015.CrossRefGoogle Scholar
Hage, Nohra and Malbos, Philippe. Knuth’s coherent presentations of plactic monoids of type A. Algebras and Representation Theory, 20(5):12591288, 2017.CrossRefGoogle Scholar
Hage, Nohra and Malbos, Philippe. Chinese syzygies by insertions. Semigroup Forum, 104(1):88108, 2022.CrossRefGoogle Scholar
Hasegawa, Masahito, Martin Hofmann, and Gordon Plotkin. Finite dimensional vector spaces are complete for traced symmetric monoidal categories. In Pillars of computer science, pages 367385. Springer, 2008.CrossRefGoogle Scholar
Henry, Simon. Regular polygraphs and the Simpson conjecture. arXiv preprint arXiv:1807.02627, 2018.Google Scholar
Henry, Simon. Non-unital polygraphs form a presheaf category. Higher Structures, 3(1):248291, 2019.CrossRefGoogle Scholar
Henry, Simon and Mimram, Samuel. Tietze equivalences as weak equivalences. Applied Categorical Structures, 30(3):453483, 2022.CrossRefGoogle Scholar
Heyworth, Anne and Wensley, Christopher D.. Logged rewriting and identities among relators. In Groups St Andrews 2001 in Oxford, pages 256276, Cambridge University Press, 2003.CrossRefGoogle Scholar
Higman, Graham. Finitely presented infinite simple groups, volume 8 of Notes on Pure Mathematics. Department of Pure Mathematics, Department of Mathematics, IAS, Australian National University, 1974.Google Scholar
Hilton, Peter J.. A brief, subjective history of homology and homotopy theory in this century. Mathematics Magazine, 61(5):282291, 1988.CrossRefGoogle Scholar
Hilton, Peter J. and Stammbach, Urs. A course in homological algebra, volume 4 of Graduate Texts in Mathematics. Springer-Verlag, second edition, 1997.CrossRefGoogle Scholar
Hironaka, Heisuke. Resolution of singularities of an algebraic variety over a field of characteristic zero: II. Annals of Mathematics, 79(2):205326, 1964.CrossRefGoogle Scholar
Hirschhorn, Philip S.. Model categories and their localizations, volume 99 of Mathematical Surveys and Monographs. American Mathematical Society, 2003.Google Scholar
Hivert, Florent, Novelli, Jean-Christophe, and Thibon, Jean-Yves. The algebra of binary search trees. Theoretical Computer Science, 339(1):129165, 2005.CrossRefGoogle Scholar
Hochschild, Gerhard. On the cohomology groups of an associative algebra. Annals of Mathematics, 46(1):5867, 1945.CrossRefGoogle Scholar
Hovey, Mark. Model categories. Number 63 in Mathematical Surveys and Monographs. American Mathematical Society, 2007.CrossRefGoogle Scholar
Huet, Gérard. Confluent reductions: abstract properties and applications to term rewriting systems. Journal of the ACM (JACM), 27(4):797821, 1980.CrossRefGoogle Scholar
Huet, Gérard. A complete proof of correctness of the Knuth-Bendix completion algorithm. Journal of Computer and System Sciences, 23(1):1121, 1981.CrossRefGoogle Scholar
Huet, Gérard. Initiation à la théorie des catégories. Notes de cours du DEA “Fonctionalité, Structures de Calcul et Programmation” donné à l’Université Paris VII en 1983–84 et 1984–85, 1987.Google Scholar
Huet, Gérard and Lévy, Jean-Jacques. Computations in orthogonal rewriting systems, II. In Computational logic-essays in honor of Alan Robinson, pages 415443. MIT Press, 1991.Google Scholar
Hughes, Dominic J. D.. Linking diagrams for free. arXiv preprint arXiv:0805.1441, 2008.Google Scholar
Hyland, Martin and Power, John. Symmetric monoidal sketches. In Proceedings of the 2nd ACM SIGPLAN International Conference on Principles and Practice of Declarative Programming, pages 280288. ACM, 2000.CrossRefGoogle Scholar
Hyland, Martin and Tasson, Christine. The linear-non-linear substitution 2-monad. In Proceedings of the 3rd Annual International Applied Category Theory Conference 2020, volume 333 of EPTCS, pages 215229. EPTCS, 2020.Google Scholar
