Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-26T19:57:31.651Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  05 September 2020

Nigel Maxted
Affiliation:
University of Birmingham
Danny Hunter
Affiliation:
Bioversity International
Rodomiro Ortiz Ríos
Affiliation:
Swedish University of Agricultural Sciences
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abera Desta, Z. and Ortiz, R. (2014). Genomic selection: genome-wide prediction in plant improvement. Trends in Plant Science, 19: 592601.Google Scholar
Adams, R.P. (1997). Conservation of DNA: DNA banking. In: Callow, J.A., Ford-Lloyd, B.V. and Newbury, H.J. (eds.) Biotechnology and Plant Genetic Resources. CAB International, Oxford, pp. 163‒174.Google Scholar
Aguirre-Gutiérrez, J., van Treuren, R., Hoekstra, R. and van Hintum, T.J.L. (2017). Crop wild relatives range shifts and conservation in Europe under climate change. Diversity and Distributions, 23: 739750.CrossRefGoogle Scholar
Ahmed, J. and Khan, S.S. (1998). Investment in people – a key to enhance sustainability: lessons from Northern Pakistan: enhancing sustainability – resources for our future. SUI Technical Series 1: 2128.Google Scholar
Åkerberg, E. (1986). Nilsson-Ehle and the development of plant breeding at Svalof during the period 1900–1915. Hereditas, 105: 15.CrossRefGoogle Scholar
Akimoto, M., Shimamoto, Y. and Morishima, H. (1999). The extinction of genetic resources of Asian wild rice, Oryza rufipogon Griff.: a case study in Thailand. Genetic Resources and Crop Evolution, 46: 419425.Google Scholar
Al-Atawneh, N., Amri, A., Assi, R. and Maxted, N. (2008). Management plans for promoting in situ conservation of local agrobiodiversity in the West Asia centre of plant diversity. In: Maxted, N., Ford-Lloyd, B.V., Kell, S.K., Iriondo, J.M., Dulloo, M.E. and Turok, J. (eds.) Crop Wild Relative Conservation and Use. CABI Publishing, Cambridge, pp. 338361.Google Scholar
Al-Atawneh, N., Shehadeh, A., Amri, A. and Maxted, N. (2009). Conservation Field Guide to Medics of the Mediterranean Basin. ICARDA, Cambridge.Google Scholar
Alercia, A., Diulgheroff, S. and Mackay, M. (2012). FAO/Bioversity Multi-Crop Passport Descriptors (MCPD V.2). Food and Agriculture Organization of the United Nations, Rome, Italy and Bioversity International, Cambridge. Available at: www.bioversityinternational.org/uploads/tx_news/1526.pdf) (accessed 13 August 2018).Google Scholar
Alercia, A., López, F.M., Sackville Hamilton, N.R. and Marsella, M. (2018). Digital Object Identifiers for Food Crops – Descriptors and Guidelines of the Global Information System. Food and Agriculture Organization of the United Nations, Cambridge.Google Scholar
Al Lawati, A.H., Al Saady, N., Ghaloub, H.A., et al., (2016). Plant Agrobiodiversity Conservation Strategy for the Sultanate of Oman. Oman Animal and Plant Genetic Resources Center, the Research Council of the Sultanate of Oman, Muscat, Sultanate of Oman.Google Scholar
Almekinders, C. and Hardon, J. (eds.) (2006). Bringing Farmers Back into Breeding. Experiences with Participatory Plant Breeding and Challenges for Institutionalisation. Agromisa Special 5. Agromisa, Cambridge.Google Scholar
Almekinders, C., Mertens, L., van Loon, J. and Lammerts van Bueren, E.T. (2016). Potato breeding in the Netherlands: successful collaboration between farmers and commercial breeders. Farming Matters (Special issue on Access and Benefit Sharing of Genetic Resources), May Issue, pp. 34–37.Google Scholar
Altieri, M.A. 2009. Agroecology, small farms, and food sovereignty. Monthly Review, 61(3): 102.Google Scholar
Altieri, M.A. and Merrick, L.C. (1987). In situ conservation of crop genetic resources through maintenance of traditional farming systems. Economic Botany, 41: 8696.Google Scholar
American Museum of Natural History (1998). National Survey Reveals Biodiversity Crisis – Scientific Experts Believe We Are in the Midst of the Fastest Mass Extinction in Earth's History. Available at: www.mysterium.com/amnh.html (accessed 19 April 2013).Google Scholar
Amri, A., Ajlouni, M., Assi, R., et al. (2007). Major Achievements of the West Asia Dryland Agrobiodiversity Conservation Project. Proceedings of the International Conference on ‘Promoting Community-Driven in situ Conservation of Dryland Agrobiodiversity’, ICARDA, Aleppo, Syria.Google Scholar
Andersson, M.S., Mesa Fuqen, E. and Carmen de Vicente, M. (2006). State of the art of DNA storage: results of a worldwide survey. In: Carmen de Vicente, M. and Andersson, M.S. (eds.) DNA Banks – Providing Novel Options for Gene Banks? International Plant Genetic Resources Institute, Cambridge, pp. 610.Google Scholar
Andrade, M.I., Alvaro, A., Menomussanga, J., et al. (2016a). ‘Alisha’, ‘Ivone’, ‘Anamaria’, ‘Victoria’, ‘Lawrence’, ‘Bita’, ‘Caelan’, ‘Margarete’ and ‘Bie’ sweetpotato. HortScience, 51: 597600.Google Scholar
Andrade, M.I., Naico, A., Ricardo, J., et al. (2016b). Genotype × environment interaction and selection for drought adaptation of sweetpotato (Ipomoea batatas [L.] Lam.) in Mozambique. Euphytica, 209: 261280.Google Scholar
Andrade, M.I., Ricardo, J., Naico, A., et al. (2017). Release of orange-fleshed sweetpotato (Ipomoea batatas [L.] Lam.) bred-cultivars in Mozambique through an accelerated breeding scheme. Journal of Agricultural Sciences, 155: 919929.Google Scholar
Angiosperm Phylogeny Group IV. (2016). An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Botanical Journal of the Linnean Society, 181: 120.CrossRefGoogle Scholar
Anikster, Y., Feldman, M. and Horovitz, A. (1997). The Ammiad experiment. In: Maxted, N., Ford-Lloyd, B.V. and Hawkes, J.G. (eds.) Plant Genetic Conservation: The in situ Approach. Chapman & Hall, Cambridge, pp. 239253.Google Scholar
Ansebo, L. (2015). Ecosystem services: genetic resources and crop wild relatives. Available at: www.nordgen.org/index.php/en/content/view/full/2934 (accessed 5 May 2017).Google Scholar
Antofie, M.M., Sand, M.P.C., Ciotea, G. and Iagrăru, P. (2010). Data sheet model for developing a red list regarding crop landraces in Romania. Annals of Food Science and Technology, 11: 4549.Google Scholar
Arnstein, S.R. (1969). A ladder of citizen participation. Journal of the American Planning Association, 35: 216224.Google Scholar
Ashby, J. (2009). The impact of participatory plant breeding. In: Ceccarelli, S., Guimara, E.P. and Weltzien, E. (eds.) Plant Breeding and Farmer Participation. Food and Agriculture Organization of the United Nations, Cambridge, pp. 649671.Google Scholar
Ashmore, S.E. (1997). Status Report on the Development and Application of in vitro Techniques for the Conservation and Use of Plant Genetic Resources. IPGRI, Cambridge.Google Scholar
Avagyan, A. (2008). Crop wild relatives in Armenia: diversity, legislation and conservation issues. In: Maxted, N., Ford-Lloyd, B.V., Kell, S.K., et al. (eds.) Crop Wild Relative Conservation and Use. CABI Publishing, Cambridge, pp. 5868.Google Scholar
Averyanov, L.V. (1996). Endangered Vietnamese Paphiopedilums. Part 2. Paphiopedilum delenatii. Orchids (Magazine of the American Orchid Society), pp. 1302–1308.Google Scholar
Azurdia, C., Williams, K., Williams, D., et al. (2011). Atlas of Guatemalan Crop Wild Relatives. Available at: www.ars.usda.gov/ba/atlascwrguatemala (accessed 5 May 2017).Google Scholar
Bachman, S., Moat, J., Hill, A.W., de la Torre, J. and Scott, B. (2011). Supporting Red List threat assessments with GeoCAT: geospatial conservation assessment tool. ZooKeys, 150: 117126.Google Scholar
Bajaj, Y.P.S. (1987). Cryopreservation of pollen and pollen embryos, and the establishment of pollen banks. International Review of Cytology, 107: 397420.Google Scholar
Balter, M. (2007). Seeking agriculture’s ancient roots. Science, 316: 18301835.CrossRefGoogle ScholarPubMed
Barata, A.M., Rocha, F., Oliveira, J., et al. (2016). Implementation of a PGR Global Documentation System in Portugal. In: Maxted, N., Dulloo, M.E. and Ford-Lloyd, B.V. (eds.) Enhancing Crop Gene Pool Use: Capturing Wild Relative and Landrace Diversity for Crop Improvement. CAB International, Cambridge, pp. 441452.CrossRefGoogle Scholar
Bari, A., Amri, A., Street, K., et al. (2014). Predicting resistance to stripe (yellow) rust (Puccinia striiformis) in wheat genetic resources using focused identification of germplasm strategy. Journal of Agricultural Science, 152: 906916.Google Scholar
Bari, A., Street, K., Mackay, M., et al. (2012). Focused identification of germplasm strategy (FIGS) detects wheat stem rust resistance linked to environmental variables. Genetic Resources and Crop Evolution, 59: 14651481.CrossRefGoogle Scholar
Barthlott, W., Erdelen, W.R. and Rafiqpoor, D.M. (2014). Biodiversity and technical innovations: bionics. In: Lanzerath, D and Friele, M. (eds.) Concepts and Values in Biodiversity. Routledge, Cambridge, pp. 300315.Google Scholar
Bassi, F., Bentley, A., Charmet, G., Ortiz, R. and Crossa, J. (2016). Breeding schemes for the implementation of genomic selection in wheat (Triticum spp.). Plant Science, 242: 2336.Google Scholar
Baudoin, J.P., Rocha, O.J., Degreef, J., et al. (2008). In situ conservation strategy for wild Lima bean (Phaseolus lunatus L.) populations in the Central Valley of Costa Rica: a case study of short-lived perennial plants with a mixed mating system. In: Maxted, N., Ford-Lloyd, B.V., Kell, S.K., et al. (eds.) Crop Wild Relative Conservation and Use. CABI Publishing, Cambridge, pp. 364379.Google Scholar
Baxter, G. (1974). Fruits of the World in Danger. Gotham Book Mart, Cambridge.Google Scholar
Beattie, A. and Ehrlich, P.R. (2001). Wild Solutions: How Biodiversity Is Money in the Bank. Yale University Press, Cambridge.Google Scholar
Beentje, H.J. (2010). The Kew Plant Glossary: An Illustrated Dictionary of Plant Identification Terms. Royal Botanic Gardens, Cambridge.Google Scholar
Bellon, M., Gotor, E. and Caracciolo, F. (2015a). Conserving traditional varieties and improving livelihoods: how to assess the success of on-farm conservation projects. International Journal of Agricultural Sustainability 13: 167182.Google Scholar
Bellon, M., Gotor, E. and Caracciolo, F. (2015b). Assessing the effectiveness of projects supporting on-farm conservation of native crops: evidence from the High Andes of South America. World Development 70: 162176.Google Scholar
Bellon, M.R., Dulloo, E., Thormann, I, Sardos, J. and Burdon, J. (2017). In situ conservation – harnessing natural and human derived evolutionary forces to ensure future crop adaptation. Evolutionary Applications. https://doi.org/10.1111/eva.12521.CrossRefGoogle Scholar
Bellon, M.R., Pham, J.L. and Jackson, M.T. (1997). Genetic conservation: a role for rice farmers. In: Maxted, N., Ford-Lloyd, B.V. and Hawkes, J.G. (eds.) Plant Genetic Conservation: The in Situ Approach. Chapman & Hall, Cambridge, pp. 261289.Google Scholar
Bennett, S. and Maxted, N. (1997). An ecogeographic analysis of the Vicia narbonensis complex. Genetic Resources and Crop Evolution, 44: 411428.Google Scholar
Benson, D.A., Cavanaugh, M., Clark, K., et al. (2013). GenBank. Nucleic Acids Research. https://doi.org/10.1093/nar/gks1195.CrossRefGoogle Scholar
Bergamini, N., Padulosi, S., Ravi, S.B. and Yenagi, N. (2013). Minor millets in India: a neglected crop goes mainstream. In: Fanzo, J., Hunter, D., Borelli, T., et al. (eds.) Diversifying Food and Diets: Using Agricultural Biodiversity to Improve Nutrition and Health. Issues in Agricultural Biodiversity. Earthscan from Routledge, Cambridge, pp. 313325.Google Scholar
BGCI. (2018a). PlantSearch database. Botanic Garden Conservation International, Kew, UK. Available at: www.bgci.org/plant_search.php (accessed 6 August 2018).Google Scholar
BGCI. (2018b). BGCI’s Annual Member’s Review 2017. Botanical Garden Conservation International, Cambridge.Google Scholar
Bharucha, Z. and Pretty, J. (2010). The roles and values of wild foods in agricultural systems. Philosophical Transactions of the Royal Society B, 365(1554): 29132926.CrossRefGoogle ScholarPubMed
Bhullar, N.K., Street, K., Mackay, M., Yahiaoui, N. and Keller, B. (2009). Unlocking wheat genetic resources for the molecular identification of previously undescribed functional alleles at the Pm3 resistance locus. Proceedings of the National Academy of Sciences of the United States of America, 10695199524.Google Scholar
Bilz, M., Kell, S.P., Maxted, N. and Lansdown, R.V. (2011). European Red List of Vascular Plants. Publications Office of the European Union, Cambridge.Google Scholar
Bimpong, I.K., Manneh, B., Diop, B., et al. (2013). New quantitative trait loci for enhancing adaptation to salinity in rice from Hasawi, a Saudi landrace into three African cultivars at the reproductive stage. Euphytica, 200: 4560.CrossRefGoogle Scholar
Bimpong, I.K., Manneh, B., Diop, B., et al. (2014). New quantitative trait loci for enhancing adaptation to salinity in rice from Hasawi, a Saudi landrace, into three African cultivars at the reproductive stage. Euphytica, 200: 4560.CrossRefGoogle Scholar
Biodiversity Indicator Partnership. (2010). Biodiversity indicators and the 2010 Biodiversity Target: Outputs, experiences and lessons learnt from the 2010 Biodiversity Indicators Partnership. Available at: https://attachment.fbsbx.com/file_download.php?id=125191087651105&eid=ASvLJFDy-SfS_extnSRmO_foPRTc2X9gRJSbkvQHx9tIC75OwO8m3Y_VeTxEBh8zjbE&inline=1&ext=1383059566&hash=ASsHkIJbQqNBxkkt (accessed 20 October 2014).Google Scholar
Bioversity International. (2007). Guidelines for the development of crop descriptor lists. Bioversity Technical Bulletin 13. Bioversity International, Rome, Italy.Google Scholar
Bioversity International. (2016). Safeguarding and using crop wild relatives for food security and climate change adaptation. Available at: www.bioversityinternational.org/cwr/ (accessed 5 May 2016).Google Scholar
Bioversity International, FAO, PROINPA, INIAF and IFAD. (2013). Descriptors for Quinoa (Chenopodium quinoa Willd.) and Wild Relatives. Bioversity International, Cambridge; Fundación PROINPA, La Paz, Bolivia; Instituto Nacional de Innovación Agropecuaria y Forestal, La Paz, Bolivia; International Fund for Agricultural Development, Food and Agriculture Organization of the United Nations, Rome, Italy.Google Scholar
Bioversity International and University of Birmingham. (2017). Crop wild relative checklist and inventory descriptors v.1. Bioversity International, Rome, Italy. Available at: www.bioversityinternational.org/e-library/publications/detail/crop-wild-relative-checklist-and-inventory-descriptors-v1/ (accessed 4 January 2019).Google Scholar
Bishaw, Z. and Turner, M. (2008). Linking participatory plant breeding to the seed supply system. Euphytica, 163: 3144.Google Scholar
Bishaw, Z. and van Gastel, A.J.G. (2009). Variety release and policy options. In: Ceccarelli, S., Guimara, E.P. and Weltzien, E. (eds.) Plant Breeding and Farmer Participation. Food and Agriculture Organization of the United Nations, Cambridge, pp. 565587.Google Scholar
Blackmore, S. and Oldfield, S. (2017). Plant Conservation Science and Practice: The Role of Botanic Gardens. Cambridge University Press, Cambridge.Google Scholar
Bock, H. (1539). Kreuterbuch. Cambridge.Google Scholar
Bommer, D.F.R. (1991). The historical development of international collaboration in plant genetic resources. In: van Hintum, T.J.L., Frese, L. and Perret, P.M. (eds.) Searching for New Concepts for Collaborative Genetic Resources Management. Papers of the EUCARPIA/IBPGR Symposium, Wageningen, The Netherlands. International Crop Network Series No. 4. IBPGR, Rome, pp. 3–12.Google Scholar
Borrini-Feyerabend, G., Kothari, A. and Oviedo, G. (2004). Indigenous and Local Communities and Protected Areas: Towards Equity and Enhanced Conservation. IUCN, Cambridge.Google Scholar
Boshier, D., Loo, J. and Dawson, I. (2017). Forest and tree genetic resources. In: Hunter, D., Guarino, L., Spillane, C. and McKeown, P. (eds) Handbook of Agriculture Biodiversity. Routledge, Cambridge, pp. 4564.Google Scholar
Bowman, D.M.J.S. (2003). Australian landscape burning: a continental and evolutionary perspective. In: Abbott, I. and Burrows, N. (eds.) Fire in Ecosystems of South-West Western Australia: Impacts and Management. Backhuys Publishers, Cambridge, pp. 107118.Google Scholar
Bradley, B.A., Blumenthal, D.M., Wilcove, D.S. and Ziska, L.H. (2010). Predicting plant invasions in an era of global change. Trends in Ecology and Evolution, 5: 310318.Google Scholar
Breseghello, F. and Sorrells, M.E. ( 2006). Association analysis as a strategy for improvement of quantitative traits in plants. Crop Science, 46: 13231330.Google Scholar
Bronkhorst, S. (2014). Adaptation must be conflict sensitive. conflict-sensitive adaptation: use human rights to build social and environmental resilience. Brief 1. Indigenous Peoples of Africa Co-ordinating Committee and IUCN Commission on Environmental, Economic and Social Policy. Available at: www.iucn.org/downloads/tecs_csa_1_conflict_sensitive_adapation_bronkhorst.pdf (accessed 19 April 2017).Google Scholar
Brookfield, H.C. (2001). Exploring Agrodiversity. Cambridge: Columbia University Press, New York.Google Scholar
Brookfield, H.C., Padoch, C., Parsons, H. and Stocking, M. (2002). Cultivating Biodiversity: Understanding, Analysing and Using Agricultural Diversity. ITDG Publications, Cambridge.Google Scholar
Brookfield, H.C., Parsons, H. and Brookfield, M. (eds.) (2003). Agrodiversity: Learning from Farmers across the World. United Nations University Press, Cambridge.Google Scholar
Brooks, S. and Bubb, P. (2014). Developing Indicators for National Targets As Part of NBSAP Updating: Examples of the Biodiversity Indicator Development Framework in Practice. UNEP-WCMC, Cambridge.Google Scholar
Brown, A.H.D. (1989). Core collections: a practical approach to genetic resources management. Genome, 31: 818824.Google Scholar
Brown, A.H.D. (2000). The genetic structure of crop landraces and the challenge to conserve them in situ on farms. In: Brush, S.B. (ed.) Genes in the Field: On-Farm Conservation of Crop Diversity. Lewis Publishers, Cambridge, pp. 2948.Google Scholar
Brown, A.H.D. and Briggs, J.D. (1991). Sampling strategies for genetic variation in ex situ collections of endangered plant species. In: Falk, D.A. and Holsinger, K.E. (eds.) Genetics and Conservation of Rare Plants. Oxford University Press, Cambridge, pp. 99119.Google Scholar
Brown, A.H.D. and Hardner, C.M. (2000). Sampling the gene pools of forest trees for ex situ conservation. In: Young, A., Boshier, D. and Boyle, T. (eds.) Forest Conservation Genetics. Principles and Practice. CSIRO and CABI, Cambridge, pp. 185196.CrossRefGoogle Scholar
