Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-2xdlg Total loading time: 0 Render date: 2024-06-30T19:31:43.088Z Has data issue: false hasContentIssue false

2 - Platelet immunology: structure, functions, and polymorphisms of membrane glycoproteins

Published online by Cambridge University Press:  15 October 2009

Tetsuji Kamata
Affiliation:
Keio University School of Medicine, Tokyo, Japan
Paolo Gresele
Affiliation:
Università degli Studi di Perugia, Italy
Valentin Fuster
Affiliation:
Mount Sinai School of Medicine, New York
Jose A. Lopez
Affiliation:
Seattle University
Clive P. Page
Affiliation:
King's College London
Jos Vermylen
Affiliation:
Katholieke Universiteit Leuven, Belgium
Get access

Summary

INTRODUCTION

The main function of platelets is to arrest bleeding by forming a hemostatic plug through their interaction with damaged vascular wall. It is well recognized that platelets also play a crucial role in the formation of pathologic thrombus to occlude vasculature, leading to fatal diseases such as acute coronary syndrome or stroke. In addition, platelets are involved in various physiologic or pathologic processes such as inflammation, antimicrobial host defense, immune regulation, tumor growth, and metastasis. Platelets express many types of receptors on their surface to interact with a wide variety of stimuli and adhesive proteins. Because platelets play a major role in hemostasis, the molecular mechanisms of hemostatic thrombus formation have been extensively studied. Platelets first interact with exposed subendothelial matrix protein, collagen, in damaged vascular wall. Circulating platelets then form a large aggregate over the layer of platelets adhered to vascular wall, together with fibrin formation to complete the hemostatic process.

Like many other cells, platelets express integrin receptors involved in adhesive and signaling processes. Integrins consist of noncovalently linked heterodimers of α and β subunits. They are usually present on the cell surface in a low- or high-affinity state. Transition between these two states is regulated by cytoplasmic signals generated when cells are stimulated or activated. Platelets exhibit six integrins: α2β1, α5β1, α6β1, αLβ2, αIIbβ3, and αvβ3.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×