Ikebuchi, Mirai. A homological condition on equational unifiability. In 46th International Symposium on Mathematical Foundations of Computer Science, volume 202 of LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021.Google Scholar
Ikebuchi, Mirai. A lower bound of the number of rewrite rules obtained by homological methods. Logical Methods in Computer Science, 18(3), 2022.Google Scholar
Iohara, Kenji and Malbos, Philippe. From analytical mechanics problems to rewriting theory through M. Janet’s work. In Two algebraic byways from differential equations: Gröbner bases and quivers, volume 28 of Algorithms and Computation in Mathematics, pages 374. Springer, 2020.CrossRefGoogle Scholar
Iohara, Kenji and Malbos, Philippe. Maurice Janet’s algorithms on systems of linear partial differential equations. Archive for History of Exact Sciences, 75(1):4381, 2021.CrossRefGoogle Scholar
Janet, Maurice. Sur les systèmes d’équations aux dérivées partielles. Journal de Mathématiques Pures et Appliquées, 8(3):65151, 1920.Google Scholar
Janet, Maurice. Sur les systèmes d’équations aux dérivées partielles. Comptes Rendus Hebdomadaires des Séances de l’Académie des Sciences, 170:11011103, 1920.Google Scholar
Janet, Maurice. Sur les systèmes d’équations aux dérivées partielles et les systèmes de formes algébriques. Comptes Rendus Hebdomadaires des Séances de l’Académie des Sciences, Paris, 170:12361239, 1920.Google Scholar
Jantzen, Matthias. Semi Thue systems and generalized Church-Rosser properties. Technical report, Institut für Informatik, Universität Hamburg, 1982.Google Scholar
Jantzen, Matthias. A note on a special one-rule semi-Thue system. Information Processing Letters, 21(3):135140, 1985.CrossRefGoogle Scholar
Jantzen, Matthias. Confluent string rewriting, volume 14 of EATCS Monographs on Theoretical Computer Science. Springer, 1988.CrossRefGoogle Scholar
Johnson, David L.. Presentations of groups. Number 15 in London Mathematical Society Student Texts. Cambridge University Press, 1997.CrossRefGoogle Scholar
Johnson, Michael. The combinatorics of n-categorical pasting. Journal of Pure and Applied Algebra, 62(3):211225, 1989.CrossRefGoogle Scholar
Jones, Vaughan F. R.. A polynomial invariant for knots via von Neumann algebras. Bulletin (New Series) of the American Mathematical Society, 12(1):103111, 1985.CrossRefGoogle Scholar
Joyal, André and Street, Ross. The geometry of tensor calculus, I. Advances in Mathematics, 88(1):55112, 1991.CrossRefGoogle Scholar
Joyal, André and Street, Ross. Braided tensor categories. Advances in Mathematics, 102(1):2078, 1993.CrossRefGoogle Scholar
Joyal, André, Street, Ross, and Verity, Dominic. Traced monoidal categories. Mathematical Proceedings of the Cambridge Philosophical Society, 119(3):447468, 1996.CrossRefGoogle Scholar
Kamps, Klaus H. and Porter, Timothy. Abstract homotopy and simple homotopy theory. World Scientific, 1997.CrossRefGoogle Scholar
Kapranov, Mikhail M. and Saito, Masahico. Hidden Stasheff polytopes in algebraic K-theory and in the space of Morse functions. In Higher Homotopy Structures in Topology and Mathematical Physics: Proceedings of an International Conference June 13–15, 1996 at Vassar College, Poughkeepsie, New York, to Honor the Sixtieth Birthday of Jim Stasheff, volume 227 of Contemporary Mathematics, page 191. American Mathematical Society, 1999.CrossRefGoogle Scholar
Kapur, Deepak and Narendran, Paliath. A finite Thue system with decidable word problem and without equivalent finite canonical system. Theoretical Computer Science, 35:337344, 1985.CrossRefGoogle Scholar
Kassel, Christian. Quantum groups, volume 155 of Graduate Texts in Mathematics. Springer-Verlag New York, 1995.CrossRefGoogle Scholar