Brown, A.H.D. and Marshall, D.R. (1995). A basic sampling strategy: theory and practice. In: Guarino, L., Ramanatha Rao, V. and Reid, R. (eds.) Collecting Plant Genetic Diversity: Technical Guidelines. CAB International, Cambridge, pp. 7591.Google Scholar
Brummitt, N. and Bachman, S. (2010). Plants under Pressure: A Global Assessment. The first report of the IUCN Sampled Red List Index for Plants. Cambridge: Natural History Museum.Google Scholar
Brunsfels, O. (1530). Herbarium vivae icons. Argentorati, 3 tomes.Google Scholar
Brush, S.B. (1991). A farmer-based approach to conserving crop germplasm. Economic Botany, 45: 153165.Google Scholar
Brush, S.B. (2000). Genes in the Field: On-Farm Conservation of Crop Diversity. Lewis Publishers, Cambridge.Google Scholar
Buckler, E.S., Thornsberry, J.M. and Kresovich, S. (2001). Molecular diversity, structure and domestication of grasses. Genetics Research, 77(3): 213218.Google Scholar
Buddendorf-Joosten, J.M.C. and Woltering, E.J. (1994). Components of the gaseous environment and their effects on plant growth and development in vitro . Plant Growth Regulation, 15: 116.Google Scholar
Burgman, M.A. and Neet, C.R. (1989). Analyse des risques d'extinction des populations naturelles. Acta Oecologica, 10: 233243.Google Scholar
Burke, M.B., Lobell, D.B. and Guarino, L. (2009). Shifts in African crop climates by 2050, and the implications for crop improvement and genetic resources conservation. Global Environmental Change, 19: 317325.Google Scholar
Burley, F.W. (1988). Monitoring biological diversity for setting priorities in conservation. In: Wilson, E.O. and Peter, F.M. (eds.) Biodiversity. National Academy Press, Cambridge, pp. 227230.Google Scholar
Burlingame, B., Charrondière, U.R. and Mouille, B. (2009). Food composition is fundamental to the cross-cutting initiative on biodiversity for food and nutrition. Journal of Food Composition and Analysis, 22: 361365.Google Scholar
Burucharu, R.A., Sperling, L., Ewell, P. and Kirby, R. (2002). The role of research institutions in seed-related disaster relief: Seeds of Hope experiences in Rwanda. Disaster, 26: 288301.Google Scholar
Cahill, A.E., Aiello-Lammens, M.E., Fisher-Reid, M.C., et al. (2012). How does climate change cause extinction? Proceedings of the Royal Society B, 280: 20121890. https://doi.org/10.1098/rspb.2012.1890.CrossRefGoogle ScholarPubMed
Cairns, M. (ed.) (2015). Shifting Cultivation and Environmental Change: Indigenous People, Agriculture and Forest Conservation. Routledge, Cambridge.Google Scholar
Camacho Villa, T.C., Maxted, N., Scholten, M.A. and Ford-Lloyd, B.V. (2005). Defining and identifying crop landraces. Plant Genetic Resources: Characterization and Utilization, 3: 373384.Google Scholar
Campanelli, G., Acciarri, N.Campion, B., et al. (2015). Participatory tomato breeding for organic conditions in Italy. Euphytica, 204: 179197.CrossRefGoogle Scholar
Campbell, B.M. and Luckert, M.K. (eds.) (2002). Uncovering the Hidden Harvest; Valuation Methods for Woodland and Forest Resources. Earthscan, Cambridge.Google Scholar
Capistrano, G.C., Ries, D., Minoche, A., et al. (2014). Fine mapping of rhizomania resistance using in situ populations of the wild beet Beta vulgaris ssp. maritima . Proceedings of the Plant & Animal Genome, 22: 673.Google Scholar
Castañeda-Álvarez, N.P., de Haan, S., Juárez, H., et al. (2015). Ex situ conservation priorities for the wild relatives of potato (Solanum L. section Petota). PLoS ONE. https://doi.org/10.1371/journal.pone.0122599.Google Scholar
Castañeda-Álvarez, N.P., Khoury, C.K., Achicanoy, H.A., et al. (2016a). Global priorities for crop wild relative conservation for food security. Nature Plants, 2: 16022.Google Scholar
Castañeda-Álvarez, N.P., Khoury, C.K., Sosa, C.C., et al. (2016b). The distributions and ex situ conservation of crop wild relatives: a global approach. In: Maxted, N., Dulloo, E.M. and Ford-Lloyd, B.V. (eds.) Enhancing Crop Gene Pool Use: Capturing Wild Relative and Landrace Diversity for Crop Improvement. CAB International, Cambridge, pp. 149160.CrossRefGoogle Scholar
Castañeda-Álvarez, N.P., Vincent, H.A., Kell, S.P., Eastwood, R.J. and Maxted, N. (2011). Ecogeographic surveys. In: Guarino, L. Ramanatha Rao, V. and Goldberg, E. (eds.) Collecting Plant Genetic Diversity: Technical Guidelines. 2011 update. Bioversity International, Cambridge. Available at: http://cropgene bank.sgrp.cgiar.org/index.php?option=com_content&view=article&id=679 (accessed 6 March 2015).Google Scholar
CBD. (1992). Convention on Biological Diversity: Text and Annexes. Secretariat of the Convention on Biological Diversity, Cambridge, pp. 134.Google Scholar
CBD. (2002). 2010 Biodiversity Target. Secretariat of the Convention on Biological Diversity, Montreal. Available at: www.biodiv.org/2010-arget/default.aspx (accessed 3 April 2007).Google Scholar
CBD. (2010a). Global Strategy for Plant Conservation. Secretariat of the Convention on Biological Diversity, Cambridge.Google Scholar
CBD. (2010b). Strategic Plan for Biodiversity 2011–2020. Secretariat of the Convention on Biological Diversity, Cambridge. Available at: www.cbd.int/undb/media/factsheets/undb-factsheet-sp-en.pdf (accessed 6 March 2016).Google Scholar
CBD. (2010c). Identification, Monitoring, Indicators and Assessments. Secretariat of the Convention on Biological Diversity, Cambridge. Available at: www.cbd.int/indicators/intro.shtml (accessed 6 March 2016).Google Scholar
CBD. (2011). An Introduction to National Biodiversity Strategies and Action Plans. Secretariat of the Convention on BiologicalDiversity, Cambridge. Available at: www.cbd.int/nbsap/guidance.shtml (accessed 6 March 2016).Google Scholar
CBD. (2014). Global Biodiversity Outlook 4. Secretariat of the Convention on Biological Diversity, Cambridge.Google Scholar
CBOL Plant Working Group. (2009). A DNA barcode for land plants. Proceedings of the National Academy of Sciences, 106: 1279412797.Google Scholar
Ceballos-Lascuráin, H. (1996). Tourism, Ecotourism, and Protected Areas: The State of Nature-Based Tourism around the World and Guidelines for Its Development. IUCN, Cambridge.Google Scholar
Ceccarelli, S. (2014). GMO, organic agriculture and breeding for sustainability. Sustainability, 6: 42734286.Google Scholar
Ceccarelli, S., Galie, A. and Grando, S. (2013). Participatory breeding for climate change-related traits. In: Kole, C. (ed.) Genomics and Breeding for Climate-Resilient Crops, Vol. 1. Springer-Verlag, Cambridge, pp. 331376.Google Scholar
Ceccarelli, S., Galié, A., Mustafa, Y., Grando, S. (2012). Syria: participatory barley breeding – farmers’ input becomes everyone’s gain. In: Ruiz, M. and Vernooy, R. (eds.) Custodians of Biodiversity: Sharing Access and Benefits to Genetic Resources. Earthscan, IDRC, London, pp. 53–66.Google Scholar
Ceccarelli, S., Grando, S. and Booth, R.H. (1996). Farmers and crop breeders as partners. In: Eyzaguirre, P. and Iwanaga, M. (eds.) Participatory Plant Breeding. International Plant Genetic Resources Institute, Cambridge, pp. 99116.Google Scholar
Ceccarelli, S., Grando, S., Maatougui, M., et al. (2010). Plant breeding and climate changes. Journal of Agricultural Science, 148: 627638.Google Scholar
Ceccarelli, S., Guimaraes, E.P. and Weltzien, E. (2009). Plant Breeding and Farmer Participation. Food and Agriculture Organization of the United Nations, Cambridge.Google Scholar
Cernansky, R. (2015). Super vegetables. Nature, 522: 146148.Google Scholar
Chakraborty, S. and Newton, A.C. (2011). Climate change, plant diseases and food security, an overview. Plant Pathology, 60: 214.Google Scholar
Chambers, R. (2007). From PRA to PLA and Pluralism: Practice and Theory. Working Paper 286. Institute of Development Studies, Cambridge.Google Scholar
Chambers, R., Pacey, A. and Thrupp, L.A. (1989). Farmer First: Farmer Innovation and Agricultural Research. ITDG Publishing, Cambridge.Google Scholar
Chandra, S., Huaman, Z., Hari Krishna, S. and Ortiz, R. (2002). Optimal sampling strategy and core collection size of Andean tetraploid potato based on isozyme data – a simulation study. Theoretical Applied Genetics, 104: 13251334.Google Scholar
Chase, M.W. and Fay, M.F. (2009). Barcoding of plants and fungi. Science, 325: 682683.Google Scholar
Chen, J., Corlett, R.T. and Cannon, C.H. (2017). The role of botanic gardens in situ conservation. In: Blackmore, S. and Oldfield, S. (eds.) Plant Conservation Science and Practice: The Role of Botanic Gardens. Cambridge University Press, Cambridge, pp. 73–101.Google Scholar
Chivian, E. and Bernstein, A. (eds.) (2008). Sustaining Life: How Human Health Depends on Biodiversity. Center for Health and the Global Environment. Oxford University Press, Cambridge.Google Scholar
Christiansen, J.L., Raza, S., Jørnsgård, B., Mahmoud, S.A. and Ortiz, R. (2000). Potential of landrace germplasm for genetic enhancement of white lupin in Egypt. Genetic Resources and Crop Evolution, 47: 425430.Google Scholar
Christiansen, J.L., Raza, S. and Ortiz, R. (1999). White lupin (Lupinus albus) germplasm collection and preliminary in situ diversity assessment in Egypt. Genetic Resources and Crop Evolution, 46: 169174.Google Scholar
Christiansen, M.J., Andersen, S.B. and Ortiz, R. (2002). Diversity changes in an intensively bred wheat germplasm during the 20th century. Molecular Breeding, 9: 111.Google Scholar
Christinck, A., Weltzien, E. and Hoffman, V. (2005). Setting Breeding Objectives and Developing Seed Systems with Farmers. Margraf Publishers, Cambridge.Google Scholar
Cibrian-Jaramillo, A., Hird Meyer, A., Oleas, N., et al. (2013). What is the conservation value of a plant in a botanic garden? Using indicators to improve management of ex situ collections. The Botanical Review, 79: 1–19.Google Scholar
Cochran, W.G. (1977). Sampling Techniques, 3rd ed. John Wiley & Sons, Cambridge.Google Scholar
Convention on Biological Diversity. (2012). Global Strategy for Plant Conservation: 2011–2020. Botanic Gardens Conservation International, Cambridge.Google Scholar
Cook, F.E.M. (1995). Economic Botany Data Collection Standards. Royal Botanic Gardens, Kew, Cambridge.Google Scholar
Cooper, D., Vellvé, R. and Hobbelink, H. (eds.) (1992). Growing Diversity: Genetic Resources and Local Food Security. Intermediate Technology Publications, Cambridge.Google Scholar
Cox, G.W. (1993). Conservation Ecology. W.C. Brown, Cambridge.Google Scholar
Crane, P., Hopper, S.D., Raven, P.H. and Stevenson, D.W. (2009). Plant science research in botanic gardens. Trends in Plant Science, 14: 575577.Google Scholar
Crossa, J. and Vencovsky, R. (2011). Basic sampling strategies: theory and practice. In: Guarino, L., Ramanatha Rao, V. and Goldberg, E. (eds.) Collecting Plant Genetic Diversity: Technical Guidelines. 2011 Update. Bioversity International, Cambridge. Available at: http://cropgene bank.sgrp.cgiar.org/index.php?option=com_content&view=article&id=671 (accessed 13 August 2018).Google Scholar
Crossa, J., Burgueño, J., Dreisigacker, S., et al. (2007). Association analysis of historical bread wheat germplasm using additive genetic covariance of relatives and population structure. Genetics, 177: 18891913.Google Scholar
Crossa, J., Hernandez, C.M., Bretting, P., Eberhart, S.A and Taba, S. (1993). Statistical considerations for maintaining germplasm collections. Theoretical and Applied Genetics, 86, 673678.Google Scholar
Crow, J.F. and Denniston, C. (1988). Inbreeding and variance effective population numbers. Evolution, 42: 482495.Google Scholar
Cunningham, A. (2001). Applied Ethnobotany: People, Wild Plant Use and Conservation. Earthscan, Cambridge.Google Scholar
Dagne, E. (1998). Integration of traditional phytotherapy into general health care: an Ethiopian perspective. In: Prendergast, H.D.V., Etkin, N.L., Harris, D.R. and Houghton, P.J. (eds.) Plants for Food and Medicine. Royal Botanic Gardens, Kew, Richmond, UK, pp. 47–55.Google Scholar
Danielsen, F., Burgess, N.D., Balmford, A., et al. (2009). Local participation in natural resource monitoring: a characterization of approaches. Conservation Biology, 23: 3142.Google Scholar
Dansi, A. (2011). Collecting vegetatively propagated crops (especially roots and tubers). In: Guarino, L., Ramanatha Rao, V., Goldberg, E. (eds.) Collecting Plant Genetic Diversity: Technical Guidelines. 2011 update. Bioversity International, Cambridge. Available at: http://cropgene bank.sgrp.cgiar.org/index.php?option=com_content&view=article&id=666 (accessed 13 August 2018).Google Scholar
Davis, P.H. and Heywood, V.H. (1973). Principles of Angiosperm Taxonomy. Cambridge.Google Scholar
Davis, S., Heywood, V.H. and Hamilton, A.C. (1995). Centres of Plant Diversity: A Guide and Strategy for Their Conservation. WWF and International Union for Conservation of Nature and Natural Resources, Cambridge.Google Scholar
de Boef, W.S. and Subedi, A. (2017). Community biodiversity management. In: Hunter, D., Guarino, L., Spillane, C. and McKeown, P. (eds.) Handbook of Agriculture Biodiversity. Routledge, Cambridge, pp. 497509.Google Scholar
de Boef, W.S., Subedi, A., Peroni, N., Thijssen, M. and O'Keeffe, E. (2013a). Community Biodiversity Management: Promoting Resilience and the Conservation of Plant Genetic Resources. Earthscan/Routledge, Cambridge.Google Scholar
de Boef, W.S., Thijssen, M. and Subedi, A. (2013b). New professionalism and governance in plant genetic resource management. In: De Boef, W.S., Peroni, N., Subedi, A. and Thijssen, M.H. (eds.) Community Biodiversity Management: Promoting Resilience and the Conservation of Plant Genetic Resources. Earthscan, Cambridge, pp. 353364.Google Scholar
de Pourcq, K., Thomas, E., Arts, B., Vranckx, T. and van Damme, P. (2016). Understanding and resolving conflict between local communities and conservation authorities in Colombia. World Development, 93: 125135.Google Scholar
de Vicente, M.C. and Andersson, M.S. (2006). DNA Banks – Providing Novel Options for Gene banks? Topical reviews in Agricultural Biodiversity. International Plant Genetic Resources Institute, Cambridge.Google Scholar
de Vicente, M.C., Metz, T. and Alercia, A. (2004). Descriptors for Genetic Marker Technologies. FAO/Bioversity International, Cambridge.Google Scholar
Dempewolf, H., Eastwood, R.J., Guarino, L., et al. (2013). Adapting agriculture to climate change: a global initiative to collect, conserve, and use crop wild relatives. Agroecology and Sustainable Food Systems, 38: 369377.Google Scholar
Department of the Environment. (1996). Towards a Methodology for Costing Biodiversity Targets in the UK. Department of the Environment, Cambridge.Google Scholar
Deryng, D., Sacks, W.J., Barford, C.C. and Ramankutty, N. (2011). Simulating the effects of climate and agricultural management practices on global crop yield. Global Biogeochemical Cycles, 25: GB2006. https://doi.org/10.1029/2009GB003765.Google Scholar
Desclaux, D, Ceccarelli, S., Navazio, J., et al. (2012). Centralized or decentralized breeding: the potentials of participatory approaches for low-input and organic agriculture. In: Mammerts van Bueren, E.T. and Myers, J.R. (eds.) Organic Crop Breeding. Wiley-Blackwell, Cambridge, pp. 99124.Google Scholar
Devereau, A.D. (1994). Tropical Sweet Potato Storage: A Literature Review. Natural Resources Institute, Cambridge.Google Scholar
Díaz, S., Settele, J. and Brondízio, E. (2019). Summary for policymakers of the global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. IPBES Secretariat, Bonn. Available at: www.ipbes.net/sites/default/files/downloads/spm_unedited_advance_for_posting_htn.pdf (accessed 25 August 2019).Google Scholar
Dice, L.R. (1945). Measures of the amount of ecologic association between speciesEcology26: 297302.Google Scholar
di Falco, S. and Chavas, J.P. (2006). Crop genetic diversity, farm productivity and the management of environmental risk in rainfed agriculture. European Review of Agricultural Economics, 33: 289314.Google Scholar
DOI Foundation. (2015). DOI Handbook, Version 5. International DOI Foundation, Cambridge.Google Scholar
Donaldson, J.S. (2009). Botanic gardens science for conservation and global change. Trends in Plant Science, 14: 608613.Google Scholar
Dosmann, M.S. (2006). Research in the garden: averting the collections crisis. Botanical Review, 72: 207234.Google Scholar
Draper, D., Rosselló-Graell, A., García, C., Tauleigne Gomes, C. and Sérgio, C. (2003). Application of GIS in plant conservation programmes in Portugal. Biological Conservation, 113: 337349.Google Scholar
Dudley, N. (ed.) (2008). Guidelines for Applying Protected Area Management Categories. IUCN, Cambridge.Google Scholar
Dudley, N., Ford-Lloyd, B., Kell, S.P., Maxted, N. and Stolton, S. (2006). Food stores: using protected areas to secure crop genetic diversity. A research report by WWF, Equilibrium and University of Birmingham.Google Scholar
Dudley, N., Hocking, M. and Stolton, S. (2010). Precious places: getting the arguments right. In: Stolton, S. and Dudley, N. (eds.) Arguments for Protected Areas: Multiple Benefits for Conservation and Use. Earthscan, Cambridge, pp. 251264.Google Scholar
Dulloo, E., Hunter, D. and Leaman, D.L. (2014). Plant diversity in addressing food, nutrition and medicinal needs. In: Garib-Fakim, A. (ed.) Novel Plant Bioresources: Application in Food, Medicine and Cosmetics. Wiley-Blackwell, Cambridge, pp. 121.Google Scholar
Dulloo, M.E., Guarino, L., Engelmann, F., et al. (1999). Complementary conservation strategies for the genus Coffea with special reference to the Mascarene Islands. Genetic Resources and Crop Evolution, 45: 565579.Google Scholar
Dulloo, M.E., Labokas, J., Iriondo, J.M., et al. (2008). Genetic reserve location and design. In: Iriondo, J.M., Maxted, N. and Dulloo, E. (eds.) Plant Genetic Population Management. CAB International, Cambridge, pp. 2364.Google Scholar
Dulloo, E., Magos Brehm, J., Kell, P.S, Thormann, I. and Maxted, N. (2017). Template for the Preparation of a National Strategic Action Plan for the Conservation and Sustainable Use of Crop Wild Relatives. https://doi.org/10.7910/DVN/QH9XWB, Harvard Dataverse, V1.Google Scholar
Dwivedi, S.L., Britt, A.B., Tripathi, L., et al. (2015). Haploids: constraints and opportunities in crop improvement. Biotechnology Advances, 33: 812829.Google Scholar
Dwivedi, S.L., Ceccarelli, S., Grando, S., et al. (2017). Diversifying food systems in the pursuit of sustainable food production and healthy diets. Trends in Plant Science 22: 842856.Google Scholar
Dwivedi, S.L., Crouch, J.H., Mackill, D., et al. (2007). Molecularization of public sector crop breeding: progress, problems and prospects. Advances in Agronomy, 95: 163318.Google Scholar
Dwivedi, S.L., Perotti, E., Upadhyaya, H.D. and Ortiz, R. (2010). Sexual and asexual (apomixis) plant reproduction in the genomics era: exploring the mechanisms potentially useful in crop plants. Sexual Plant Reproduction, 23: 265279.Google Scholar
Dwivedi, S.L., Stalker, H.T., Blair, M.W., et al. (2008). Enhancing crop gene pools with beneficial traits using wild relatives. Plant Breeding Reviews, 30: 179230.Google Scholar
Ebert, A.E., Karihaloo, J.L. and Ferreira, M.E. (2006). Opportunities, limitations and needs for DNA banks. In: Carmen de Vicente, M. and Andersson, M.S. (eds.) DNA Banks – Providing Novel Options for Gene Banks? International Plant Genetic Resources Institute, Cambridge, pp. 6168.Google Scholar
ECPGR. (2012). Report of the 13th ECPGR Steering Committee Meeting held at the Federal Ministry of Agriculture, Forestry, Environment and Water Management, Austria on 4–7 December 2012. Available at: www.ecpgr.cgiar.org/about-ecpgr/steering-committee/13th-sc-meeting/ (accessed 6 March 2015).Google Scholar
ECPGR. (2017). ECPGR concept for on-farm conservation and management of plant genetic resources for food and agriculture. European Cooperative Programme for Plant Genetic Resources, Cambridge.Google Scholar
Egeland, G. and Harrison, G. (2013). Health disparities: promoting Indigenous Peoples’ health through traditional food systems and self-determination. In: Kuhnlein, H., Erasmus, B., Spigelski, D. and Burlingame, B. (eds.) Indigenous Peoples’ Food Systems & Well-Being Interventions and Policies for Healthy Communities. FAO and CINE, Rome.Google Scholar
Ehlenfeldt, M.K. and Ortiz, R. (1995). On the origins of endosperm dosage requirements in Solanum and other angiosperma genera. Sexual Plant Reproduction, 8: 189196.Google Scholar
El Bouhssini, M.E., Street, K., Amri, A., et al. (2011). Sources of resistance in bread wheat to Russian wheat aphid (Diuraphis noxia) in Syria identified using the focused identification of germplasm strategy (FIGS). Plant Breeding, 1309697.Google Scholar
El Bouhssini, M.E., Street, K., Joubi, A., Ibrahim, Z. and Rihawi, F. (2009). Sources of wheat resistance to Sunn pest, Eurygaster integriceps Puton, in Syria. Genetic Resources and Crop Evolution, 5610651069.Google Scholar
Ellis, R.H. (1988). The viability equation, seed viability nomographs, and practical advice on seed storage. Seed Science and Technology, 16: 2950.Google Scholar
Ellis, R.H, and Jackson, M.T. (1995). Accession regeneration in gene-banks: seed production environment and the potential integrity of seed accessions. Plant Genetic Resources Newsletter, 102: 2628.Google Scholar
Ellis, R.H. and Roberts, E.H. (1980). Improved equations for the prediction of seed longevity. Annals of Botany, 45: 1330.Google Scholar
Ellstrand, N.C. (2003). Dangerous Liaisons? When Cultivated Plants Mate with Their Wild Relatives. John Hopkins University Press, Cambridge.Google Scholar
El-Namaky, R., Sedeek, S., Dea Moukooumbi, Y., Ortiz, R. and Manneh, A. (2016). Microsatellite-aided screening for fertility restoration genes (Rf) facilitates hybrid improvement. Rice Science, 23: 160164.Google Scholar
Elzinga, C.L., Salzer, D.W., Willoughby, J.W. and Gibbs, J.P. (2001). Monitoring Plant and Animal Populations. Blackwell, Cambridge.Google Scholar
Endresen, D.T.F. (2010). Predictive association between trait data and ecogeographical data for Nordic barley landraces. Crop Science, 5024182430.Google Scholar
Endresen, D.T.F. (2017). Information, knowledge and agricultural biodiversity. In: Hunter, D. Guarino, L., Spillane, C. and McKeown, P.C. (eds.) Routledge Handbook of Agricultural Biodiversity. Routledge, Cambridge, pp. 647661.Google Scholar
Endresen, D.T.F., Street, K., Mackay, M., et al. (2012). Sources of resistance to stem rust (Ug99) in bread wheat and durum wheat identified using focused identification of germplasm strategy (FIGS). Crop Science, 52: 764773.Google Scholar
Endresen, D.T.F., Street, K., Mackay, M., Bari, A. and de Pauw, E. (2011). Predictive association between biotic stress traits and ecogeographical data for wheat and barley landraces. Crop Science, 5120362055.Google Scholar
Engelmann, F. (2000). Importance of cryopreservation for the conservation of plant genetic resources. In: Engelmann, F. and Hiroko, T. (eds.) Cryopreservation of Tropical Plant Germplasm. Current Research Progress and Application. Japan International Research Centre for Agricultural Sciences, Cambridge, Rome, pp. 822.Google Scholar
Engels, J., Thormann, I. and Metz, T. (2001). A species compendium for plant genetic resources conservation. In: Knueppfer, H, Ochsmann, J.(eds.) Proceedings of Symposium Dedicated to the 100th Birthday of Rudolf Mansfeld. Schriften zu Genetischen Ressourcen 18. ZADI/IBV, Cambridge. www.researchgate.net/publication/270451042_A_species_compendium_for_plant_genetic_resources_conservation Google Scholar
Engels, J.M.M., Dempewolf, H. and Henson-Apollonio, V. (2010). Ethical considerations in agro-biodiversity research, collecting, and use. Journal of Agriculture and Environmental Ethics, 24: 107126.Google Scholar
ENSCONET, (2009). ENSCONET seed collecting manual for wild species. Royal Botanic Gardens, Kew, Richmond, UK and Universidad Politéchnica de Madrid, Madrid. Available at: www.kew.org/sites/default/files/ENSCONET_Collecting_protocol_English.pdf (accessed 13 August 2018).Google Scholar
Esquinas-Alcázar , J.T. (1993). Plant genetic resources. In: Hayward, M.D., Bosemark, N.O. and Romagosa, I. (eds.) Plant Breeding: Principles and Prospects. Chapman & Hall, Cambridge, pp. 3351.Google Scholar
Esquinas-Alcázar, J. T., Frison, C. and Lopez, F. (2011). Introduction: a treaty to fight hunger – past negotiation, present situation and future challenges. In: Frison, C., Lopez, F. and Esquias-Alcaza, J.T. (eds.) Plant Genetic Resources and Food Security: Stakeholder Perspectives on the International Treaty on Plant Genetic Resources for Food and Agriculture. Issues in Agricultural Biodiversity. Earthscan from Cambridge, pp. 123.Google Scholar
EURISCO. (2019). European Search Catalogue for Plant Genetic Resources (EURISCO). Available at: https://eurisco.ipk-gatersleben.de/ (accessed 4 January 2019).Google Scholar
European Commission. (2010). Monitoring the impact of EU Biodiversity Policy. Available at: http://ec.europa.eu/environment/pubs/pdf/factsheets/biodiversity_fsh.pdf (accessed 25 October 2014).Google Scholar
European Environment Agency. (2012). Streamlining European Biodiversity Indicators 2020: Building a Future on Lessons Learnt from the SEBI 2010 Process. European Environment Agency, Cambridge. Available at: www.eea.europa.eu/publications/streamlining-european-biodiversity-indicators-2020 (accessed 18 October 2014).Google Scholar
Excoffier, L., Laval, G. and Schneider, S. (2005). ARLEQUIN ver. 3.0: an integrated software package for population genetics data analysis. Evolutionary Bioinformatics Online, 1: 4750.Google Scholar
Excoffier, L., Smouse, P. and Quattro, J. (1992). Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction dataGenetics, 131: 479491.Google Scholar
Eyzaguirre, P.B and Linares, O.F. (2004). Home Gardens and Agrobiodiversity. Smithsonian Books, Cambridge.Google Scholar
Falconer, D.S. and Mackay, T. (1996). Introduction to Quantitative Genetics. Longman Scientific Technical, Cambridge.Google Scholar
Fanzo, J., Hunter, D., Borelli, T. and Mattei, F. (2013). Diversifying Food and Diets: Using Agricultural Biodiversity to Improve Nutrition and Health. Issues in Agricultural Biodiversity. Earthscan, Cambridge.Google Scholar
FAO. (1989). Les Ressources Phytogenetiques: Leur Conservation in situ au service des besoins humains. FAO, Cambridge.Google Scholar
FAO. (1991). International Undertaking on Plant Genetic Resources. Annex III. Food and Agriculture Organization of the United Nations, Cambridge.Google Scholar
FAO. (1993). Code of Conduct for Germplasm Collecting and Transfer. Food and Agriculture Organization of the United Nations, Cambridge. Available at: www.fao.org/nr/cgrfa/cgrfa-global/cgrfa-codes/en (accessed 6 March 2015).Google Scholar
FAO. (1995). Dimensions of Need: An Atlas of Food and Agriculture. Food and Agriculture Organization of the United Nations, Cambridge.Google Scholar
FAO. (1996). Global Plan of Action. Food and Agriculture Organization of the United Nations, Cambridge, pp. 1510.Google Scholar
FAO. (1998). State of the World’s Plant Genetic Resources for Food and Agriculture. Food and Agriculture Organization of the United Nations, Cambridge. Available at: www.fao.org/agriculture/crops/thematic-sitemap/theme/seeds-pgr/sow/en/ (accessed 6 March 2015).Google Scholar
FAO. (1999). Technical Meeting on the Methodology of the World Information and Early Warning System on Plant Genetic Resources. Food and Agriculture Organization of the United Nations, Cambridge. Available at: www.apps3.fao.org/views/prague/technical (accessed 13 August 2018).Google Scholar
FAO. (2001). International Treaty on Plant Genetic Resources for Food and Agriculture. Food and Agriculture Organization of the United Nations, Cambridge. Available at: www.fao.org/ag/cgrfa/itpgr.htm (accessed 6 March 2015).Google Scholar
FAO. (2008). Climate Change and Biodiversity for Food and Agriculture. Food and Agriculture Organization of the United Nations, Cambridge.Google Scholar
FAO. (2010a). Second Report on the State of the World’s Plant Genetic Resources for Food and Agriculture. Food and Agriculture Organization of the United Nations, Cambridge. Available at: www.fao.org/agriculture/seed/sow2/en/ (accessed 25 July 2013).Google Scholar
FAO. (2010b). World Programme for the Census of Agriculture. Food and Agriculture Organization of the UN, Cambridge.Google Scholar
FAO. (2011b). Introduction to the International Treaty on Plant Genetic Resources for Food and Agriculture. Food and Agriculture Organization of the United Nations, Cambridge.Google Scholar
FAO. (2011a). Second Global Plan of Action for Plant Genetic Resources for Food and Agriculture. Food and Agriculture Organization of the United Nations, Cambridge. Available at: www.fao.org/docrep/015/i2624e/i2624e00.htm (accessed 6 March 2015).Google Scholar
FAO. (2011c). Thirteenth Regular Session of the Commission on the Genetic Resources for Food and Agriculture, CGRFA-13/11/Report. Food and Agriculture Organization of the United Nations, Cambridge. Available at: www.fao.org/docrep/meeting/024/mc192e.pdf (accessed 6 March 2015).Google Scholar
FAO. (2011d). Satellite Technology Yields New Forest Loss Estimates. Food and Agriculture Organisation of the UN, Cambridge. Available at: www.fao.org/news/story/en/item/95180/icode/ (accessed 1 August 2013).Google Scholar
FAO. (2012a). Second Report on the Global Plan of Action for Plant Genetic Resources for Food and Agriculture. Food and Agriculture Organization of the United Nations, Cambridge.Google Scholar
FAO. (2012b). Food Security and Climate Change. High Level Panel of Experts on Food Security and Nutrition Report. Food and Agriculture Organisation of the United Nations, Cambridge.Google Scholar
FAO. (2012c). Towards the establishment of a global network for in situ conservation and on-farm management of plant genetic resources for food and agriculture. Report from Technical Workshop. Available at: http://typo3.fao.org/fileadmin/templates/agphome/documents/PGR/Reports/Report-Technical_workshop_131112.pdf (accessed 11 March 2019).Google Scholar
FAO. (2013b). Draft Standard Voluntary Reporting Format. Food and Agriculture Organization of the United Nations, Cambridge. Available at: www.planttreaty.org/sites/default/files/gb5w18a1e_Reporting_format.pdf (accessed 6 June 2016).Google Scholar
FAO. (2013a). Global Wheat Rust Monitoring System. Food and Agriculture Organisation of the UN, Cambridge. Available at: www.fao.org/agriculture/crops/rust/stem/rust-report/stem-ug99racettksk/en/ (accessed 1 August 2013).Google Scholar
FAO. (2013c). Towards the establishment of a global network for in situ conservation and on-farm management of PGRFA. Report of Technical Workshop held in Rome, Italy, 13 November 2012. Food and Agriculture Organization of the United Nations, Rome. Available at: www.fao.org/agriculture/crops/core-themes/theme/seeds-pgr/itwg/6th/technical-workshop/en/ (accessed 5 April 2013).Google Scholar
FAO. (2014a). Concept Note on Global Networking on in situ Conservation and On-Farm Management of Plant Genetic Resources for Food and Agriculture. Information document to the 7th Session of the Intergovernmental Working Group on Plant Genetic Resources for Food and Agriculture (CGRFA/WG-PGR-7/14/Inf.3), Commission for Genetic Resources for Food and Agriculture, Rome, Italy. Available at: www.fao.org/3/a-ml477e.pdf (accessed 6 March 2016).Google Scholar
FAO. (2014b). Gene Bank Standards for Plant Genetic Resources for Food and Agriculture. Rev. ed. Food and Agriculture Organization of the United Nations, Cambridge. Available at: www.fao.org/3/a-i3704e.pdf (accessed 6 March 2018).Google Scholar
FAO. (2015a). Voluntary Guidelines to Support the Integration of Genetic Diversity into National Climate Change Adaptation Planning. Commission on Genetic Resources for Food and Agriculture and Food and Agriculture Organization of the United Nations, Cambridge. Available at: www.fao.org/3/a-ml4940e.pdf (accessed 9 June 2016).Google Scholar
FAO. (2015c). Reporting Format for Monitoring the Implementation of the Second Global Plan of Action for Plant and Genetic Resources for Food and Agriculture. Food and Agriculture Organization of the United Nations, Cambridge. Available at: www.fao.org/3/a-ml478e.pdf (accessed 9 June 2015).Google Scholar
FAO. (2015b). Guidelines for Developing a National Strategy for Plant Genetic Resources for Food and Agriculture. Food and Agriculture Organization of the United Nations, Cambridge. Available at: www.fao.org/3/a-i4917e.pdf (accessed 13 April 2019).Google Scholar
FAO. (2016). FAOSTAT. Food and Agriculture Organization of the United Nations, Cambridge. Available at: http://faostat.fao.org/site/339/default.aspx (accessed 11 May 2016).Google Scholar
FAO. (2019). First State of the World Report on Biodiversity for Food and Agriculture. Food and Agriculture Organization of the United Nations, Cambridge.Google Scholar
Farming Matters. (2016). Access and Benefit Sharing of Genetic Resources: Making it Work for Family Farmers. ILEIA, Cambridge.Google Scholar
Farooq, S. and El-Azam, F. (2004). Co-existence of salt and drought tolerance in Triticeae. Hereditas, 135: 205210.Google Scholar
Fatihah, N.H.N., Maxted, N. and Rico Acre, L. (2012). Taxonomic study of Psophocarpus Neck. ex DC. (Leguminosae, Papilionoideae). South African Journal of Botany, 83: 7888.Google Scholar
Fay, M. (2003). Using genetic data to help guide decisions about sampling. In: Smith, R.D., Dickie, J.B., Linington, S.H., Pritchard, H.W. and Probert, R.J. (eds.) Seed Conservation: Turning Science into Practice. Royal Botanic Gardens, Kew, Cambridge, pp. 8996.Google Scholar
Fay, M., Qamaruz-Zaman, F., Chase, M.W. and Samual, R. (2004). Military and Monkey Orchids – What Do We Have in England? English Nature Research Reports, No. 607. Proceedings of a Conservation Genetic Workshop held at the Royal Botanic Gardens, Kew, 27 November 2001. Natural England, Peterborough.Google Scholar
Felsenstein, F. (2016). Theoretical Evolutionary Genetics. University of Washington, Cambridge.Google Scholar
Ferguson, M.E., Ford-Lloyd, B.V., Robertson, L.D., Maxted, N. and Newbury, H.J. (1998a). Mapping the geographical distribution of genetic variation in the genus Lens for the enhanced conservation of plant genetic diversity. Molecular Ecology, 7: 17431755.Google Scholar
Ferguson, M.E., Robertson, L.D., Ford-Lloyd, B.V., Newbury, H.J. and Maxted, N. (1998b). Contrasting genetic variation amongst lentil landraces from different geographical origins. Euphytica, 102: 265273.Google Scholar
Fisher, R.A. (1930). The Genetical Theory of Natural Selection. Claredon Press, Cambridge.Google Scholar
Fitzgerald, H., Korpelainen, H. and Veteläinen, M. (2016). Developing a crop wild relative strategy for Finland. In: Maxted, N., Dulloo, E.M. and Ford-Lloyd, B.V. (eds.) Enhancing Crop Gene Pool Use: Capturing Wild Relative and Landrace Diversity for Crop Improvement. CAB International, Cambridge, pp. 206216.Google Scholar
Foden, W.B., Butchart, S.H.M., Stuart, S.N., et al. (2013). Identifying the world’s most climate change vulnerable species: a systematic trait-based assessment of all birds, amphibians and corals. PLoS One 8(6): e65427. https://doi.org/10.1371/journal.pone.0065427.Google Scholar
Foden, W.B., Mace, G., Vié, J.-C., et al. (2009). Species susceptibility to climate change impacts. In: Vié, J.-C., Hilton-Taylor, C. and Stuart, S.N. (eds.). Wildlife in a Changing World ‒ An Analysis of the 2008 IUCN Red List of Threatened Species. IUCN, Cambridge, pp. 7788.Google Scholar
Foley, M. and Clarke, S. (2005). Orchids of the British Isles. Griffin Press, Cambridge.Google Scholar
Foley, J.A., Ramankutty, N., Brauman, K.A., et al. (2011). Solutions for a cultivated planet. Nature 478: 337342.Google Scholar
Ford-Lloyd, B. and Maxted, N. (1993). Preserving diversity. Nature, 361: 579.Google Scholar
Ford-Lloyd, B.V., Engels, J.M.M. and Jackson, M. (2014). Genetic resources and conservation challenges under the threat of climate change. In: Jackson, M., Ford-Lloyd, B.V. and Parry, M. (eds.) Plant Genetic Resources and Climate Change – A 21st Century Perspective. CAB International, Cambridge, pp. 1637.Google Scholar
Ford-Lloyd, B.V., Kell, S.P. and Maxted, N. (2008). Establishing conservation priorities for crop wild relatives. In: Maxted, N., Ford-Lloyd, B.V., Kell, S.P., et al. (eds.) Crop Wild Relative Conservation and Use. CAB International, Cambridge, pp. 110119.Google Scholar
Franco, J. and Crossa, J. (2005). The modified location model for classifying genetic resources. I: Association between categorical and continuous variables. Crop Science, 42: 17191726.Google Scholar
Franco, J., Crossa, J., Taba, S. and Shands, H. (2003). A multivariate method for classifying cultivars and studying group × environment × trait Interaction. Crop Science, 43: 12491258.Google Scholar
Franco, J., Crossa, J., Villaseñor, J., Taba, S. and Eberhart, S.A. (1998). Classifying genetic resources by categorical and continuous variables. Crop Science, 38: 16881696.Google Scholar