Kauffman, Louis H.. An invariant of regular isotopy. Transactions of the American Mathematical Society, 318(2):417471, 1990.CrossRefGoogle Scholar
Kelly, Gregory M. and Laplaza, Miguel L.. Coherence for compact closed categories. Journal of Pure and Applied Algebra, 19:193213, 1980.CrossRefGoogle Scholar
Knuth, Donald E.. Permutations, matrices, and generalized Young tableaux. Pacific Journal of Mathematics, 34(3):709727, 1970.CrossRefGoogle Scholar
Knuth, Donald E. and Bendix, Peter B.. Simple word problems in universal algebras. In Computational problems in abstract algebra, pages 263297. Pergamon, 1970.Google Scholar
Kobayashi, Yuji. Complete rewriting systems and homology of monoid algebras. Journal of Pure and Applied Algebra, 65(3):263275, 1990.CrossRefGoogle Scholar
Kobayashi, Yuji. Finite homotopy bases of one-relator monoids. Journal of Algebra, 229(2):547569, 2000.CrossRefGoogle Scholar
Kobayashi, Yuji. Gröbner bases of associative algebras and the Hochschild cohomology. Transactions of the American Mathematical Society, 357(3):10951124, 2005.CrossRefGoogle Scholar
Kobayashi, Yuji and Otto, Friedrich. On homotopical and homological finiteness conditions for finitely presented monoids. International Journal of Algebra and Computation, 11(3):391, 2001.CrossRefGoogle Scholar
Kobayashi, Yuji and Otto, Friedrich. For finitely presented monoids the homological finiteness conditions FHT and bi-FP3 coincide. Journal of Algebra, 264(2):327341, 2003.CrossRefGoogle Scholar
Kock, Joachim. Frobenius algebras and 2-d topological quantum field theories, volume 59 of London Mathematical Society Student Texts. Cambridge University Press, 2004.Google Scholar
Krammer, Daan. Braid groups are linear. Annals of Mathematics, 155(1):131156, 2002.CrossRefGoogle Scholar
Kubat, Łukasz and Okniński, Jan. Gröbner–Shirshov bases for plactic algebras. Algebra Colloquium, 21(04):591596, 2014.CrossRefGoogle Scholar
Kudryavtseva, Ganna and Mazorchuk, Volodymyr. On presentations of Brauertype monoids. Open Mathematics, 4(3):413434, 2006.CrossRefGoogle Scholar
Lack, Stephen. Icons. Applied Categorical Structures, 18:289307, 2010.CrossRefGoogle Scholar
Lack, Steve. A Quillen model structure for 2-categories. K-Theory, 26(2):171205, 2002.CrossRefGoogle Scholar
Lack, Steve. Composing PROPs. Theory and Applications of Categories, 13(9):147163, 2004.Google Scholar
Lack, Steve. A Quillen model structure for bicategories. K-Theory, 33(3):185197, 2004.CrossRefGoogle Scholar
Lafont, Yves. Interaction nets. In Proceedings of the 17th ACM SIGPLANSIGACT Symposium on principles of Programming Languages, pages 95108. ACM, 1989.Google Scholar
Lafont, Yves. A new finiteness condition for monoids presented by complete rewriting systems (after Craig C. Squier). Journal of Pure and Applied Algebra, 98(3):229244, 1995.CrossRefGoogle Scholar
Lafont, Yves. Interaction combinators. Information and Computation, 137(1):69101, 1997.CrossRefGoogle Scholar
Lafont, Yves. Towards an algebraic theory of boolean circuits. Journal of Pure and Applied Algebra, 184(2):257310, 2003.CrossRefGoogle Scholar
Lafont, Yves and Métayer, François. Polygraphic resolutions and homology of monoids. Journal of Pure and Applied Algebra, 213(6):947968, 2009.CrossRefGoogle Scholar
Lafont, Yves, Métayer, François, and Worytkiewicz, Krzysztof. A folk model structure on omega-cat. Advances in Mathematics, 224(3):11831231, 2010.CrossRefGoogle Scholar
Lafont, Yves and Prouté, Alain. Church-Rosser property and homology of monoids. Mathematical Structures in Computer Science, 1(3):297326, 1991.CrossRefGoogle Scholar
Lair, Christian. Condition syntaxique de triplabilité d’un foncteur algébrique esquissé. Diagrammes, 1:116, 1979.Google Scholar