Franco, J., Crossa, J., Villaseñor, J., et al. (1999). A two stages, three-way method for classifying genetic resources in multiple environments. Crop Science, 39: 259267.Google Scholar
Frankel, O.H. and Bennett, E. (1970). Genetic Resources in Plants – Their Exploration and Conservation. Blackwell, Cambridge.Google Scholar
Frankel, O.H. and Brown, A.H.D. (1984). Current plant genetic resources – a critical appraisal. In: Bansal, A.H.C., Chopra, V.L., Joshi, B.C. and Sharma, R.P. (eds.) Genetics: New Frontiers (vol. IV). Oxford & IBH Publishing, Cambridge.Google Scholar
Frankel, O.H., Brown, A.H.D. and Burdon, J.J. (1995). The Conservation of Plant Biodiversity. Cambridge University Press, Cambridge.Google Scholar
Frankel, O.H. and Soulé, M.E. (1981). Conservation and Evolution. Cambridge University Press, Cambridge.Google Scholar
Frankham, R., Ballou, J.D. and Briscoe, D.A. (2002). Introduction to Conservation Genetics. Cambridge University Press, Cambridge.Google Scholar
Frankham, R., Bradshaw, C.J.A. and Brook, B.W. (2014). Genetics in conservation management: revised recommendations for the 50/500 rules, Red List criteria and population viability analyses. Biological Conservation, 170: 5663. https://doi.org/10.1016/j.biocon.2013.12.036.Google Scholar
Franklin, I.R. (1980). Evolutionary change in small populations. In: Soulé, M.E. and Wilcox, B.A. (eds.) Conservation Biology: An Evolutionary-Ecological Perspective. Sinauer Associates, Cambridge, pp. 135149.Google Scholar
Franzén, M., Schweiger, O. and Betzholtz, P.-E. (2012). Species-area relationships are controlled by species traits. PLoS ONE, 7(5): e37359. https://doi.org/10.1371/journal.pone.0037359.Google Scholar
Freese, C.H. (1998). Wild Species As Commodities: Managing Markets and Ecosystems for Sustainability. Island Press, Cambridge.Google Scholar
Friis-Hansen, E. and Sthapit, B. (2000). Participatory Approaches to the Conservation and Use of Plant Genetic Resources. International Plant Genetic Resources Institute (IPGRI), Cambridge.Google Scholar
Frison, E., Cherfas, J. and Hodgkin, T. (2011). Agricultural biodiversity is essential for a sustainable improvement in food and nutrition security. Sustainability 3: 238253.Google Scholar
Frodin, D.G. (2001). Guide to the Standard Floras of the World, 2nd ed. Cambridge University Press, Cambridge.Google Scholar
Frodin, D.G. (2011). Guide to Standard Floras of the World: An Annotated, Geographically Arranged Systematic Bibliography of the Principal Floras, Enumerations, Checklists and Chorological Atlases of Different Areas, 2nd ed. Cambridge University Press, Cambridge.Google Scholar
Frost, G.H. and Bond, I. (2008). The CAMPFIRE programme in Zimbabwe: Payments for wildlife services. Ecological Economics, 65: 776787.Google Scholar
Gabrielian, E. and Zohary, D. (2004). Wild relatives of food crops native to Armenia and Nakhichevan. Flora Mediterranea, 14: 580.Google Scholar
Galvin, M. and Haller, T. (eds.) (2008). People, Protected Areas and Global Change: Participatory Conservation in Latin America, Africa, Asia and Europe, Perspectives of the Swiss National Centre of Competence in Research (NCCR) North-South, vol 3. University of Bern, Geographica Bernensia, Bern.Google Scholar
Gao, L., Chen, W., Jiang, W., et al. (2000). Genetic erosion in Northern marginal population of the common wild rice Oryza rufipogon Griff. and its conservation, revealed by the change of population genetic structure. Hereditas, 133: 4753.Google Scholar
Garnett, S.T., Burgess, N.D., Fa, J.E., et al. (2018). A spatial overview of the global importance of indigenous lands for conservation. Nature Sustainability, 1: 369374.Google Scholar
Gauch, H.G. (2006). Winning the accuracy game. American Scientist, 94: 133141.Google Scholar
Gebauer, J., Adam, Y.O., Sanchez, A.C., et al. (2016). Africa’s wooden elephant: the baobab tree (Adonsonia digitata L.) in Sudan and Kenya: a review. Genetic Resources and Crop Evolution, 63: 377399.Google Scholar
Gerard, J. (1597). The Herball or Generall Historie of Plantes, 1st ed. John Norton, London.Google Scholar
Gillespie, J.H. (1998). Population Genetics – A Concise Guide. John Hopkins University Press, Cambridge.Google Scholar
Gillman, M. (1997). Plant population ecology. In: Maxted, N., Ford-Lloyd, B.V. and Hawkes, J.G. (eds.) Plant Genetic Conservation: The in situ Approach. Chapman & Hall, Cambridge, pp. 181185.Google Scholar
Global Witness. (2016). On Dangerous Ground. Global Witness, Cambridge.Google Scholar
Glowka, L., Burhenne-Guilmin, F., Synge, H., McNeely, J.A., Gündling, L. (1994). A Guide to the Convention on Biological Diversity. IUCN Environmental Law and Policy Paper No. 30.Google Scholar
Godfray, H.C.J., Beddington, J.R., Crute, I.R., et al. (2010). Food security: the challenge of feeding 9 billion people. Science, 327: 812818.Google Scholar
Goldsmith, F.B. (1991). Vegetation monitoring. In: Goldsmith, F.B. (ed.) Monitoring for Conservation and Ecology. Chapman & Hall, Cambridge, pp. 7786.Google Scholar
González-Orozco, C., Brown, A., Knerr, N., Miller, J. and Doyle, J. (2012). Hotspots of diversity of wild Australian soybean relatives and their conservation in situ. Conservation Genetics. https://doi.org/10.1007/s10592-012-0370-x.Google Scholar
Gotor, E. and Irungu, C. (2010). The impact of bioversity international’s African leafy vegetables programme in Kenya. Impact Assessment Project Appraisal 28: 4155.Google Scholar
Gottfried, M., Pauli, H., Futschik, A., et al. (2012 ). Continent-wide response of mountain vegetation to climate change. Nature Climate Change, 2: 111115.Google Scholar
Gough, R. and Moore-Gough, C. (2011). The Complete Guide to Saving Seeds. Storey Publishing, Cambridge.Google Scholar
Graner, A., Andersson, M.S. and de Vicente, M.C. (2006). A model of DNA banking to enhance the management, distribution and use of ex situ stored PGR. In: de Vicente, M.C. and Andersson, M.S. (eds.) DNA Banks – Providing Novel Options for Gene Banks? Topical reviews in Agricultural Biodiversity. International Plant Genetic Resources Institute, Cambridge, pp. 6975.Google Scholar
Green, N., Campbell, G., Tulloch, R. and Scholten, M. (2009). Scottish landrace protection scheme. In: Veteläinen, M., Negri, V. and Maxted, N. (eds.) European Landraces: On-farm Conservation, Management and Use. Bioversity Technical Bulletin 15. Bioversity International, Cambridge, pp. 233243.Google Scholar
Gregory, P.J., Johnson, S.N., Newton, A.C. and Ingram, J.S.I. (2009). Integrating pests and pathogens into the climate change/food security debate. Journal of Experimental Botany, 60: 28272838.Google Scholar
Grobman, A., Salhuana, W., Sevilla, R. and Mangelsdorf, P.C. (1961). Races of maize in Peru: their origins, evolution and classification. National Academy of Sciences – National Research Council Publication 915, Washington, DC.Google Scholar
Groombridge, B. and Jenkins, M.D. (2000). Global Biodiversity: Earth’s Living Resources in the 21st Century. Prepared for UNEP World Conservation Monitoring Centre. World Conservation Press, Cambridge.Google Scholar
Groombridge, B. and Jenkins, M. (2002) World Atlas of Biodiversity. University of California Press, Cambridge.Google Scholar
Groot, S.P.C., de Groot, L., Kodde, J. and vanTreuren, R. (2015). Prolonging the longevity of ex situ conserved seeds by storage under anoxia. Plant Genetic Resources Characterization and Utilization, 13: 1826.Google Scholar
Guarino, L. (1995). Mapping the eco-geographic distribution of biodiversity. In: Guarino, L., Rao, V.R. and Reid, R. (eds.) Collecting Plant Genetic Diversity: Technical Guidelines. CAB International, Cambridge, pp. 287315.Google Scholar
Guarino, L. and Friis-Hansen, E. (1995). Collecting plant genetic resources and documenting associated indigenous knowledge in the field: a participatory approach. In: Guarino, L., Ramanatha Rao, V. and Reid, R. (eds.) Collecting Plant Genetic Diversity: Technical Guidelines. CAB International, Cambridge, pp. 345366.Google Scholar
Guarino, L., Jarvis, A., Hijmans, R.J. and Maxted, N. (2002). Geographic Information Systems (GIS) and the Conservation and Use of Plant Genetic Resources. In: Engels, J.M.M., Ramanatha Rao, V., Brown, A.H.D. and Jackson, M.T. (eds.) Managing Plant Genetic Diversity. International Plant Genetic Resources Institute (IPGRI), Cambridge, pp. 387404.Google Scholar
Guarino, L., Maxted, N. and Chiwona, E.A. (2006). A Methodological Model for Ecogeographic Surveys of Crops. IPGRI Technical Bulletin No. 9. IPGRI, Cambridge, pp. 158.Google Scholar
Guarino, L., Ramanatha Rao, V. and Goldberg, E. (eds.) (2012). Collecting Plant Genetic Diversity: Technical Guidelines. 2011 Update. Bioversity International, Cambridge. Available at: https://cropgene bank.sgrp.cgiar.org/index.php/procedures-mainmenu-242/collecting (accessed 13 August 2018).Google Scholar
Guarino, L., Ramanatha Rao, V. and Reid, R. (eds.) (1995). Collecting Plant Genetic Diversity: Technical Guidelines. CAB International, Cambridge.Google Scholar
Guisan, A. and Zimmermann, N.E. (2000). Predictive habitat distribution models in ecology. Ecological Modelling, 135: 147186.Google Scholar
Guo, Q.F. (2014). Species invasions on islands: searching for general patterns and principles. Landscape Ecology, 29: 11231131.Google Scholar
Guralnick, R. (2007). Differential effects of past climate warming on mountain and flatland species distributions: a multispecies North American mammal assessment. Global Ecological Biogeography, 16: 1423.Google Scholar
Haddad, N. (2000). Corridor length and patch colonization by a butterfly, Junonia coenia . Conservation Biology, 14: 738745.Google Scholar
Hajjar, R. and Hodgkin, T. (2007). The use of wild relatives in crop improvement: a survey of developments over the last 20 years. Euphytica, 156: 113.Google Scholar
Haldane, J.B.S. (1932). The Causes of Evolution. Longmans, Green, & Co., Cambridge.Google Scholar
Hamilton, A. and Hamilton, P. (2006). Plant Conservation: An Ecosystems Approach. Earthscan, Cambridge.Google Scholar
Hammer, K. (1990). Botanical checklists prove useful in research programmes on cultivated plants. Diversity, 6(3–4): 3134.Google Scholar
Hammer, K. (2001). Contributions of home gardens to our knowledge of cultivated plant species: the Mansfeld approach. In: Watson, J.W. and Eyzaguirre, P.B. (eds.) Home Gardens and in situ Conservation of PGR in Farming Systems. International Plant Genetic Resources Institute, Cambridge.Google Scholar
Hammer, K., Laghetti, G. and Perrino, P. (1999). A checklist of the cultivated plants of Ustica (Italy). Genetic Resources and Crop Evolution 46: 95106.Google Scholar
Hamon, S., Dussert, S., Noirot, M., Anthony, F. and Hodgkin, T. (1995). Core collections: accomplishment and challenges. Plant Breeding Abstracts, 65: 11251133.Google Scholar
Hamrick, J.L. and Godt, M. (1996). Effects of life history traits on genetic diversity in plant species. Philosophical Transactions of the Royal Society B: Biological Sciences, 351: 12911298.Google Scholar
Hanna, W.W. and Towill, L.E. (1995). Long-term pollen storage. Plant Breeding Reviews, 13: 179207.Google Scholar
Hannah, L. (2008). Protected areas and climate change. Annals of the New York Academy of Sciences, 1134: 201212.Google Scholar
Hannan, R. and Hellier, B.C. (1999). Temperate legume conservation. In: Pavek, D.S., Lamboy, W.F. and Garvey, E.J. (eds.) Ecogeographic study of Vitis species: Final Report for Caloosa and Sweet Mountain Grapes. Unpublished Report, USDA Pullman.Google Scholar
Hanson, J. (2011). Forage grass genetic resources. In: Guarino, L., Ramanatha Rao, V., Goldberg, E. (eds.) Collecting Plant Genetic Diversity: Technical Guidelines. 2011 Update. Bioversity International, Cambridge. Available at: https://cropgenebank.sgrp.cgiar.org/index.php/crops-mainmenu-367/forage-grasses-mainmenu-27 (accessed 13 August 2018).Google Scholar
Hardin, G. (1968). The tragedy of the commons. Science, 162: 12431248.Google Scholar
Hardon, J. (1996). The global context: breeding and crop genetic diversity. In: Eyzaguirre, P. and Iwanaga, M. (eds.) Participatory Plant Breeding. International Plant Genetic Resources Institute, Cambridge, pp. 12.Google Scholar
Hardy, G.H. (1908). Mendelian proportions in a mixed populationScience, 28: 4950.Google Scholar
Hargreaves, S., Maxted, N., Hirano, R., et al. (2010). Islands as refugia of Trifolium repens genetic diversity. Conservation Genetics, 11: 13171326.Google Scholar
Harker, D., Libby, G., Harker, K., Evans, S., and Evans, M. (1999). Landscape Restoration Handbook. Lewis Publishers, Cambridge.Google Scholar
Harlan, J.R. and de Wet, J.M.J. (1971). Towards a rational classification of cultivated plants. Taxon, 20: 509517.Google Scholar
Harper, J.L. (1977). Population Biology of Plants. Academic Press, Cambridge.Google Scholar
Harris, J.A. (1911). The biometric proof of the pure line theory. American Naturalist, 45: 346363.Google Scholar
Harris, J.G. and Woolf Harris, M. (2001). Plant Identification Terminology: An Illustrated Glossary. Spring Lake Publishing, Cambridge.Google Scholar
Hawkes, J.G. (1978). Conservation and Agriculture. Duckworth, Cambridge.Google Scholar
Hawkes, J.G. (1980). Crop Genetic Resources Field Collection Manual. IBPGR/EUCARPIA, Cambridge, pp. 137.Google Scholar
Hawkes, J.G. (1983). The Diversity of Crop Plants. Harvard University Press, Cambridge.Google Scholar
Hawkes, J.G., Maxted, N., Ford-Lloyd, B.V. (2000) The ex situ Conservation of Plant Genetic Resources. Kluwer Academic Publishers, Cambridge.Google Scholar
Hawkes, J.G., Maxted, N. and Zohary, D. (1997). Reserve design. In: Maxted, N., Ford-Lloyd, B.V. and Hawkes, J.G. (eds.) Plant Genetic Conservation: The in situ Approach. Chapman & Hall, Cambridge, pp. 210230.Google Scholar
Hawksworth, D.L. and Kalin-Arroya, M.T. (1995). Magnitude and distribution of biodiversity. In: Heywood, V.H. (ed.) Global Biodiversity Assessment. Cambridge University Press, Cambridge, pp. 107–191.Google Scholar
Hawtin, G. and Fowler, L. (2011). The global crop diversity trust. In: Frison, C., López, F. and Esquinas-Alcázar, J.T. (eds.) Plant Genetic Resources and Food Security. FAO, Biodiversity International and Earthscan, Cambridge, pp. 209221.Google Scholar
Hay, F.R. and Probert, R.J. (2011). Collecting and handling seeds in the field. In: Guarino, L., Ramanatha Rao, V. and Goldberg, E. (eds.) Collecting Plant Genetic Diversity: Technical Guidelines. 2011 Update. Bioversity International, Cambridge. Available at: http://cropgene bank.sgrp.cgiar.org/index.php?option=com_content&view=article&id=655 (accessed 13 August 2018).Google Scholar
Hayek, L.C. and Buzas, M.A. (1997). Surveying Natural Populations. Columbia University Press, Cambridge.Google Scholar
Hegay, S., Geleta, M., Bryngelsson, T., et al. (2014). Introducing host plant resistance to anthracnose in Kyrgyz beans through inoculation-based and marker-aided selection. Plant Breeding, 133: 8691.Google Scholar
Hegay, S., Geleta, M., Bryngelsson, T., et al. (2013a). Comparing genetic diversity and population structure of common beans grown in Kyrgyzstan using microsatellites. Scientific Journal of Crop Science, 1: 6375.Google Scholar
Hegay, S., Ortiz, R, Gustavsson, L., Persson, H. and Geleta, M. (2013b). Marker-aided breeding for resistance to bean common mosaic virus in Kyrgyz bean cultivars. Euphytica, 193: 6778.Google Scholar
Heinonen, M. (2016). Landrace inventories and recommendations for in situ conservation in Finland. In: Maxted, N., Ehsan Dulloo, M. and Ford-Lloyd, B.V. (eds.) Enhancing Crop Gene Pool Use: Capturing Wild Relative and Landrace Diversity for Crop Improvement. CAB International, Cambridge, pp. 335341.Google Scholar
Hellawell, J.M. (1991). Development of a rationale for monitoring. In: Goldsmith, F.B. (ed.) Monitoring for Conservation and Ecology. Chapman & Hall, Cambridge, pp. 114.Google Scholar
Hellier, B.C. (2000). Genetic, morphologic, and habitat diversity of two species of Allium native to the Pacific Northwest, USA and their implications for in situ seed collection for the National Plant Germplasm System. MSc thesis, Washington State University, Pullman, WA.Google Scholar
Hernandez, P., Graham, C.G., Master, L. and Albert, D. (2006). The effect of sample size and species characteristics on performance of different species distribution modelling models. Ecography, 29: 773785.Google Scholar
Hertel, T.W., Burke, M.B. and Lobell, D.B. (2010). The poverty implications of climate-induced crop yield changes by 2030. Global Environmental Change, 20: 577585.Google Scholar
Heslop-Harrison, J.S. and Schwarzacher, T. (2007). Domestication, genomics and the future for banana. Annals of Botany, 100: 10731084.Google Scholar
Heywood, V.H. (1987). The changing role of botanic gardens. In: Bramwell, D., Heywood, V.H. and Synge, H. (eds.) Botanic Gardens and the World Conservation Strategy. Academic Press, London, pp. 13–18.Google Scholar
Heywood, V.H. (1994). The measurement of biodiversity and the politics of implementation. In: Forey, P.L., Humphries, C.J. and Vane-Wright, R.I. (eds.) Systematics and Conservation Evaluation. Systematic Association Special Vol. 50. Oxford University Press, Cambridge, pp. 1522.Google Scholar
Heywood, V.H. (2011). The role of botanic gardens as resource and introduction centres in the face of global change. Biodiversity and Conservation, 20: 221239.Google Scholar
Heywood, V.H. (2013). Overview of agricultural biodiversity and its contribution to nutrition and health. In: Fanzo, J., Hunter, D., Borelli, T., et al. (eds.) Diversifying Food and Diets: Using Agricultural Biodiversity to Improve Nutrition and Health. Issues in Agricultural Biodiversity. Earthscan, Cambridge, pp. 3567.Google Scholar
Heywood, V.H. and Watson, R.T. (1995). Global Biodiversity Assessment. Cambridge University Press, Cambridge.Google Scholar
Hickey, M. and King, C. (2000). The Cambridge Illustrated Glossary of Botanical Terms. Cambridge University Press, Cambridge.Google Scholar
Hijmans, R.J., Cameron, S.E., Parra, J.L., Jones, P.G. and Jarvis, A. (2005). Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25: 19651978.Google Scholar
Hijmans, R.J. and Graham, C.H. (2006). The ability of climate envelope models to predict the effect of climate change on species distributions. Global Change Biology, 12: 22722281.Google Scholar
Hijmans, R.J., Spooner, D., Salas, A., Guarino, L. and de La Cruz, J. (2002). Atlas of Wild Potatoes. Systematic and Ecogeographic Studies on Crop Gene pools 10. International Plant Genetic Resources Institute, Cambridge.Google Scholar
Hjalmarsson, I. and Ortiz, R. (1998). Effect of genotype and environment on vegetative and reproductive characteristics of lingonberry (Vaccinium vitis-idaea L.). Acta Agriculturæ Scandinavica (Section B Soil and Plant Sciences ), 48: 255262.Google Scholar
Hjalmarsson, I. and Ortiz, R. (2001). Lingonberry: botany and horticulture. Horticultural Reviews, 27: 79123.Google Scholar
Hodgkin, T., Brown, A.H.D., van Hintum, Th.J.L. and Morales, E.A.V. (eds.) (1994). Core Collections of Plant Genetic Resources. Wiley, Cambridge.Google Scholar
Hoekstra, F.A. (1995). Collecting pollen for genetic resources conservation. In: Guarino, L., Ramanatha Rao, V. and Reid, R. (eds.) Collecting Plant Genetic Diversity: Technical Guidelines. CAB International, Cambridge. pp. 527550.Google Scholar
Holmes, B. (2015). Quiet revolutions. New Scientist, 31 October, 31–35.Google Scholar
Holsinger, K.E. (2015). Lecture Notes in Population Genetics. University of Connecticut, Cambridge.Google Scholar
Hong, T.D., Linington, S.H. and Ellis, R.H. (1996). Seed storage behaviour: a compendium. Handbooks for Gene banks 4. International Board for Plant Genetic Resources, Cambridge.Google Scholar
Honnay, O., and van Nieuwenhuyse, A. (2018). Biodiversity and human health: mechanisms and evidence of the positive health effects of diversity in nature and green spaces. British Medical Bulletin, 127: 522.Google Scholar
Hopkins, J. and Maxted, N. (2010). Crop Wild Relatives: Plant Genetic Conservation for Food Security. Natural England, Cambridge.Google Scholar
Houde, A.L.S., Garner, S.R. and Neff, B.D. (2015). Restoring species through reintroductions: strategies for source population selection. Restoration Ecology, 23: 746753.Google Scholar
House of Lords, (2002). What on Earth? The Threat to the Science Underpinning Conservation. Select Committee appointed to consider Science and Technology, House of Lords, Cambridge. Available at: www.publications.parliament.uk/pa/ld200102/ldselect/ldsctech/118/11802.htm (accessed 30 August 2011).Google Scholar
Huamán, Z., Aguilar, C. and Ortiz, R. (1999). Selecting a Peruvian sweetpotato core collection on the basis of morphological, eco-geographical, and disease and pest reaction data Theoretical and Applied Genetics, 98: 840844.Google Scholar
Huamán, Z., de la Puente, F. and Arbizu, C. (1995). Collecting vegetatively propagated crops (especially roots and tubers). In: Guarino, L., Ramanatha Rao, V. and Reid, R. (eds.) Collecting Plant Genetic Diversity: Technical Guidelines. CAB International, Cambridge, pp. 457466.Google Scholar
Huamán, Z., Ortiz, R. and Gómez, R. (2001). Selecting a Solanum tuberosum subsp. andigena core collection using morphological, geographical, disease and pest descriptors. American Journal of Potato Research, 77: 183190.Google Scholar
Huamán, Z., Ortiz, R., Zhang, D. and Rodríguez, F. (2000). Isozyme analysis of entire and core collections of Solanum tuberosum subsp. andigena potato cultivars. Crop Science, 40: 273276.Google Scholar
Hubert, B., Rosegrant, M., van Boekel, M.A.J.S. and Ortiz, R. (2010). The future of food: scenarios for 2050. Crop Science, 50: S33S50.Google Scholar
Hughes, C.E. (1998). Leucaena. A Genetic Resources Handbook. Tropical Forestry Papers, 37. Oxford Forestry Institute, Department of Plant Sciences, University of Oxford, Cambridge.Google Scholar
Hunter, D. and Heywood, V.H. (eds.) (2011). Crop Wild Relatives: A Manual of in situ Conservation. Issues in Agricultural Biodiversity. Earthscan, Cambridge.Google Scholar
Hunter, D., Burlingame, B. and Remans, R. (2015). Biodiversity and nutrition. In: Inís Communication (ed.) Connecting Global Priorities: Biodiversity and Human Health, a State of Knowledge Review. Convention on Biological Diversity/World Health Organization, Cambridge.Google Scholar
Hunter, D., Guarino, L., Spillane, C. and McKeown, P. (eds.) (2017). Routledge Handbook of Agricultural Biodiversity. Routledge – Taylor and Francis Group, Cambridge.Google Scholar
Hunter, D., Iosefa, T., Delp, C.J. and Fonoti, P. (2001). Beyond taro leaf blight: a participatory approach for plant breeding and selection for taro improvement in Samoa. Proceedings of the International Symposium on Participatory Plant Breeding and Participatory Plant Genetic Resource Enhancement, Pokhara, Nepal, 1–5 May 2000. CGIAR Systemwide Program on Participatory Research and Gender Analysis for Technology Development and Institutional Innovation, Centro Internacional de Agricultura Tropical, Cali, pp. 219–227.Google Scholar
Hunter, D., Özkan, I., Beltrame, D.M., et al. (2016). Enabled or disabled: is the environment right for using biodiversity to improve nutrition. Frontiers in Nutrition 3: 16 Google Scholar
Hunter, M.L. (1990). Wildlife, Forests and Forestry: Principles of Managing Forests for Biological Diversity. Prentice Hall, Cambridge.Google Scholar
IAASTD. (2008). Agriculture at a Crossroads: The Synthesis Report. International Assessment of Agricultural Knowledge, Science and Technology for Development, Cambridge.Google Scholar
IBPGR. (1991). Dictionary of Plant Genetic Resources. Elsevier Science Publishing, Cambridge.Google Scholar
Ickowitz, A., Rowland, D., Powell, B., Salim, M.A. and Sunderland, T. (2016). Forests, trees, and micronutrient-rich food consumption in Indonesia. PLoS One 11: e0154139. https://doi.org/10.1371/journal.pone.0154139.Google Scholar
IIED (1997). Valuing the Hidden Harvest: Methodological Approaches for the Local-Level Economic Analysis of Wild Resources. Sustainable Agriculture Programme Research Series, Volume 3, Number 4. Sustainable Agriculture Programme. IIED, Cambridge.Google Scholar
Iltis, H.H., Doebley, J.F., Guzmán, R.M. and Pazy, B. (1979). Zea diploperennis (Gramineae): a new teosinte from Mexico. Science, 203: 186188.Google Scholar
Ingram, V., Vinceti, B. and van Vliet, N. (2017). Wild plant and animal genetic resources. In: Hunter, D., Guarino, L., Spillane, C. and McKeown, P. (eds.) Handbook of Agriculture Biodiversity. Routledge, Cambridge, pp. 6585.Google Scholar
Iosefa, T., Taylor, M., Hunter, D. and Tuia, V. (2013). Supporting farmers’ access to the global gene pool and participatory selection in taro in the Pacific. In: De Boef, W.S., Peroni, N., Subedi, A. and Thijssen, M.H. (eds.) Community Biodiversity Management: Promoting Resilience and the Conservation of Plant Genetic Resources. Earthscan, Cambridge, pp. 285289.Google Scholar
IPBES. (2019). Global Assessment Report on Biodiversity and Ecosystem Services. Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. UNESCO, Cambridge.Google Scholar
IPC. (2015). Biodiversity for Food and Agriculture: The Perspectives of Small-Scale Food Providers. Thematic Study for FAO’s Report ‘State of the World’s Biodiversity for Food and Agriculture’. International Planning Committee for Food Sovereignty, Agricultural Biodiversity Working Group.Google Scholar
IPCC (Intergovernmental Panel on Climate Change). (2007). Summary for policymakers. In: Parry, M.L., Canziani, O.F., Palutikof, J.P., van der Linden, P.J. and Hanson, C.E. (eds.) Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press: Cambridge, pp. 722.Google Scholar
IPCC (Intergovernmental Panel on Climate Change). (2013). Summary for policymakers. In: Stocker, T.F., Qin, D., Plattner, G.-K., et al. (eds.) Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge.Google Scholar
IPCC (Intergovernmental Panel on Climate Change). (2014a). Summary for policymakers. In: Field, C.B., Barros, V.R., Dokken, D.J., et al. (eds.) Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp. 132.Google Scholar
IPCC. (2014b). Climate Change 2014: Synthesis Report: Longer Report. Available at: www.ipcc.ch/pdf/assessment-report/ar5/syr/SYR_AR5_LONGERREPORT.pdf (accessed 3 November 2014).Google Scholar
IPES-Food. (2016). From Uniformity to Diversity: A Paradigm Shift from Industrial Agriculture to Diversified Agroecological Systems. International Panel of Experts on Sustainable Food Systems, Cambridge.Google Scholar
IPGRI. (1991). Elsevier’s Dictionary of Plant Genetic Resources. Elsevier, Cambridge.Google Scholar
IPGRI. (1993). Diversity for Development. International Plant Genetic Resources Institute, Cambridge.Google Scholar
IPGRI. (1997). Annual Report. International Plant Genetic Resources Institute, Cambridge.Google Scholar
Iriondo, J.I., Fielder, H., Fitzgerald, H., et al. (2016). National strategies for the conservation of crop wild relatives. In: Maxted, N., Dulloo, E.M. and Ford-Lloyd, B.V. (eds.) Enhancing Crop Gene Pool Use: Capturing Wild Relative and Landrace Diversity for Crop Improvement. CAB International, Cambridge, pp. 161171.Google Scholar
Iriondo, J.M, Ford-Lloyd, B.V., De Hond, L., et al. (2008). Plant population monitoring methodologies for the in situ genetic conservation of CWR. In: Iriondo, J.M., Maxted, N. and Dulloo, E. (eds.) Plant Genetic Population Management. CAB International, Cambridge, pp. 88123.Google Scholar
Iriondo, J.M., Maxted, N. and Dulloo, E. (eds.) (2008). Conserving Plant Genetic Diversity in Protected Areas: Population Management of Crop Wild Relatives. CAB International, Cambridge.Google Scholar
Iriondo, J.M., Maxted, N., Kell, S.P., et al. (2012). Quality standards for genetic reserve conservation of crop wild relatives. In: Maxted, N., Dulloo, M.E., Ford-Lloyd, B.V., et al. (eds.) Agrobiodiversity Conservation: Securing the Diversity of Crop Wild Relatives and Landraces. CAB International, Cambridge, pp. 7277.Google Scholar
IRRI. (2017). The International Rice Gene Bank. International Rice Research Institute, Los Baños, Philippines. http://irri.org/our-work/research/genetic-diversity/international-rice-gene bank Google Scholar
IUCN. (1994). The Convention on Biological Diversity: An Explanatory Guide. Prepared by the IUCN Environmental Law Centre, Cambridge.Google Scholar
IUCN. (2001). IUCN Red List Categories and Criteria. Version 3.1. IUCN Species Survival Commission. IUCN, Cambridge. Available at: www.iucnredlist.org/documents/redlist_cats_crit_en.pdf (accessed February 2013).Google Scholar
IUCN. (2003). Guidelines for Application of IUCN Red List Criteria at Regional Levels, Version 3.0. IUCN Species Survival Commission. IUCN, Gland Cambridge. ii + 26 pp. Available from: www.iucnredlist.org/documents/reg_guidelines_en.pdf (accessed 1 August 2013).Google Scholar
IUCN. (2012). Why Do We Need Biodiversity Indicators? IUCN Species Survival Commission, Gland, Cambridge. Available at: www.iucn.org/about/work/programmes/species/our_work/biodiversity_indicators/ (accessed 1 June 2016).Google Scholar
IUCN. (2016). IUCN Red List of Threatened Species. IUCN Species Survival Commission. IUCN, Cambridge. Available at: www.iucnredlist.org/ (accessed July 2016).Google Scholar
IUCN. (2017). Guidelines for Species Conservation Planning, Version 2.0. IUCN, Cambridge.Google Scholar
IUCN. (2018). Red List of Threatened Species, Version 2018. IUCN, Cambridge. www.iucnredlist.org/resources/summary-statistics#Summary%20Tables (accessed 21 December 2018).Google Scholar
IUCN/SSC. (2008). Strategic Planning for Species Conservation: A Handbook. Version 1.0. IUCN Species Survival Commission, Cambridge.Google Scholar
IUCN/SSC. (2013). Guidelines for Reintroductions and Other Conservation Translocations. Version 1.0. IUCN Species Survival Commission, Cambridge.Google Scholar
Jaccard, P. (1901). Étude comparative de la distribution florale dans une portion des Alpes et des Jura. Bulletin de la Société Vaudoise des Sciences Naturelles, 37: 547579.Google Scholar
Jackson, M.T. (1994). Care and use of rice biodiversity. In: Food Security in Asia: Contributions of IRRI and British Science. ODA, IRRI and BBSRC, Cambridge, pp. 710.Google Scholar
Jackson, M., Ford-Lloyd, B.V. and Parry, M. (eds.) (2013). Plant Genetic Resources and Climate Change – a 21st Century Perspective. CAB International, Cambridge.Google Scholar
Jain, S.K. (1975). Genetic reserves. In: Frankel, O.H. and Hawkes, J.G. (eds.) Crop Genetic Resources for Today and Tomorrow. Cambridge University Press, Cambridge, pp. 379396.Google Scholar
Jamnadass, R.H., Dawson, I.K., Franzel, S., et al. (2011). Improving livelihoods and nutrition in sub-Saharan Africa through the promotion of indigenous and exotic fruit production in smallholders’ agroforestry systems: a review. International Forestry Review, 13: 338354.Google Scholar
Jarvis, A., Lane, A. and Hijmans, R.J. (2008a). The effect of climate change on crop wild relatives. Agriculture, Ecosystems and Environment, 126: 1323.Google Scholar
Jarvis, A., Williams, K., Williams, D., et al. (2005). Use of GIS for optimizing a collecting mission of rare wild pepper (Capsicum flexuosum Sendtn.) in Paraguay. Genetic Resources and Crop Evolution, 52: 671682.Google Scholar
Jarvis, D., Brown, A.H.D., Cuong, P.H., et al. (2008b). A global perspective of the richness and evenness of traditional crop-variety diversity maintained by farming communities. Proceedings of the National Academy of Sciences USA 105: 53265331.Google Scholar
Jarvis, D.I., Hodgkin, T., Brown, A.H.D., et al. (2016). Crop Genetic Diversity in the Field and on the Farm: Principles and Applications in Research Practices. Yale University Press, Cambridge.Google Scholar
Jarvis, D.I., Hodgkin, T., Sthapit, B.R., Fadda, C. and López-Noriega, I. (2011). An heuristic framework for identifying multiple ways of supporting the conservation and use of traditional crop varieties within the agricultural production system. Critical Reviews in Plant Science, 30: 125176.Google Scholar
Jarvis, D.I., Myer, L., Klemick, H., et al. (2000). A Training Guide for in situ Conservation On-farm. Version 1. International Plant Genetic Resources Institute, Cambridge.Google Scholar
Jarvis, D.I., Padoch, C. and Cooper, H.D. (2007). Managing Biodiversity in Agricultural Ecosystems. Columbia University Press, Cambridge.Google Scholar
Jarvis, S.G., Fielder, H., Hopkins, J., Maxted, N. and Smart, S. (2015). Distribution of crop wild relatives of conservation priority in the UK landscape. Biological Conservation, 191: 444451.Google Scholar
Jenderek, M.M. and Reed, B.M. (2017). Cryopreserved storage of clonal germplasm in the USDA National Plant Germplasm System. In Vitro Cellular and Developmental Biology – Plants. https://doi.org/10.1007/s11627-017-9828-3.Google Scholar
Jenkins, R.W.G. and Roberts, S.R. (2000). Sustainable Use of Wild Species – A Guide for Decision Makers. IUCN, Cambridge and Gland, UK and Switzerland.Google Scholar
Johannsen, W. (1903). Ueber Erlichkeit in Populationen und in reinen Linien: ein Beitrag zur Beleuchtung schweber Selektionsfragen. Gustav FischerCambridge.Google Scholar
Johannsen, W. (1905). Arvelighedslærens Elementer. Gyldendal, Cambridge.Google Scholar
Johannsen, W. (1911). The genotype conception of heredity. The American Naturalist, 45: 129159.Google Scholar
Johns, T., Mohoro, E.B. and Sanaya, P. (1996). Food plants and masticants of the Batemi of Ngorongoro District, Tanzania. Economic Botany, 50: 115121.Google Scholar
Johnston, K.M.J., Reund, K.A.F. and Schmitz, O.J.S. (2012). Projected range shifting by montane mammals under climate change: implications for Cascadia’s National Parks. Ecosphere, 3: 151.Google Scholar
Joint Nature Conservation Committee. (2014). The Biodiversity Indicators. Joint Nature Conservation Committee, Cambridge. Available at: http://jncc.defra.gov.uk/page-4233 (accessed 20 October 2014).Google Scholar
Joshi, B.K., Upadhyay, M.P., Gauchan, D., Sthapit, B.R. and Joshi, K.D. (2004). Red listing of agricultural crop species, varieties and landraces. Nepal Agricultural Research Journal, 5: 7380.Google Scholar
Kaihura, F. and Stocking, M. (2003). Agricultural Biodiversity in Smallholder Farms of East Africa. United Nations University Press, Cambridge.Google Scholar
Karagöz, A. (1998). In situ conservation of plant genetic resources in the Ceyanpinar State Farm. In: Zencirci, N., Kaya, Z., Anikster, Y. and Adams, W.T. (eds.) The Proceedings of International Symposium on in situ Conservation of Plant Diversity. Central Research Institute for Field Crops, Cambridge, pp. 8791.Google Scholar
Kaur, N., Street, K., Mackay, M., Yahiaoui, N. and Keller, B. (2008). Allele mining and sequence diversity at the wheat powdery mildew resistance locus Pm3. In: Appels, R., Eastwood, R., Lagudah, E., et al. (eds). 11th International Wheat Genetics Symposium. Sydney University Press, Cambridge.Google Scholar
Kehlenbeck, K., Asaah, E. and Jamnadass, R. (2013). Diversity of indigenous fruit trees and their contribution to nutrition and livelihoods in sub-Saharan Africa: examples from Kenya and Cameroon. In: Fanzo, J., Hunter, D., Borelli, T., et al. (eds.) Diversifying Food and Diets: Using Agricultural Biodiversity to Improve Nutrition and Health Issues in Agricultural Biodiversity. Earthscan, Cambridge, pp. 257269.Google Scholar
Keiša, A., Maxted, N. and Ford-Lloyd, B.V. (2008). The assessment of biodiversity loss over time: wild legumes in Syria. Genetic Resources and Crop Evolution, 55: 603612.Google Scholar
Kell, S.P., Ford-Lloyd, B.V. and Maxted, N. (2016). Europe’s crop wild relative diversity: from conservation planning to conservation action. In: Maxted, N., Dulloo, E.M. and Ford-Lloyd, B.V. (eds.) Enhancing Crop Gene Pool Use: Capturing Wild Relative and Landrace Diversity for Crop Improvement. CAB International, Cambridge, pp. 125136.Google Scholar
Kell, S.P., Laguna, E., Iriondo, J.M. and Dulloo, M.E. (2008). Population and habitat recovery techniques for the in situ conservation of plant genetic diversity. In: Iriondo, J.M., Maxted, N. and Dulloo, M.E. (eds.) Plant Genetic Population Management. CAB International, Cambridge, pp. 124168.Google Scholar
Kell, S.P., Maxted, N. and Bilz, M. (2012). European crop wild relative threat assessment: knowledge gained and lessons learnt. In: Maxted, N., Dulloo, M.E., Ford-Lloyd, B.V., et al. (eds.) Agrobiodiversity Conservation: Securing the Diversity of Crop Wild Relatives and Landraces. CAB International, Cambridge, pp. 218242.Google Scholar
Kell, S.P., Qin, H., Chen, B., et al. (2015). China’s crop wild relatives: diversity for agriculture and food security. Agriculture, Ecosystems and Environment, 209: 138154.Google Scholar
Kelly, A.E. and Goulden, M.L. (2008). Rapid shifts in plant distribution with recent climate change. Proceedings of the National Academy of Sciences of the USA, 103: 1182311826.Google Scholar