Laisant, Charles-Ange. Sur la numération factorielle, application aux permutations. Bulletin de la Société Mathématique de France, 16:176183, 1888.CrossRefGoogle Scholar
Lang, Serge. Algebra, volume 211 of Graduate Texts in Mathematics. Springer Science & Business Media, 2012.Google Scholar
Lascoux, Alain and Schützenberger, Marcel-Paul. Le monoïde plaxique. Quaderni de la Ricerca Scientifica, 109:129156, 1981.Google Scholar
Lauda, Aaron D.. Frobenius algebras and planar open string topological field theories. arXiv preprint math/0508349, 2005.Google Scholar
Lawrence, Ruth J.. Homological representations of the Hecke algebra. Communications in Mathematical Physics, 135(1):141191, 1990.CrossRefGoogle Scholar
Lawvere, William. Functorial semantics of algebraic theories. Proceedings of the National Academy of Sciences, 50(5):869872, 1963.CrossRefGoogle ScholarPubMed
Lawvere, William. Ordinal sums and equational doctrines. In Seminar on Triples and Categorical Homology Theory, pages 141155. Springer, 1969.CrossRefGoogle Scholar
Le Chenadec, Philippe. A catalogue of complete group presentations. Journal of Symbolic Computation, 2(4):363381, 1986.CrossRefGoogle Scholar
Lehmer, Derrick H.. Teaching combinatorial tricks to a computer. In Combinatorial analysis, volume 10 of Proceedings of Symposia in Applied Mathematics, pages 179193. American Mathematical Society, 1960.CrossRefGoogle Scholar
Lévy, Jean-Jacques. Réductions correctes et optimales dans le lambda-calcul. PhD thesis, Université Paris VII, 1978.Google Scholar
Littelmann, Peter. A plactic algebra for semisimple Lie algebras. Advances in Mathematics, 124(2):312331, 1996.CrossRefGoogle Scholar
Livernet, Muriel and Richter, Birgit. An interpretation of En-homology as functor homology. Mathematische Zeitschrift, 269(1–2):193219, 2011.CrossRefGoogle Scholar
Loday, Jean-Louis. Homotopical syzygies. In Une dégustation topologique [Topological morsels]: homotopy theory in the Swiss Alps (Arolla, 1999), volume 265 of Contemporary Mathematics, pages 99127. American Mathematical Society, 2000.CrossRefGoogle Scholar
Loday, Jean-Louis. Generalized bialgebras and triples of operads. Number 320 in Astérisque. Société mathématique de France, 2008.Google Scholar
Lothaire, M.. Algebraic combinatorics on words, volume 90 of Encyclopedia of Mathematics and Its Applications. Cambridge University Press, 2002.CrossRefGoogle Scholar
Lucas, Maxime. A coherence theorem for pseudonatural transformations. Journal of Pure and Applied Algebra, 221(5):11461217, 2017.CrossRefGoogle Scholar
Lucas, Maxime. Cubical categories for homotopy and rewriting. PhD thesis, University Paris Diderot – Paris 7, 2018.Google Scholar
Lyndon, Roger C. and Schupp, Paul E.. Combinatorial group theory. Springer, 2015.Google Scholar
Mac Lane, Saunders. Homologie des anneaux et des modules. In Colloque de topologie algébrique, Louvain, pages 5580. Masson & Cie, 1956.Google Scholar
Mac Lane, Saunders. Natural associativity and commutativity. Rice University Studies, 49(4):2846, 1963.Google Scholar
Mac Lane, Saunders. Homology. Classics in Mathematics. Springer-Verlag, 1995. Reprint of the 1975 edition.Google Scholar
Mac Lane, Saunders. Categories for the working mathematician, volume 5 of Graduate Texts in Mathematics. Springer-Verlag, second edition, 1998.Google Scholar
MacLane, Saunders. Categorical algebra. Bulletin of the American Mathematical Society, 71(1):40106, 1965.CrossRefGoogle Scholar
Magnus, Wilhelm, Abraham Karrass, and Donald Solitar. Combinatorial group theory. Dover Publications, second edition, 2004.Google Scholar
Makkai, Michael. The Word Problem for Computads. Available at www.math.mcgill.ca/makkai/WordProblem/WordProblemCombined.pdf, 2005.Google Scholar