Kennedy, G., Stoian, D., Hunter, D., Kikulwe, E. and Termote, C., with contributions from Alders, R., Burlingame, B., Jamnadass, R., McMullin, S. and Thilsted, S. (2017). Food biodiversity for healthy, diverse diets. In: de Boef, W., Haga, M., Sibanda, L., Swaminathan, M.S. and Winters, P. (eds,) Mainstreaming Agrobiodiversity in Sustainable Food Systems: Scientific Foundations for an Agrobiodiversity Index. Bioversity International, Cambridge, pp. 2352.Google Scholar
Khazaei, H., Street, K., Bari, A., Mackay, M. and Stoddard, F.L. (2013). The FIGS (focused identification of germplasm strategy) approach identifies traits related to drought adaptation in Vicia faba genetic resources. PLoS ONE, 8e63107.Google Scholar
Khoury, C.K., Achicanoy, H.A., Bjorkman, A.D., et al. (2015a). Estimation of countries’ interdependence in plant genetic resources provisioning national food supplies and production systems. Available at: www.planttreaty.org/content/research-paper-8 (accessed 11 May 2016).Google Scholar
Khoury, C.K., Amariles, D., Soto, J.S., et al. (2019). Comprehensiveness of conservation of useful wild plants: an operational indicator for biodiversity and sustainable development targets. Ecological Indicators, 98: 420429.Google Scholar
Khoury, C.K., Bjorkman, A.D., Dempewolf, H., et al. (2014). Increasing homogeneity in global food supplies and the implications for food security. Proceedings of the National Academy of Sciences of the USA, 111: 40014006.Google Scholar
Khoury, C.K., Castañeda-Álvarez, N.P., Achicanoy, H.A., et al. (2015b). Crop wild relatives of pigeonpea (Cajanus cajan (L.) Millsp.): distributions, ex situ conservation status, and potential genetic resources for abiotic stress tolerance. Biological Conservation, 184: 259270.Google Scholar
Kimura, M. (1968). Evolutionary rate at the molecular level. Nature, 217: 624626.Google Scholar
Kimura, M. and Crow, J.F. (1963). The measurement of the effect of population size. Evolution, 17: 279288.Google Scholar
King, R.C., Stansfield, W.D. and Mulligan, P.K. (2006). A Dictionary of Genetics, 7th ed. Oxford University Press, Cambridge.Google Scholar
Klein, J.A., Harte, J. and Zhao, X.Q. (2008) Decline in medical and forage species with warming is mediated by plant traits on the Tibetan plateau. Ecosystems 11: 775789.Google Scholar
Kobori, C.N. and Rodriguez Amaya, D.B. (2008). Uncultivated Brazilian green leaves are richer sources of carotenoids than are commercially produced leafy vegetables. Food & Nutrition Bulletin, 29: 320328.Google Scholar
Koohafkhan, P. and Altieri, M.A. (2017). Forgotten Agricultural Heritage: Reconnecting Food Systems and Sustainable Development. Earthscan from Routledge, Cambridge.Google Scholar
Kothari, A., Camill, P. and Brown, J. (2013). Conservation as if people also mattered: policy and practice of community-based conservation. Conservation and Society, 11: 115.Google Scholar
Krebs, C.J. (2001). Ecology: The Experimental Analysis of Distribution and Abundance, 5th ed. Benjamin Cummings, Cambridge.Google Scholar
Kress, W.J., Wurdack, K.J., Zimmer, E.A., Weigt, L.A. and Janzen, D.H. (2005). Use of DNA barcodes to identify flowering plants. Proceedings of the National Academy of Sciences, 102: 83698374.Google Scholar
Krusche, D. and Geburek, Th. (1991). Conservation of forest gene resources as related to sample size. Forest Ecology and Management, 40: 145150.Google Scholar
Küçük, S.A., Tan, A.Ş., Sabanci, C.O., et al. (1998). Ecogeographic and floristic differentiation of chestnut gene management zone in Kazdağ. In: Zencirci, N., Kaya, Z., Anikster, Y. and Adams, W.T. (eds.) The Proceedings of International Symposium on in situ Conservation of Plant Diversity. Central Research Institute for Field Crops, Cambridge, pp. 135148.Google Scholar
Kuhnlein, H.V., Erasmus, B. and Spigelski, D. 2009. Indigenous Peoples’ Food Systems: The Many Dimensions of Culture, Diversity and Environment for Nutrition and Health. FAO, Cambridge.Google Scholar
Kuhnlein, H.V. and Turner, N.J. (1991). Traditional Plant Foods of Canadian Indigenous Peoples – Nutrition, Botany and Use. Gordon and Breach, Cambridge.Google Scholar
Kumar, S. (1996). ABC of PRA: attitude and behaviour change. PLA Notes, 27: 7073.Google Scholar
Kyte, L. and Kleyn, J. (1996). Plants from Test Tubes: An Introduction to Micropropagation, 3rd ed. Timber Press, Cambridge.Google Scholar
Lacy, R.C. (2000). Structure of the VORTEX simulation model for population viability analysis. Ecological Bulletin, 48: 191203.Google Scholar
Laird, S.A. and Noejovich, F. (2002). Building equitable research relationships with indigenous peoples and local communities: prior informed consent and research agreements. In: Laird, S.A. (ed.) Biodiversity and Knowledge: Equitable Partnerships in Practice. Earthscan, Cambridge, pp. 179238.Google Scholar
Laird, S.A. and Posey, D.A. (2002). Professional society standards for biodiversity research: codes of ethics and research guidelines. In: Laird, S.A. (ed.) Biodiversity and Knowledge: Equitable Partnerships in Practice. Earthscan, London, pp. 16–38.Google Scholar
Laird, S.A. and ten Kate, K. 1999. The Commercial Use of Biodiversity: Access to Genetic Resources and Benefit-Sharing. Earthscan, Cambridge.Google Scholar
Langlet, O. (1971). Two hundred years of genecology. Taxon, 20: 653722.Google Scholar
Larkin, P. and Scowcroft, W. (1981). Somaclonal variation: a novel source of variability from cell cultures for plant improvement. Theoretical and Applied Genetics, 60: 197214.Google Scholar
Lawrence, M.J. (1996). Number of incompatibility alleles in clover and other species. Heredity, 76: 610615.Google Scholar
Laurance, W.F., et al. (2012). Averting biodiversity collapse in tropical forest protected areas. Nature, 489: 290294.Google Scholar
Lawrence, M.J. and Marshall, D.F. (1997). Plant population genetics. In: Maxted, N., Ford-Lloyd, B.V. and Hawkes, J.G. (eds.) Plant Genetic Conservation: The in situ Approach. Kluwer Academic Publishers, Cambridge, pp. 99113.Google Scholar
Lawrence, M.J., Marshall, D.F. and Davies, P. (1995). Genetics of genetic conservation. I. Sample size when collecting germplasm. Euphytica, 84: 8999.Google Scholar
Lee, H.-S., Jeon, Y.-A., Lee, Y.-Y., Lee, S.-Y. and Kim, Y.-G. (2013). Comparison of seed viability among 42 species stored in a genebank. Korean Journal of Crop Science, 58: 432438.Google Scholar
Lefèvre, F., Barsoum, N., Heinze, B., et al. (2001). Technical bulletin: In situ Conservation of Populus nigra . International Plant Genetic Resources Institute, Cambridge.Google Scholar
Lenoir, J., Gégout, J.C., Marquet, P.A., de Ruffray, P. and Brisse, H. (2008). A significant upward shift in plant species optimum elevation during the 20th century. Science, 320: 17681771.Google Scholar
Levetin, E. And McMahon, K. (2012). Plants and Society. McGraw-Hill, Cambridge.Google Scholar
Lewington, A. (1990). Plants for People. The Natural History Museum, Cambridge.Google Scholar
Lewington, A. (2003). Plants for People. Eden Project Books Google Scholar
Lewis, C. (1996). Managing Conflicts in Protected Areas. IUCN, Cambridge Google Scholar
Li, X., Takahashi, T., Suzuki, N. and Kaiser, H.M. (2011). The impact of climate change on maize yields in the United States and China. Agricultural Systems, 104: 348353.Google Scholar
Lin, B. B. (2011). Resilience in agriculture through crop diversification: adaptive management for environmental change. Bioscience 61: 183193.Google Scholar
Lindenmayer, D.B., Clark, T.W., Lacy, R.C. and Thomas, V.C. (1993). Population viability analysis as a tool in wildlife conservation policy: with reference to Australia. Environmental management, 17: 745758.Google Scholar
Linnaeus, C. (1753). Species Plantarum Vol 2. Cambridge.Google Scholar
Linnaeus, C. (1759). Systema Natura. Ed. 10. Cambridge.Google Scholar
Lira, R. Tellez, O. and Davila, P. (2009). The effects of climate change on geographic distribution of Mexican wild relatives of domesticated cucurbitaceae. Genetic Resources and Crop Evolution 56; 691703 Google Scholar
Lloyd, W.F. (1833). Two lectures on the checks to population. Oxford University Press, Cambridge.Google Scholar
Lomolino, M.V., Riddle, B.R. and Brown, J.H. (2006). Biogeography , 3rd ed. Sinauer Associates, Cambridge.Google Scholar
Longin, C.F.H. and Reif, J.C. (2014). Redesigning the exploitation of wheat genetic resources. Trends in Plant Science, 19:631636.Google Scholar
Loss, S.R., Terwilliger, L.A. and Peterson, A.C. (2011). Assisted colonization: Integrating conservation strategies in the face of climate change. Biological Conservation, 144: 92100.Google Scholar
Louette, D. and Smale, M. 1996. Genetic Diversity and Maize Seed Management in a Traditional Mexican Community: Implications for in situ Conservation of Maize. NGR Paper 96-03. CIMMYT, Cambridge.Google Scholar
Luck, J., Spackman, M., Freeman, A., et al. (2011). Climate change and diseases of food crops. Plant Pathology, 60: 113121.Google Scholar
Lugo, A.E. (1988). Estimating reductions in the diversity of tropical forest species. In: Biodiversity (ed. Wison, E.O.). pp. 5870. National Academy Press, Cambridge.Google Scholar
Lund, B., Ortiz, R., Skovgaard, I.M., Waugh, R. And Andersen, S.B. (2003). Analysis of potential duplicates in barley gene bank collections using re-sampling of microsatellite data. Theoretical and Applied Genetics, 106: 11291138.Google Scholar
Lund, B., Ortiz, R., von Bothmer, R. and Andersen, S.B. (2013). Detection of duplicates among repatriated Nordic spring barley (Hordeum vulgare L. s.l.) accessions using agronomic and morphological descriptors and microsatellite markers. Genetic Resources and Crop Evolution 60: 111.Google Scholar
Lyon, A., Silva, E., Zystro, J. and Bell, M. (2015). Seed and plant breeding for Wisconsin’s organic vegetable sector: understanding farmers’ needs. Agroecology and Sustainable Food Systems, 39: 601624.Google Scholar
Mabberley, D.J. (2008). Plant Book: A Portable Dictionary of Plants, their Classification and Uses, Third Edition. Cambridge University Press, Cambridge.Google Scholar
Mabey, R. (1972). Food for Free. Collins Google Scholar
Mabey, R. (1996). Flora Britannica. Chatto and Windus Google Scholar
MacArthur, R.H. and Wilson, E.O. (1967). The theory of island biogeography. Princeton University Press, Cambridge.Google Scholar
Mace, G.M. (2014). Whose conservation? Science, 345: 15581560.Google Scholar
Mace, M.G. and Ballie, J.M. (2007). The 2010 Biodiversity Indicators: Challenges for Science and Policy. Conservation Biology, 21: 14061413.Google Scholar
Macfarlane, R., Jackson, G.V.H. and Frison, E.A. (2011). Plant health and germplasm collectors. In: Guarino, L, Ramanatha Rao, V, Goldberg, E (eds.) Collecting Plant Genetic Diversity: Technical Guidelines. 2011 update. Bioversity International, Cambridge. Available online: http://cropgene bank.sgrp.cgiar.org/index.php?option=com_content&view=article&id=653 accessed 13.08.2018.Google Scholar
Mackay, M.C. and Street, K. (2004). Focused identification of germplasm strategy – FIGS. In: Black, C.K., Panozzo, J.F. and Rebetzke, G.J. (eds). Cereals 2004. Proceedings of the 54th Australian Cereal Chemistry Conference and the 11th Wheat Breeders’ Assembly, 21–24 September 2004, Canberra, Australian Capital Territory (ACT). pp. 138141. Cereal Chemistry Division, Royal Australian Chemical Institute, Cambridge.Google Scholar
Magos Brehm, J., Kell, S., Thormann, I., et al. (2017a). Interactive Toolkit for Crop Wild Relative Conservation Planning version 1.0. University of Birmingham, Birmingham and Bioversity International, Rome. Available at: www.cropwildrelatives.org/conservation-toolkit/ (accessed 04.01.19).Google Scholar
Magos Brehm, J., Kell, S.P., Thormann, I., et al. (2017c). Occurrence data collation template v.1, doi:10.7910/DVN/5B9IV5, Harvard Dataverse, V1. Available here: https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/5B9IV5 (accessed 04.01.19).Google Scholar
Magos Brehm, J., Kell, S.P., Thormann, I., Gaisberger, H., Dulloo, M.E. and Maxted, N., (2019). New tools for crop wild relative conservation planning. Plant Genetic Resources, 17: 208–212.Google Scholar
Magos Brehm, J., Kell, S.P., Thormann, I., Maxted, N. and Dulloo, E. (2017b). Template for the Preparation of a Technical Background Document for a National Strategic Action Plan for the Conservation and Sustainable Use of Crop Wild Relatives. doi:10.7910/DVN/VQVDFA, Harvard Dataverse, V1. Available here: https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/VQVDFA (accessed 04.01.19).Google Scholar
Mahalakshmi, V., van Hintum, T.J.L. and Ortiz, R. (2003). Enhancing germplasm utilization to meet specific user needs through interactive stratified core selections. Plant Genetic Resources Newsletter, 136: 1422.Google Scholar
Maplecroft, , (2013). Food Security Risk Index. Available at http://maplecroft.com/about/news/food_security.html (Accessed 1 August 2013).Google Scholar
Marfil, C.F., Hidalgo, V. and. Masuelli, R.W. (2015). In situ conservation of wild potato germplasm in Argentina: Example and possibilities. Global Ecology and Conservation 3, 461476.Google Scholar
Margules, C.R. (1989). Introduction to some Australian developments in conservation evaluation. Biological Conservation, 50: 111.Google Scholar
Margules, C.R. and Pressey, R.L. (2000). Systematic conservation planning. Nature, 405: 243253.Google Scholar
Marren, P. (1999). Britain’s rare flowers. T. & A.D. Poyser Natural History, Cambridge.Google Scholar
Marshall, C.R. and Brown, A.H.D. (1975). Optimum sampling strategies in genetic conservation. In: Frankel, O.H. and Hawkes, J.H. (eds.) Crop Genetic Resources for Today and Tomorrow. pp. 380. Cambridge University Press, Cambridge.Google Scholar
Martín, A, and Cabrera, A. (2005). Cytogenetics of Hordeum chilense: current status and considerations with reference to breeding. Cytogenetic and Genome Research, 109: 378384.Google Scholar
Martin, G. (2015). Ethnobotany: a methods manual. Taylor and Cambridge.Google Scholar
Martin, P., Wishart, J., Cromoty, A. and Chang, X. (2009). New markets and supply chains for Scottish ‘Bere’ barley. In: Veteläinen, M., Negri, V. and Maxted, N. (eds.) (2009). European Landraces: On-farm conservation, Management and Use. Bioversity Technical Bulletin 15. pp. 251263. Bioversity International, Cambridge Google Scholar
Marum and Daugstad, (2009). Grindstad Timothy: the landrace that became a major commercial variety. In: Veteläinen, M., Negri, V. and Maxted, N. (eds.) (2009). European Landraces: On-farm conservation, Management and Use. Bioversity Technical Bulletin 15. Bioversity International, Cambridge, pp. 187–190.Google Scholar
Massawe, F., Mates, S. and Cheng, A. (2016). Crop diversity: an unexploited treasure trove for food security. Trends in Plant Science, 21, 365368.Google Scholar
Maunder, M. (2008). Beyond the greenhouse. Nature, 455: 596597.Google Scholar
Maunder, M. and Culham, A. (1997). Practical aspects of threatened species management in botanic garden collections. In: Tew, T.E., Crawford, T.J., Spencer, J.W., Stevens, D.P., Usher, M.B. and Warren, J. (eds.) The role of genetics in conserving small populations. pp. 122130. Joint Nature Conservation Committee, Cambridge.Google Scholar
Maurya, D.M., Bottrall, A. and Farrington, J. (1988). Improved livelihoods, genetic diversity and farmer participation: A strategy for rice breeding in rainfed areas of India. Experimental Agriculture, 24: 311320.Google Scholar
Maxted, N. (1990). A phenetic investigation of Psophocarpus Neck. ex. DC. (Leguminosae-Phaseoleae). Botanical Journal of the Linnean Society, 102: 103–-122.Google Scholar
Maxted, N. (2006). UK land-races – a hidden resource? Plant Talk, 44: 8.Google Scholar
Maxted, N. (2011). Aids to taxonomic identification. In Guarino, L, Ramanatha Rao, V, Goldberg, E (editors). Collecting Plant Genetic Diversity: Technical Guidelines. 2011 update. Bioversity International, Cambridge. Available online: http://cropgene bank.sgrp.cgiar.org/index.php?option=com_content&view=article&id=652&Itemid=864&lang=english Google Scholar
Maxted, N. (2012). Lathyrus belinensis: a CWR discovered and almost lost. Crop Wild Relative, 8: 44.Google Scholar
Maxted, N., (2020). Another look at the in situ / ex situ CWR conservation linkage. Crop Wild Relative, 11: 2225.Google Scholar
Maxted, N., Amri, A., Castañeda-Álvarez, N.P., et al. (2016a). Joining up the dots: a systematic perspective of crop wild relative conservation and use. In: Maxted, N., Ehsan Dulloo, M. and Ford-Lloyd, B.V. (eds.) Enhancing Crop Gene pool Use: Capturing Wild Relative and Landrace Diversity for Crop Improvement. CAB International, Cambridge pp. 87124.Google Scholar
Maxted, N., Avagyan, A., Frese, L., et al. (2015). Preserving diversity: a concept for in situ conservation of crop wild relatives in Europe Version 2. Rome, Italy: In Situ and On-farm Conservation Network, European Cooperative Programme for Plant Genetic Resources, Rome. Available online: www.pgrsecure.org/documents/Concept_v2.pdf (accessed 11.05.17).Google Scholar
Maxted, N. and Bisby, F.A. (1989). Accurate identification of wild forage species. Third ECP/GR Forage Working Group Meeting, Montpellier. Appendix 5: 62–75. IBPGR, Rome.Google Scholar
Maxted, N., Dulloo, M.E. and Ford-Lloyd, B.V. (eds.) (2016b). Enhancing Crop Gene pool Use: Capturing Wild Relative and Landrace Diversity for Crop Improvement. CAB International, Cambridge.Google Scholar
Maxted, N., Dulloo, M.E., Ford-Lloyd, B.V., et al. (eds.) (2012b). Agrobiodiversity Conservation: Securing the Diversity of Crop Wild Relatives and Landraces. CAB International, Cambridge.Google Scholar
Maxted, N., Dulloo, M.E., Ford-Lloyd, B.V., Iriondo, J. and Jarvis, A. (2008a). Genetic gap analysis: A tool for more effective genetic conservation assessment. Diversity and Distributions, 14: 10181030.Google Scholar
Maxted, N., Esele, J.P. and Khizzah, B.W. (1986). Collection of sorghum and millets in Uganda. Plant Genetic Resources Newsletter, 64: 2123.Google Scholar
Maxted, N., Ford-Lloyd, B.V. and Hawkes, J.G. (1997b). Complementary Conservation Strategies. In: Plant Genetic Conservation: The in situ Approach (eds. Maxted, N., Ford-Lloyd, B.V. and Hawkes, J.G.), pp. 2055. Chapman & Cambridge.Google Scholar
Maxted, N., Ford‐Lloyd, B.V., Jury, S., Kell, S.P. and Scholten, M.A. (2006). Towards a definition of a crop wild relative. Biodiversity and Conservation, 15(8): 26732685.Google Scholar
Maxted, N., Ford-Lloyd, B.V., Kell, S.P., et al. (eds.) (2008d). Crop Wild Relative Conservation and Use. CAB International, Cambridge.Google Scholar
Maxted, N., Guarino, L. and Dulloo, M.E. (1997c). Management and monitoring. In: Maxted, N., Ford-Lloyd, B.V. and Hawkes, J.G. (eds.) Plant Genetic Conservation: The in situ Approach. Chapman & Cambridge. pp. 231258.Google Scholar
Maxted, N., Guarino, L., Myer, L. and Chiwona, E.A. (2002). Towards a methodology for on-farm conservation of plant genetic resources. Genetic Resources and Crop Evolution, 49: 3146.Google Scholar
Maxted, N., Hargreaves, S., Kell, S.P., et al. (2012a). Temperate forage and pulse legume genetic gap analysis. Bocconea, 24: 536.Google Scholar
Maxted, N., Hawkes, J.G., Ford-Lloyd, B.V. and Williams, J.T. (1997b). A practical model for in situ genetic conservation. In: Maxted, N., Ford-Lloyd, B.V. and Hawkes, J.G. (eds.) Plant Genetic Conservation: The in situ Approach. pp. 545592. Chapman & Cambridge.Google Scholar
Maxted, N., Hawkes, J.G., Guarino, L. and Sawkins, M. (1997a). The selection of taxa for plant genetic conservation. Genetic Resources and Crop Evolution, 44: 337348.Google Scholar
Maxted, N., Iriondo, J., De Hond, L., et al. (2008c). Genetic Reserve Management. In: Iriondo, J.M., Maxted, N. and Dulloo, E. (eds.) Plant Genetic Population Management. pp. 6587. CAB International, Cambridge.Google Scholar
Maxted, N., Iriondo, J., Dulloo, E. and Lane, A. (2008b). Introduction: the integration of PGR conservation with protected area management. In: Iriondo, J.M., Maxted, N. and Dulloo, E. (eds.) Plant Genetic Population Management. pp. 122. CAB International, Cambridge.Google Scholar
Maxted, N. and Kell, S.P. (2009). Establishment of a Network for the In Situ Conservation of Crop Wild Relatives: Status and Needs. Commission on Genetic Resources for Food and Agriculture. Food and Agriculture Organization of the United Nations.Google Scholar
Maxted, N., Kell, S.P. and Magos Brehm, J. (2013a). Crop wild relatives and climate change. In: Jackson, M., Ford-Lloyd, B.V. and Parry, M. (eds.) Plant Genetic Resources and Climate Change - a 21st Century Perspective. CAB International, Cambridge. pp. 114136.Google Scholar
Maxted, N., Kell, S.P. and Magos Brehm, J. (2014). Global Networking on in situ Conservation and on-farm Management of Plant Genetic Resources for Food and Agriculture. Food and Agriculture Organization of the United Nations, Cambridge, 14 pp. Available online: www.fao.org/3/a-mm537e.pdf (accessed 11.05.17).Google Scholar
Maxted, N., Kell, S.P., Toledo, A., et al. (2010). A global approach to crop wild relative conservation: securing the gene pool for food and agriculture. Kew Bulletin: 65: 561576.Google Scholar
Maxted, N., Labokas, J. and Palmé, A. (2017). Crop wild relative conservation strategies. Planning and implementing national and regional conservation strategies. Proceedings of a Joint Nordic/ECPGR Workshop, 19–22 September 2016, Vilnius, Lithuania. European Cooperative Programme for Plant Genetic Resources, Rome.Google Scholar
Maxted, N., Mabuza-Dlamin, i P., Moss, H., et al. (2004). An Ecogeographic Survey: African Vigna . Systematic and Ecogeographic Studies of Crop Gene pools 10. International Plant Genetic Resources Institute, Cambridge.Google Scholar
Maxted, N., Magos Brehm, J. and Kell, S.P. (2013b). Resource book for preparation of national conservation plans for crop wild relatives and landraces. Commission on Genetic Resources for Food and Agriculture. Food and Agriculture Organization of the United Nations, Cambridge. 457 pp. Available online: www.fao.org/agriculture/crops/thematic-sitemap/theme/seeds-pgr/resource-book/en/ (accessed 11.05.17).Google Scholar
Maxted, N. and Palmé, A. (2016). Combining ex situ and in situ conservation strategies for CWR to mitigate climate change. In: Valdani Vicari & Associati, Arcadia International, Wageningen UR: Centre for Genetic Resource, the Netherlands, Plant Research International and the socio-economics research institute, Fungal Biodiversity Centre of the Royal Academy of Arts and Science and Information and Coordination Centre for Biological Diversity of the German Federal Office for Agriculture and Food, (eds.) The Impact of Climate Change on the Conservation and Utilisation of Crop Wild Relatives in Europe. Directorate General for Agriculture and Rural Development, European Commission, Brussels, pp 6–7.Google Scholar
Maxted, N. and Scholten, M.A. (2007). Methodologies for the creation of National / European inventories. In: Del Greco, A., Negri, V. and Maxted, N. (compilers) Report of a Task Force on On-farm Conservation and Management, Second Meeting, 19–20 June 2006, Stegelitz, Germany. pp. 1119. Bioversity International, Cambridge.Google Scholar
Maxted, N., Scholten, M.A., Codd, R. and Ford-Lloyd, B.V. (2007). Creation and use of a national inventory of crop wild relatives. Biological Conservation, 140, 142159.Google Scholar
Maxted, N., van Slageren, M.W. and Rihan, J. (1995). Ecogeographic surveys. In: Guarino, L., Ramanatha Rao, V. and Reid, R. (eds.) Collecting Plant Genetic Diversity: Technical Guidelines. CAB International, Cambridge, pp. 255286.Google Scholar
Maxted, N., Veteläinen, M. and Negri, V. (2009). Landrace inventories: needs and methodologies. In: Veteläinen, M., Negri, V. and Maxted, N. (eds.) European Landraces: On-farm Conservation, Management and Use. Bioversity Technical Bulletin 15. Bioversity International, Cambridge, pp. 4552.Google Scholar
Mazaika, K. (2016). Assessing and addressing community conflict arising in conservation planning and management. IUCN Social Science for Conservation Fellowship Programme Working Paper 6. Available at: www.iucn.org/sites/dev/files/v2_pdf_final_assessing_addressing_conflict_09_2016_0.pdf (accessed 14 August 2017).Google Scholar
McCouch, S., Baute, G.J., Bradeen, J., et al. (2013). Agriculture: feeding the future. Nature, 499: 2324.Google Scholar
McDonald, T., Sokolow, J. and Hunter, D. (2018). Farmer and community-led approaches to climate change adaptation of agriculture using agricultural biodiversity and genetic resources. In: Yadav, S., Redden, R.J., Hatfeld, J.L. et al. (eds.) Climate Change and Food Security in the 21st Century. Wiley-Blackwell International, Cambridge.Google Scholar
McNeely, J. (1988). Economics and Biological Diversity. IUCN, Gland.Google Scholar
McNeill, J., Barrie, F.R., Buck, W.R., et al. (2012). International Code of Nomenclature for algae, fungi, and plants (Melbourne Code) adopted by the Eighteenth International Botanical Congress Melbourne, Australia, July 2011. Regnum Vegetabile 154. A.R.G. Gantner Verlag KG.Google Scholar
Meldrum, G. and Padulosi, S. (2017). Neglected no more: leveraging under-utilized crops to address global challenges. In: Hunter, D., Guarino, L., Spillane, C. and McKeown, P. (eds.) Handbook of Agriculture Biodiversity. Routledge, Cambridge, pp. 298310.Google Scholar
Mendel, J.G. (1866). Versuche über Pflanzenhybriden. Verhandlungen des naturforschenden Vereines in Brünn, Bd. IV für das Jahr, Abhandlungen, 1865: 3–47.Google Scholar
Meredith, L.D. and Richardson, M.M. (1991). Towards an Australian botanic gardens conservation secretariat. In: Heywood, V.H. and Wyse Jackson, P.S. (eds.) Tropical Botanic Gardens: Their Role in Conservation and Development. Academic Press, Cambridge, pp. 3544.Google Scholar
Mezzalama, M. (2012). Seed Health: Fostering the Safe Distribution of Maize and Wheat Seed. General Guidelines, 3rd ed. Centro Internacional de Mejoramiento de Maiz y Trigo, Cambridge.Google Scholar
Michiels, F. (2015). ABS Impact on the Plant Breeding Sector. Essenscia seminar on Genetic Resources. Bayer Crop Science, Cambridge.Google Scholar
Midgley, G.F., Hannah, L., Millar, D., Thuiller, W. and Booth, A. (2003). Developing regional and species-level assessments of climate change impacts on biodiversity in the Cape Floristic Region. Biological Conservation, 11: 8797.Google Scholar
Mijatovic, D., Sakalian, M. and Hodgkin, T. (2018). Mainstreaming Biodiversity in Production Landscapes. United Nations Environment Programme. https://wedocs.unep.org/bitstream/handle/20.500.11822/26878/biodivers_production.pdf?sequence=1&isAllowed=y Google Scholar
Millennium Ecosystem Assessment (MEA). (2005). Ecosystems and Human Well-Being: Biodiversity Synthesis. World Resources Institute, Cambridge.Google Scholar
Miller, S.E. (2007). DNA barcoding and the renaissance of taxonomy. Proceedings of the National Academy of Sciences of the USA, 104: 47754776.Google Scholar
Millstone, E. and Lang, T. (2008). The Atlas of Food: Who Eats What, Where and Why? Earthscan, Cambridge.Google Scholar
Mittermeier, R.A., Meyers, N., Robles, G.P. and Mittermeier, C.G. (1999). Hotspots. Cambridge CEMEX, Mexico, D.F.Google Scholar
Mittermeier, R.A., Robles, G.P., Hoffmann, M., et al. (2004). Hotspots: Revisited. Cambridge CEMEX, Mexico, D.F.Google Scholar
Moore, G. and Williams, K. A. (2011). Legal issues in plant germplasm collecting. In: Guarino, L., Ramanatha Rao, V., Goldberg, E. (eds.) Collecting Plant Genetic Diversity: Technical Guidelines. 2011 Update. Bioversity International, Cambridge. Available at: https://cropgenebank.sgrp.cgiar.org/index.php/component/content/article/178-procedures/collecting/669-chapter-2-legal-issues-in-plant-germplasm-collecting (accessed 1 February 2020).Google Scholar
Morden, C.W., Doebley, J. and Schertz, K.F. (1990). Allozyme variation among the spontaneous species of Sorghum section Sorghum (Poaceae). Theoretical and Applied Genetics, 80: 296304.Google Scholar
Morris, W.F. and Doak, D.F. (2003). Quantitative Conservation Biology: Theory and Practice of Population Viability Analysis. Sinauer Associates, Cambridge.Google Scholar
Morrison, C., Rounds, I. and Wattling, D. (2012). Conservation and management of the endangered Fiji sago palm, Metroxylon vitiense, in Fiji. Environmental Management, 49: 929941.Google Scholar
Motlhaodi, T., Geleta, M., Bryngelsson, T., et al. (2014). Genetic diversity in ex situ conserved sorghum accessions of Botswana as estimated by microsatellite markers. Australian Journal of Crop Science, 8: 3543.Google Scholar
Murphy, D.J. (2007). People, Plants and Genes. Oxford University Press, Cambridge.Google Scholar
Murphy, J.P. and Phillips, T.D. (1993). Isozyme variation in cultivated oat and its progenitor species, Avena sterilis L. Crop Sciences, 33: 13661372.Google Scholar
Murphy, K., Bazile, D., Kellogg, J. and Rahmaniam, M. (2016). Development of a worldwide consortium on evolutionary participatory breeding in quinoa. Frontiers in Plant Science, 7: 18.Google Scholar
Myers, N. (1988). Threatened biotas: hotspots in tropical forests. The Environmentalist, 8: 120.Google Scholar
Myers, N. (1990). The biodiversity challenge: expanded hot spots analysis. The Environmentalist, 10: 243256.Google Scholar
Myers, N., Mittermeier, R.A., Mittermeier, C.G., da Fonseca, G.A.B. and Kent, J. (2000). Biodiversity hotspots for conservation priorities. Nature, 403: 853858.Google Scholar
Myers, S.S., Zanobetti, A., Kloog, I., et al. (2014). Increasing CO2 threatens human nutrition. Nature, 510: 139142.Google Scholar
Namkoong, G. (1981). Methods of pollen sampling for gene conservation. In: Franklin, E.C. (ed.) Pollen Management Handbook. USDA Agriculture Handbook No. 587. USDA, Cambridge, pp. 7476.Google Scholar
Nassar, N.M.A. and Ortiz, R. (2007). Cassava improvement: challenges and successes. Journal of Agricultural Science, 145: 163171.Google Scholar
National Geographic. (2013). (Based on a study completed by Rural Advancement Foundation International, 1983). http://ngm.nationalgeographic.com/2011/07/food-ark/food-variety-graphic (accessed 1 August 2013).Google Scholar
Neel, M.C. and Cummings, M.P. (2003a). Effectiveness of conservation targets in capturing genetic diversity. Conservation Biology, 17: 219229.Google Scholar
Neel, M.C. and Cummings, M.P. (2003b). Genetic consequences of ecological reserve design guidelines: an empirical investigation. Conservation Genetics, 4: 427439.Google Scholar
Negri, V. (2003). Landraces in central Italy: where and why they are conserved and perspectives for their on-farm conservation. Genetic Resources and Crop Evolution, 50: 871885.Google Scholar
Negri, V., Maxted, N. and Veteläinen, M. (2009). European LR conservation: an introduction. In: Veteläinen, M., Negri, V. and Maxted, N. (eds.) European Landraces: On-Farm Conservation, Management and Use. Bioversity Technical Bulletin No. 15. Bioversity International, Cambridge. pp. 122. Also available from: www.bioversityinternational.org/index.php?id=19&user_bioversitypublications_pi1[showUid]=3252 Google Scholar
Negri, V., Maxted, N., Torricelli, R., et al. (2012). Descriptors for Web-Enabled National in situ Landrace Inventories. University of Perugia, Cambridge. Available at: https://pgrsecure.bham.ac.uk/publications (accessed 24 November 2018).Google Scholar
Negri, V., Pacicco, L., Bodesmo, M. and Torricelli, R. (2013). The first Italian inventory of in situ maintained landraces. Morlacchi Editrice, Cambridge. Available at: http://vnr.unipg.it/PGRSecure/start.html (accessed 23 November 2018).Google Scholar
Nei, M. (1972). Genetic distance between populations. American Naturalist, 106: 283291.Google Scholar
Nei, M. (1973). Analysis of gene diversity in subdivided populations. Proceedings of the National Academy of Sciences of the USA , 70: 33213323.Google Scholar
Nemarundwe, N. and Richards, M. (2002). Participatory methods for exploring livelihood values derived from forests: potential and limitations. In: Campbell, B. and Luckert, M. (eds.) Uncovering the Hidden Harvest: Valuation Methods for Woodland and Forest Resources. Earthscan, London, pp. 168–197.Google Scholar
Newton, A.C., Johnson, S.N., Lyon, G.D., Hopkins, D.W. and Gregory, P.J. (2008). Impacts of climate change on arable crops – adaptation challenges. In: Proceedings of the Crop Protection in Northern Britain Conference. The Association for Crop Protection in Northern Britain, Cambridge, pp. 1116.Google Scholar
Ngoc De, N. (2001). Crop improvement at community level in Vietnam. In: Friis-Hansen, E. and Sthapit, B. (eds.) Participatory Approaches to Conservation and Use of Plant Genetic Resources. International Plant Genetic Resources Institute, Rome, pp. 103–110.Google Scholar
Nilsson, H.I. (1909). Aterblick på utsädesföreningens arbetsmetoder och de med dem vunna resultaten. Sver. Utsadesjoren. Tidskr. 18: 235249.Google Scholar
Nilsson-Ehle, H. (1909). Kreuzungsuntersuchungen an Hafer und Weizen. Dissertation, Lund.Google Scholar
Nokoe, S. and Ortiz, R. (1998). Optimum plot size for banana trials. HortScience, 33: 130132.Google Scholar
Notaro, V., Padulosi, S., Galluzzi, G. and King, I.O. (2017). A policy analysis to promote conservation and use of small millet underutilized species in India. International Journal of Agricultural Sustainability 15: 393405.Google Scholar
O’Donnell, K. and Sharrock, S. (2015). Seed banking in botanic gardens: can botanic gardens achieve GSPC Target 8 by 2020? BGjournal, 12: 38.Google Scholar
Ocampo, J., d’Eeckenbrugge, C., Restrepo, M., et al. (2007). Diversity of Colombian Passifloraceae: biogeography and an updated list for conservation. Biota Colombiana, 8: 145.Google Scholar
Oka, H.I. (1988). Origin of Cultivated Rice. Elsevier Science Publishing Co., Cambridge.Google Scholar
Oldfield, S. and Kapos, V. (2017). Botanic gardens band conservation impact options for evaluation. In: Blackmore, S. and Oldfield, S. (eds.) Plant Conservation Science and Practice: The Role of Botanic Gardens. Cambridge University Press, Cambridge, pp. 219235.Google Scholar
Oldfield, S.F. (2009). Botanic gardens and the conservation of tree species. Trends in Plant Science, 14: 581583.Google Scholar
Oldfield, S.F. (2010). Botanic Gardens: Modern-Day Arks. MIT Press, Cambridge.Google Scholar
O’Riordan, T. and Stoll-Kleemann, S. (2002). Biodiversity, Sustainability and Human Communities: Protecting Beyond the Protected. Cambridge University Press, Cambridge.Google Scholar
Ortiz, R. (1991). Una metodología de selección múltiple por productividad y estabilidad para cultivares de tomate. Agro-Ciencia (Chile), 7: 135142.Google Scholar
Ortiz, R. (1995). Plot techniques for assessment of bunch weight in banana trials under two systems of crop management. Agronomy Journal, 87: 6369.Google Scholar
Ortiz, R. (2004). Breeding clones. In: Goodman, R.M. (ed.) Encyclopedia of Plant & Crop Science. Marcel Dekker, Inc., Cambridge, pp. 174178.Google Scholar
Ortiz, R. (2015). Plant Breeding in the Omics Era. Springer, Cambridge.Google Scholar
Ortiz, R. (2017). Leveraging agricultural biodiversity for crop improvement. In: Hunter, D., Guarino, L., Spillane, C. and McKeown, P.C. (eds.) Routledge Handbook of Agricultural Biodiversity. Routledge/Taylor & Francis Group, Cambridge, pp. 285297.Google Scholar
Ortiz, R., Braun, H.-J., Crossa, J., et al. (2008a). Wheat genetic resources enhancement by the International Maize and Wheat Improvement Center (CIMMYT). Genetic Resources and Crop Evolution, 55: 10951140.Google Scholar
Ortiz, R., Crossa, J. and Sevilla, R. (2008b). Minimum resources for phenotyping morphological traits of maize (Zea mays L.) genetic resources. Plant Genetic Resources: Characterization and Utilization, 6: 195200.Google Scholar
Ortiz, R., Crossa, J., Franco, J., Sevilla, R. and Burgueño, J. (2008c). Classification of Peruvian highland maize races using plant traits. Genetic Resources and Crop Evolution, 55: 151162.Google Scholar
Ortiz, R., Crossa, J., Vargas, M. and Izquierdo, J. (2007a). Studying the effect of environmental variables on the genotype × environment interaction of tomato. Euphytica, 153: 119134.Google Scholar
Ortiz, R., de la Flor, F., Alvarado, G. and Crossa, J. (2010a). Classifying vegetable genetic resources: a case study with domesticated Capsicum spp. Scientia Horticulturae, 126: 186191.Google Scholar
Ortiz, R. and Izquierdo, J. (1992). Interacción genotipo por ambiente en el rendimiento comercial del tomate en América Latina y el Caribe. Turrialba, 42: 492499.Google Scholar
Ortiz, R. and Izquierdo, J. (1994). Yield stability differences among tomato genotypes grown in Latin America and the Caribbean. HortScience, 29: 11751177.Google Scholar
Ortiz, R., Madsen, S. and Vuylsteke, D. (1998). Classification of African plantain landraces and banana cultivars using a phenotypic distance index of quantitative descriptors. Theoretical and Applied Genetics, 96: 904911.Google Scholar
Ortiz, R., Ruiz-Tapia, E.N. and Mujica-Sanchez, A. (1998). Sampling strategy for a core collection of Peruvian quinoa germplasm. Theoretical and Applied Genetics, 96: 475483.Google Scholar
Ortiz, R. and Sevilla, R. (1997). Quantitative descriptors for classification and characterization of highland Peruvian maize. Plant Genetic Resources Newsletter, 110: 4952.Google Scholar