Makkai, Michael and Zawadowski, Marek. 3-Computads do not form a presheaf category. Personal letter to Michael Batanin, 2001.Google Scholar
Malbos, Philippe. Critères de finitude homologique pour la non convergence des systèmes de réécriture de termes. Theses, Université Montpellier II – Sciences et Techniques du Languedoc, January 2004.Google Scholar
Malbos, Philippe and Mimram, Samuel. Homological computations for term rewriting systems. In 1st International Conference on Formal Structures for Computation and Deduction (FSCD 2016), volume 52 of Leibniz International Proceedings in Informatics (LIPIcs), pages 27:127. Porto, Portugal, 2016.Google Scholar
Malbos, Philippe and Mimram, Samuel. Higher-dimensional cartesian normalization strategies. In preparation, 2023.Google Scholar
Malbos, Philippe and Ren, Isaac. Shuffle polygraphic resolutions for operads. Journal of the London Mathematical Society, 107(1):61122, 2023.CrossRefGoogle Scholar
Maltsiniotis, Georges. Grothendieck ∞-groupoids and still another definition of ∞-categories. arXiv preprint arXiv:1009.2331, 2010.Google Scholar
Markov, Andreï A.. On the impossibility of certain algorithms in the theory of associative systems. Doklady Akademii Nauk SSSR, 55:583586, 1947.Google Scholar
Matiyasevich, Yuri and Sénizergues, Géraud. Decision problems for semi-Thue systems with a few rules. Theoretical Computer Science, 330(1):145169, 2005.CrossRefGoogle Scholar
Mazurkiewicz, Antoni. Concurrent program schemes and their interpretations. DAIMI Report Series, 6(78):PB78, 1977.CrossRefGoogle Scholar
McGlashan, Stuart, Pasku, Elton, and Pride, Stephen J.. Finiteness conditions for rewriting systems. International Journal of Algebra and Computation, 15(1):175205, 2005.CrossRefGoogle Scholar
McKenzie, Ralph and Thompson, Richard J.. An elementary construction of unsolvable word problems in group theory. Studies in Logic and the Foundations of Mathematics, 71:457478, 1973.CrossRefGoogle Scholar
Melliès, Paul-André. Axiomatic rewriting theory VI: residual theory revisited. In International Conference on Rewriting Techniques and Applications, pages 2450. Springer, 2002.CrossRefGoogle Scholar
Melliès, Paul-André. Categorical semantics of linear logic. Panoramas et syntheses, 27:15215, 2009.Google Scholar
Métayer, François. Resolutions by polygraphs. Theory and Applications of Categories, 11(7):148184, 2003.Google Scholar
Métayer, François. Cofibrant objects among higher-dimensional categories. Homology, Homotopy and Applications, 10(1):181203, 2008.CrossRefGoogle Scholar
Métivier, Yves. About the rewriting systems produced by the Knuth-Bendix completion algorithm. Information Processing Letters, 16(1):3134, 1983.CrossRefGoogle Scholar
Miller, Charles F.. On group-theoretic decision problems and their classification. Number 68 in Annals of Mathematics Studies. Princeton University Press, 1971.Google Scholar
Mimram, Samuel. The structure of first-order causality. Mathematical Structures in Computer Science, 21(01):65110, 2011.CrossRefGoogle Scholar
Mimram, Samuel. Towards 3-dimensional rewriting theory. Logical Methods in Computer Science (LMCS), 10(2):147, 2014.Google Scholar
Mimram, Samuel. Presenting finite posets. In Proceedings 8th International Workshop on Computing with Terms and Graphs, volume 183 of Electronic Proceedings in Theoretical Computer Science, pages 117. Open Publishing Association, 2015.Google Scholar
Mimram, Samuel. Satex, 2021. Software available at https://github.com/smimram/satex/.Google Scholar
Mimram, Samuel. Categorical coherence from term rewriting systems. In 8th International Conference on Formal Structures for Computation and Deduction (FSCD 2023), volume 260 of Leibniz International Proceedings in Informatics (LIPIcs), pages 16:116:17, Dagstuhl, Germany, 2023. Schloss Dagstuhl – Leibniz-Zentrum für Informatik.Google Scholar
Mitchell, Barry. Rings with several objects. Advances in Mathematics, 8(1):1161, 1972.CrossRefGoogle Scholar
Moore, Eliakim H.. Concerning the abstract groups of order k! and k! holo-hedrically isomorphic with the symmetric and the alternating substitution-groups on k letters. Proceedings of the London Mathematical Society, 1(1):357367, 1896.CrossRefGoogle Scholar
Mora, Teo. An introduction to commutative and noncommutative Gröbner bases. Theoretical Computer Science, 134(1):131173, 1994. In Second International Colloquium on Words, Languages and Combinatorics (Kyoto, 1992).CrossRefGoogle Scholar
Newman, Maxwell H. A.. On theories with a combinatorial definition of “equivalence”. Annals of Mathematics, 43(2):223243, 1942.CrossRefGoogle Scholar
Ng, Kang Feng and Wang, Quanlong. A universal completion of the ZX-calculus. arXiv preprint arXiv:1706.09877, 2017.Google Scholar
Nivat, Maurice. Congruences parfaites et quasi-parfaites. In Séminaire P. Dubreil, 25e année (1971/72), Algèbre, Fasc. 1, Exp. No. 7, page 9. Secrétariat Mathématique, Paris, 1973.Google Scholar
Novikov, Pyotr S.. On the algorithmic unsolvability of the word problem in group theory. Proceedings of the Steklov Institute of Mathematics, 44:1143, 1955.Google Scholar
Otto, Friedrich, Katsura, Masashi, and Kobayashi, Yuji. Infinite convergent stringrewriting systems and cross-sections for finitely presented monoids. Journal of Symbolic Computation, 26(5):621648, 1998.CrossRefGoogle Scholar
Peiffer, Renée. Über Identitäten zwischen Relationen. Mathematische Annalen, 121:6799, 1949.CrossRefGoogle Scholar
Penon, Jacques. Approche polygraphique des ∞-catégories non strictes. Cahiers de Topologie et Géométrie Différentielle Catégoriques, 40(1):3180, 1999.Google Scholar
Penrose, Roger. Applications of negative dimensional tensors. In Combinatorial mathematics and its applications, pages 221244. Academic Press, 1971.Google Scholar
Pirashvili, Teimuraz. On the PROP corresponding to bialgebras. Cahiers de Topologie et Géométrie Différentielle Catégoriques, 43(3):221239, 2002.Google Scholar
Poincaré, Henri. Analysis situs. Journal de l’École Polytechnique, 1(2):1123, 1895.Google Scholar
Polishchuk, Alexander and Positselski, Leonid. Quadratic algebras, volume 37 of University Lecture Series. American Mathematical Society, 2005.CrossRefGoogle Scholar
Post, Emil L.. Recursive unsolvability of a problem of Thue. The Journal of Symbolic Logic, 12(01):111, 1947.CrossRefGoogle Scholar
Power, James F.. Thue’s 1914 paper: a translation. arXiv preprint arXiv:1308.5858, 2013.Google Scholar
Power, John. A general coherence result. Journal of Pure and Applied Algebra, 57(2):165173, 1989.CrossRefGoogle Scholar
Power, John. An n-categorical pasting theorem. In Category theory, pages 326358. Springer, 1991.CrossRefGoogle Scholar
Power, John and Watanabe, Hiroshi. Combining a monad and a comonad. Theoretical Computer Science, 280(1–2):137162, 2002.CrossRefGoogle Scholar
Pride, Stephen J.. Low-dimensional homotopy theory for monoids. International Journal of Algebra and Computation, 5(06):631649, 1995.CrossRefGoogle Scholar
Quillen, Daniel. Homotopical algebra, volume 43 of Lecture Notes in Mathematics. Springer, 1967.CrossRefGoogle Scholar
Quillen, Daniel. Higher algebraic K-theory. I. Lecture Notes in Mathematics, 341:85147, 1973.CrossRefGoogle Scholar
Reidemeister, Kurt. Knotentheorie. Springer-Verlag, 1932.Google Scholar
Reidemeister, Kurt. Über Identitäten von Relationen. Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, 16:114118, 1949.CrossRefGoogle Scholar
Renschuch, Bodo, Roloff, Hartmut, Rasputin, Georgij G., and Abramson, Michael. Contributions to constructive polynomial ideal theory XXIII: forgotten works of Leningrad mathematician NM Gjunter on polynomial ideal theory. ACM SIGSAM Bulletin, 37(2):3548, 2003.CrossRefGoogle Scholar
Rezk, Charles. A model category for categories. Unpublished note, 2000.Google Scholar
Riehl, Emily. Categorical homotopy theory. Number 24 in New Mathematical Monographs. Cambridge University Press, 2014.CrossRefGoogle Scholar
Roos, Jan-Erik. Sur les foncteurs dérivés de . Applications. Comptes Rendus Hebdomadaires des Séances de l’Académie des Sciences, 252:37023704, 1961.Google Scholar
Rosebrugh, Robert, Sabadini, Nicoletta, and Walters, Robert F. C.. Generic commutative separable algebras and cospans of graphs. Theory and Applications of Categories, 15(6):164177, 2005.Google Scholar
Rosebrugh, Robert and Wood, Richard J.. Distributive laws and factorization. Journal of Pure and Applied Algebra, 175(1):327353, 2002.CrossRefGoogle Scholar
Rotman, Joseph J.. An introduction to homological algebra. Universitext. Springer, second edition, 2009.CrossRefGoogle Scholar
Saito, Mutsumi, Sturmfels, Bernd, and Takayama, Nobuki. Gröbner deformations of hypergeometric differential equations, volume 6 of Algorithms and Computation in Mathematics. Springer-Verlag, 2000.CrossRefGoogle Scholar
Schanuel, Stephen and Street, Ross. The free adjunction. Cahiers de Topologie et Géométrie Différentielle Catégoriques, 27(1):8183, 1986.Google Scholar
Schensted, Craige. Longest increasing and decreasing subsequences. Canadian Journal of Mathematics, 13:179191, 1961.CrossRefGoogle Scholar
Schönfinkel, Moses. Über die Bausteine der mathematischen Logik. Mathematische annalen, 92(3–4):305316, 1924.CrossRefGoogle Scholar
Selinger, Peter. The lambda calculus is algebraic. Journal of Functional Programming, 12(6):549566, 2002.CrossRefGoogle Scholar
Selinger, Peter. Autonomous categories in which AA*. In Proceedings of 7th Workshop on Quantum Physics and Logic (QPL 2010). Citeseer, 2010.Google Scholar
Selinger, Peter. A survey of graphical languages for monoidal categories. In New structures for physics, pages 289355. Springer, 2010.CrossRefGoogle Scholar
Shirshov, Anatoli˘ı I.. Some algorithmic problems for Lie algebras. Sibirskii Matematicheskii Zhurnal, 3(2):292296, 1962.Google Scholar
Squier, Craig C.. Word problems and a homological finiteness condition for monoids. Journal of Pure and Applied Algebra, 49(1):201217, 1987.CrossRefGoogle Scholar
Squier, Craig C. and Otto, Friedrich. The word problem for finitely presented monoids and finite canonical rewriting systems. In International Conference on Rewriting Techniques and Applications, pages 7482. Springer, 1987.CrossRefGoogle Scholar
Squier, Craig C., Friedrich Otto, and Yuji Kobayashi. A finiteness condition for rewriting systems. Theoretical Computer Science, 131(2):271294, 1994.CrossRefGoogle Scholar
Stallings, John. A finitely presented group whose 3-dimensional integral homology is not finitely generated. American Journal of Mathematics, 85(4):541543, 1963.CrossRefGoogle Scholar
Steiner, Richard. Omega-categories and chain complexes. Homology, Homotopy and Applications, 6(1):175200, 2004.CrossRefGoogle Scholar
Steiner, Richard. Opetopes and chain complexes. Theory and Applications of Categories, 26(19):501519, 2012.Google Scholar
Stell, John G.. Modelling term rewriting systems by sesqui-categories. Proceedings of Catégories, Algèbres, Esquisses et Néo-Esquisses, 1994.Google Scholar
Street, Ross. Limits indexed by category-valued 2-functors. Journal of Pure and Applied Algebra, 8(2):149181, 1976.CrossRefGoogle Scholar
Street, Ross. The algebra of oriented simplexes. Journal of Pure and Applied Algebra, 49(3):283335, 1987.CrossRefGoogle Scholar
Street, Ross. Parity complexes. Cahiers de Topologie et Géométrie Différentielle Catégoriques, 32(4):315343, 1991.Google Scholar
Street, Ross. Parity complexes: corrigenda. Cahiers de Topologie et Géométrie Fifférentielle Catégoriques, 35(4):359361, 1994.Google Scholar
Street, Ross. Higher categories, strings, cubes and simplex equations. Applied Categorical Structures, 3(1):2977, 1995.CrossRefGoogle Scholar
Street, Ross. Categorical structures. Handbook of Algebra, 1:529577, 1996.CrossRefGoogle Scholar
Street, Ross. Frobenius monads and pseudomonoids. Journal of Mathematical Physics, 45(10):39303948, 2004.CrossRefGoogle Scholar
Street, Ross. Weak distributive laws. Theory and Applications of Categories, 22(12):313320, 2009.Google Scholar
Temperley, Harold N. V. and Lieb, Elliott H.. Relations between the “percolation” and “colouring” problem and other graph-theoretical problems associated with regular planar lattices: some exact results for the “percolation” problem. Proceedings of the Royal Society London, 322(1549):251280, 1971.Google Scholar
Terese. Term rewriting systems. Cambridge University Press, 2003.Google Scholar
Thomas, Joseph Miller. Differential systems, volume 21 of American Mathematical Society. Colloquium Publications, 1937.CrossRefGoogle Scholar
Thue, Axel. Probleme über Veränderungen von Zeichenreihen nach gegebenen Regeln. Christiana Videnskabs-Selskabs Skrifter, I. Matematisknaturvidenskabelig Klasse, 10, 1914.Google Scholar
Tietze, Heinrich. Über die topologischen Invarianten mehrdimensionaler Mannigfaltigkeiten. Monatshefte für Mathematik und Physik, 19(1):1118, 1908.CrossRefGoogle Scholar
Tseitin, Grigorii S.. An associative calculus with an insoluble problem of equivalence. Trudy Matematicheskogo Instituta im. VA Steklova, 52:172189, 1958.Google Scholar
Ufnarovskij, Victor A.. Combinatorial and asymptotic methods in algebra. In Algebra, VI, volume 57 of Encyclopaedia of Mathematical Sciences, pages 1196. Springer, 1995.Google Scholar
Ufnarovskij, Victor A.. Introduction to noncommutative Gröbner bases theory. In Gröbner bases and applications (Linz, 1998), volume 251 of London Mathematical Society Lecture Note Series, pages 259280. Cambridge University Press, 1998.CrossRefGoogle Scholar
van Dalen, Dirk. L.E.J. Brouwer – topologist, intuitionist, philosopher. Springer-Verlag, 2013.CrossRefGoogle Scholar
Van Oostrom, Vincent. Confluence by decreasing diagrams. Theoretical Computer Science, 126(2):259280, 1994.CrossRefGoogle Scholar
van Oostrom, Vincent. Residuation = skolemised confluence. In 12th International Workshop on Confluence, page 20, Obergurgl, Austria, 2023.Google Scholar
Vietoris, Leopold. Über den höheren Zusammenhang kompakter Raüme und eine Klasse von zusammenhangstreuen Abbildungen. Mathematische Annalen, 97(1):454472, 1927.CrossRefGoogle Scholar
Wang, Xiaofeng and Pride, Stephen J.. Second order Dehn functions of groups and monoids. International Journal of Algebra and Computation, 10(4):425456, 2000.CrossRefGoogle Scholar
Wells, Charles. Extension theories for categories. Preliminary report, 1979.Google Scholar
Whitehead, Alfred N.. A treatise on universal algebra: with applications, volume 1 of Principles of Algebraic Symbolism. The University Press, 1898.Google Scholar
Whitehead, Henry. Combinatorial homotopy I. Bulletin of the American Mathematical Society, 55(3):213245, 1949.CrossRefGoogle Scholar
Whitehead, Henry. Combinatorial homotopy II. Bulletin of the American Mathematical Society, 55(5):453496, 1949.CrossRefGoogle Scholar
Yanofsky, Noson S.. Coherence, homotopy and 2-theories. K-Theory, 23(3):203235, 2001.CrossRefGoogle Scholar
Zanasi, Fabio. Interacting Hopf algebras – the theory of linear systems. PhD thesis, École normale supérieure de Lyon, 2015.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×