Ortiz, R., Sevilla, R., Alvarado, G. and Crossa, J. (2008d). Numerical classification of related Peruvian highland maize races using internal ear traits. Genetic Resources and Crop Evolution, 55: 10551064.Google Scholar
Ortiz, R., Simon, P., Jansky, S. and Stelly, D. (2009). Ploidy manipulation of the gametophyte, endosperm, and sporophyte in nature and for crop improvement – A tribute to Prof. Stanley J. Peloquin (1921–2008). Annals of Botany, 104: 795807.Google Scholar
Ortiz, R., and Swennen, R. (2014). From crossbreeding to biotechnology-facilitated banana and plantain improvement. Biotechnology Advances, 32: 158169.Google Scholar
Ortiz, R., Taba, S., Chávez Tovar, V.H., et al. (2010b). Conserving and enhancing maize genetic resources at global public goods – a perspective from CIMMYT. Crop Science, 50: 1328.Google Scholar
Ortiz, R., Trethowan, R., Ortiz Ferrara, G., et al. (2007b). High yield potential, shuttle breeding and a new international wheat improvement strategy. Euphytica, 157: 365384.Google Scholar
Ostrom, E. (1990). Governing the Commons: The Evolution of Institutions for Collective Action. Cambridge University Press, Cambridge.Google Scholar
Pacicco, C.L., Bodesmo, M., Torricelli, R. and Negri, V. (2013). Progress toward an Italian conservation strategy for extant LR: the first Italian official inventory of LR. Landraces, 2: 10. Available at: www.pgrsecure.bham.ac.uk/sites/default/files/documents/newsletters/Landraces_Issue_2.pdf Google Scholar
Pacifici, M., Foden, W.B., Visconti, P., et al. (2015). Assessing species vulnerability to climate change. Nature Climate Change, 5: 215225.Google Scholar
Padulosi, S. and Dulloo, E. (2012). Towards a viable system for monitoring agrobiodiversity on-farm: a proposed new approach for Red Listing of cultivated plant species. In: Padulosi, S., Bergamini, N. and Lawrence, T. (eds.) On-Farm Conservation of Neglected and Underutilized Species: Status, Trends and Novel Approaches to Cope with Climate Change. Bioversity International, Cambridge, pp. 171199.Google Scholar
Padulosi, S., Heywood, V., Hunter, D. and Jarvis, A. (2015). Underutilized crops and climate change – current status and outlook. In: Redden, R., Yadav, S.S., Maxted, N., et al. (eds.) Crop Wild Relatives and Climate Change. John Wiley & Sons, Inc., Cambridge, pp. 507521.Google Scholar
Painting, K.A., Perry, M.C., Denning, R.A. and Ayad, W.G. (1993). Guidebook for Genetic Resources Documentation. IBPGR, Cambridge.Google Scholar
Panella, L., Gigante, D., Donnini, D., Venanzoni, R. and Negri, V. (2012). Progenitori selvatici e forme coltivate di Apiaceae, Chenopodiaceae, Poaceae e Rosaceae: primi risultati per il territorio dell'Umbria (Italia Centrale). Quaderni Botanica Ambientale ed Applicata, 23: 313.Google Scholar
Panella, L., Wheeler, L. and McClintock, M.E. (2009). Long-term survival of cryopreserved sugarbeet pollen. Journal of Sugar Beet Research, 46: 19.Google Scholar
Panis, B. (2019). 60 years of plant cryopreservation: from freezing hardy mulberry twigs to establishing reference crop collections for future generations. Acta Horticulturae. https://doi.org/10.17660/ActaHortic.2019.1234.1.Google Scholar
Pâques, M. (1991). Vitrification and micropropagation: causes, remedies and prospects. Acta Horticulturae 289: 283290.Google Scholar
Parmesan, C. and Yohe, G. (2003). A globally coherent fingerprint of climate change impacts across natural systems. Nature, 421: 3742.Google Scholar
Parra-Quijano, M., Iriondo, J.M. and Torres, E. (2011a). Ecogeographical land characterization maps as a tool for assessing plant adaptation and their implications in agrobiodiversity studies. Genetic Resources and Crop Evolution, 59: 205218.Google Scholar
Parra-Quijano, M., Iriondo, J.M. and Torres, E. (2012). Improving representativeness of gene bank collections through species distribution models, gap analysis and ecogeographical maps. Biodiversity Conservation, 21: 7996.Google Scholar
Parra-Quijano, M., María Iriondo, J. and Torres Lamas, E. (2011b). Basic sampling strategies: theory and practice. In: Guarino, L., Ramanatha Rao, V. and Goldberg, E. (eds.) Collecting Plant Genetic Diversity: Technical Guidelines. 2011 Update. Bioversity International, Cambridge. Available at: http://cropgene bank.sgrp.cgiar.org/index.php?option=com_content&view=article&id=670 (accessed 13 August 2018).Google Scholar
Parra-Quijano, M., Torres Lamas, E., Iriondo Alegría, J.M. and López, F. (2014). CAPFITOGEN Tools. Programme to Strengthen National Plant Genetic Resource Capacities in Latin America. Food and Agriculture Organization of the UN, Cambridge. Available at: www.planttreaty.org/sites/default/files/capfitogen_manualv1-2_es.pdf (accessed 23 May 2016).Google Scholar
Paton, A.J., Brummitt, N., Govaerts, R., et al. (2008). Towards Target 1 of the Global Strategy for Plant Conservation: a working list of all known plant species – progress and prospects. Taxon, 57: 602611.Google Scholar
Patto, M.C.V., Aardse, A., Buntjer, J., et al. (2001). Morphology and AFLP markers suggest three Hordeum chilense ecotypes that differ in avoidance to rust fungi. Canadian Journal of Botany, 79: 204213.Google Scholar
Pavek, D.S., Lamboy, W.F. and Garvey, E.J. (2003). Selecting in situ conservation sites for grape genetic resources in the USA. Genetic Resources and Crop Evolution, 50: 165173.Google Scholar
Pearce, F. (2014). People power will save the world. New Scientist, 2 August, 14–15.Google Scholar
Pearce, T.R. and Bytebier, B. (2002). The role of an herbarium and its database in supporting plant conservation. In: Maunder, M., Clubbe, C., Hankamer, C. and Groves, M. (eds.) Plant Conservation in the Tropics: Perspectives and Practice. Royal Botanic Gardens, Kew, Cambridge, pp. 4965.Google Scholar
Pearson, R., Raxworthy, C., Nakamura, M. and Townsend Peterson, A. (2007). Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. Journal of Biogeography, 34: 102117.Google Scholar
Pearson, R.G., Thuiller, W., Araújo, M.B., et al. (2006). Model-based uncertainty in species' range prediction. Journal of Biogeography, 33: 17041711.Google Scholar
Peel, W. (2010). Rainforest Restoration Manual for South-Eastern Australia. CSIRO, Cambridge.Google Scholar
Pence, V.C. and Engelmann, F. (2011). Collecting in vitro for genetic resources conservation. In: Guarino, L., Ramanatha Rao, V. and Goldberg, E. (eds.) Collecting Plant Genetic Diversity: Technical Guidelines. 2011 Update. Bioversity International, Cambridge. Available at: http://cropgene bank.sgrp.cgiar.org/images/file/procedures/collecting2011/Chapter24–2011.pdf Google Scholar
Perfecto, I., Vandermeer, J. and Wright, A. (2009). Nature’s Matrix: Linking Agriculture, Conservation and Food Sovereignty. Earthscan, Cambridge.Google Scholar
Phelps, J. and Webb, E.L. (2015). ‘Invisible’ wildlife trades: Southeast Asia’s undocumented illegal trade in wild ornamental plants. Biological Conservation 186: 296305.Google Scholar
Phillips, J., Asdal, Å., Magos Brehm, J., Rasmussen, M. and Maxted, N. (2016). In situ and ex situ diversity analysis of priority crop wild relatives in Norway. Diversity and Distributions 22: 11121126. https://doi.org/10.1111/ddi.12470 Google Scholar
Phillips, S.J., Anderson, R.P. and Schapire, R.E. (2006). Maximum entropy modelling of species geographic distributions. Ecological Modelling, 190: 231259.Google Scholar
Phillips, S.J., Dudik, M. and Schapire, R.E. (2004). A maximum entropy approach to species distribution modelling. Proceedings of the Twenty-First International Conference on Machine Learning, 655–662.Google Scholar
Piano, E., Spanu, F. and Pecetti, L. (1993). Structure and variation of subterranean clover populations from Sicily, Italy. Euphytica, 68: 4351.Google Scholar
Pimentel, D., Wilson, C., McCullum, C., et al. (1997). Economic and environmental benefits of biodiversity. BioScience, 47: 747757.Google Scholar
Pingali, P.L. (2017). The Green Revolution and crop diversity. In: Hunter, D., Guarino, L., Spillane, C. and McKeown, P. (eds.) Handbook of Agriculture Biodiversity. Routledge, Cambridge, pp. 213223.Google Scholar
Pinheiro de Carvalho, M.Â.A., Nóbrega, H., Freitas, G., Fontinha, S. and Frese, L. (2012). Towards the establishment of a genetic reserve for Beta patula Aiton. In: Maxted, N., Dulloo, M.E., Ford-Lloyd, , et al. (eds.) Agrobiodiversity Conservation: Securing the Diversity of Crop Wild Relatives and Landraces. CAB International, Cambridge, pp. 3644.Google Scholar
Pistorius, R. (2016). Access and benefit sharing of genetic resources for family farmers: theory and practice. Farming Matters, 6–13Google Scholar
Porfiri, O., Costanza, M.T. and Negri, V. (2009). Landrace inventories in Italy and the Lazio Region Case Study. In: Vetelainen, M., Negri, V. and Maxted, N. (eds.) European Landraces: On-Farm Conservation, Management and Use. Bioversity Technical Bulletin No. 15. Bioversity International, Cambridge, pp. 117123. Available at: www.bioversityinternational.org/index.php?id=19&user_bioversitypublications_pi1[showUid]=3252 Google Scholar
Potato Council. (2017). Humidification in Potato Stores. Agriculture and Horticulture Development Board, Cambridge.Google Scholar
Powell, B., Hall, J. and Johns, T. (2011). Forest cover, use and dietary intake in the East Usambara Mountains, Tanzania. International Forestry Review, 13: 305317.Google Scholar
Prain, G., Hambly, H., Jones, M., Leppan, W. and Navarro, L. (2000). CGIAR Program on Participatory Research and Gender Analysis. Internally Commissioned External Review. CGIAR, Cambridge.Google Scholar
Prance, G.T. (1997). The conservation of botanical diversity. In: Maxted, N., Ford-Lloyd, B.V. and Hawkes, J.G. (eds.) Plant Genetic Conservation: The in situ Approach. Chapman & Hall, London, pp. 3–14.Google Scholar
Preston, J.M., Ford-Lloyd, B.V., Smith, L.M., et al. (2018). Genetic analysis of a heritage variety collection. Plant Genetic Resources: Characterization and Utilization, 17, 232–244.Google Scholar
Pretty, J. (1995). Regenerating Agriculture: An Alternative Strategy for Growth. Earthscan, Cambridge.Google Scholar
Pretty, J. (2007). The Earth Only Endures: On Reconnecting with Nature and Our Place in It. Earthscan, Cambridge.Google Scholar
Pretty, J., Guijt, I., Thompson, J. and Scoones, I. (2003). Participatory Learning and Action: A Trainers Guide. IIED, Cambridge.Google Scholar
Pritchard, H.W. (2004). Classification of seed storage ‘types’ for ex situ conservation in relations to temperature and moisture. In: Guerrant, E.O, Havens, K. and Maunder, M. (eds.) Ex Situ Plant Conservation: Supporting Species Survival in the Wild. Island Press, Cambridge, pp. 139161.Google Scholar
Pritchard, H.W. and Dickie, J.B. (2003). Predicting seed longevity: the use and abuse of seed viability equations. In: Smith, R.D., Dickie, J.B., Linington, S.H., Pritchard, H.W. and Probert, R.J. (eds.) Seed Conservation: Turning Science into Practice. Royal Botanic Gardens, Kew, Cambridge, pp. 653721.Google Scholar
Pullen, A. (2002). Conservation Biology. Cambridge University Press, Cambridge.Google Scholar
Pullin, A., and Knight, T. (2001). Effectiveness in conservation practice: pointers from medicine and public health. Conservation Biology, 15: 5054.Google Scholar
Pullin, A.S. and Knight, T.M. (2003). Support for decision making in conservation practice: an evidence-based approach. Journal for Nature Conservation, 11: 83–90.Google Scholar
Pullin, A., and Stewart, G.B. (2006). Guidelines for systematic review in conservation and environmental management. Conservation Biology, 20(6): 16471656.Google Scholar
Pushpakumara, D.K.N.G., Sokolow, J., Stahpit, B., Sujarwo, W. and Hunter, D. (2020). Home gardens for biodiversity conservation. In: Dissanayake, H.G. and Maredia, K.M. (eds.) Home Gardening for Enhanced Food Security and Livelihoods. Earthscan, Cambridge.Google Scholar
PwC. (2013). Crop wild relatives: a valuable resource for crop development. Price Waterhouse Cooper. Available at: http://pwc.blogs.com/files/pwc-seed-bank-analysis-for-msb-0713.pdf Google Scholar
Qualset, C.O., Damania, A.B., Zanatta, A.C.A. and Brush, S.B. (1997). Locally-based crop plant conservation. In: Maxted, N., FordLloyd, B.V. and Hawkes, J.G. (eds.) Plant Genetic Conservation: The in situ Approach. Chapman & Hall, Cambridge.Google Scholar
Quek, P. and Friis-Hansen, E. (2011). Collecting plant genetic resources and documenting associated indigenous knowledge in the field: a participatory approach. In: Guarino, L., Ramanatha Rao, V. and Goldberg, E. (eds.) Collecting Plant Genetic Diversity: Technical Guidelines. 2011 Update. Bioversity International, Cambridge. Available at: http://cropgene bank.sgrp.cgiar.org/index.php?option=com_content&view=article&id=673 (accessed 13 August 2018).Google Scholar
RAFI. (1983). Vegetable variety inventory: varieties from USDA 1903 list of American vegetables in storage at the national seed storage library Unpublished report compiled by Chiosso, E., Rural Advancement Fund, Inc., Pittsboro, NC.Google Scholar
Ragone, D. (1997). Breadfruit Artocarpus altilis (Parkinson) Fosberg. Promoting the Conservation and Use of Underutilised and Neglected Crops. 10. Institute of Plant Genetics and Crop Plant Research, Cambridge/IPGRI, Rome.Google Scholar
Rahmanian, M., Razavi, K., Haghparast, R., Salimi, M. and Ceccarelli, S. (2016a). Evolutionary plant breeding: a method for rapidly increasing on-farm biodiversity to support sustainable livelihoods in an era of climate change. In: Maxted, N., Ehsan Dulloo, M. and Ford-Lloyd, B.V. (eds.) Enhancing Crop Gene Pool Use: Capturing Wild Relative and Landrace Diversity for Crop Improvement. CABI, Cambridge, pp. 354361.Google Scholar
Rahmanian, M., Salimi, M., Ravazi, K., et al. (2016b). Evolutionary populations: living gene banks in farmers’ fields in Iran. Farming Matters (Special issue on Access and Benefit Sharing of Genetic Resources), May Issue, 24–29.Google Scholar
Ramirez-Villegas, J., Cuesta, F., Devenish, C., et al. (2014). Using species distribution models for designing conservation strategies of Tropical Andean biodiversity under climate change. Journal for Nature Conservation, 22: 391404.Google Scholar
Ramírez-Villegas, J., Khoury, C., Jarvis, A., Debouck, D.G. and Guarino, L. (2010). A gap analysis methodology for collecting crop gene pools: a case study with Phaseolus beans. PLoS One, 5: 118.Google Scholar
Rankou, H. (2011). Orchis militaris. The IUCN Red List of Threatened Species 2011. IUCN, Cambridge.Google Scholar
Rao, N.K., Hanson, J., Dulloo, et al. (2006). Manual of seed handling in genebanks. Handbooks for Genebanks 8. Bioversity International, Cambridge.Google Scholar
Ray, A. and Bhattacharya, S. (2008). Storage and plant regeneration from encapsulated shoot tips of Rauvolfia serpentina – an effective way of conservation and mass propagation. South African Journal of Botany, 74: 776779.Google Scholar
Raza, S., Christiansen, J.L., Jørnsgård, B. and Ortiz, R. (2000). Partial resistance to a Fusarium root disease in Egyptian white lupin landraces. Euphytica, 112: 233237.Google Scholar
RBG Kew. (2016). State of the World’s Plants Report – 2016. Royal Botanic Gardens, Kew, Cambridge.Google Scholar
RBG Kew. (2017). State of the World’s Plants Report - 2017. Royal Botanic Gardens, Kew, Cambridge.Google Scholar
Redden, R., Yadav, S.S., Maxted, N., et al. (eds.) (2015). Crop Wild Relatives and Climate Change. John Wiley & Sons, Inc., Cambridge.Google Scholar
Reddy, B.S.V., Ramesh, S. and Ortiz, R. (2005). Genetic and cytoplasmic-nuclear male sterility in sorghum. Plant Breeding Reviews, 25: 139172.Google Scholar
Reddy, B.V.S., Rao, P., Deb, U.K., et al. (2004). Global sorghum genetic enhancement processes at ICRISAT. In: Bantilan, M.C.S., Deb, U.K., Gowda, C.L.L., et al. (eds.) Sorghum Genetic Enhancement: Research Process, Dissemination and Impacts. International Crops Research Institute for the Semi-Arid Tropics, Cambridge, pp. 65102.Google Scholar
Reed, B.M., Engelmann, F., Dulloo, M.E. and Engels, J.M.M. (2004). Technical Guidelines for the Management of Field and in vitro Germplasm Collections. IPGRI Handbooks for Gene Banks No. 7. International Plant Genetic Resources Institute, Cambridge.Google Scholar
Reed, D.H., O'Grady, J.J., Brook, B.W., Ballou, J.D. and Frankham, R. (2003). Estimates of minimum viable population sizes for vertebrates and factors influencing those estimates. Biological Conservation, 113: 2334.Google Scholar
Reid, W., Mcneely, J., Tunstall, D., Bryant, D. and Winograd, M. (1993). Biodiversity Indicators for Policy-Makers. World Resources Institute, Cambridge.Google Scholar
Rhoades, R. and Booth, R.H. (1982). Farmer-Back-to-Farmer: A Model for Generating Acceptable Agricultural Technology. Agricultural Administration, 11: 127137.Google Scholar
Rijal, D.K., Adhikari, N.P., Khatiwada, S.P., et al. (1998). Strengthening the Scientific Basis for in situ Conservation of Agrobiodiversity: Findings of Site Selection in Bara, Nepal. NP Working Paper No. 2/98. NARC/LI-BIRD, /IPGRI, Cambridge.Google Scholar
Roberts, E.H. (1973). Predicting the storage life of seeds. Seed Science and Technology, 1: 499514.Google Scholar
Robinson, R.A. (1996). Return to Resistance. AgAccess, Davis, California.Google Scholar
Robinson, R.A. (1997). Host resistance to crop parasites. Integrated Pest Management Reviews, 2: 103107.Google Scholar
Robinson, R.A. (2009). breeding for quanitative Variables. Part 2: breeding for durable resistance to crop pests and diseases. In: Ceccarelli, S., Guimaraes, E.P. and Weltzien, E. (eds.) Plant Breeding and Farmer Participation. Food and Agriculture Organization of the United Nations, Cambridge, pp. 367390.Google Scholar
Roe, D., Nelson, F. and Sandbrook, C. (eds.) (2009). Community Management of Natural Resources in Africa: Impacts, Experiences and Future Directions. Natural Resource Issues No. 18. International Institute for Environment and Development, Cambridge.Google Scholar
Rogers, J.S. (1972). Measures of similarity and genetic distance. In: Studies in Genetics VII. University of Texas Publication, Cambridge. 7213: 145153.Google Scholar
Roos, E.E. (1989). Long term seed storage. Plant Breeding Reviews, 7: 129158.Google Scholar
Roos, E.E. and Davidson, D.A. (1992). Record longevities of vegetable seeds in storage. HortScience, 27: 393396.Google Scholar
Roskov, Y., Zarucchi, J., Novoselova, M. and Bisby, F. (eds.) (2019). ILDIS world database of legumes (version 12, May 2014). In: Roskov, Y., Ower, G., Orrell, T., et al. (eds.) Species 2000 & ITIS Catalogue of Life, 24 December 2018. Digital resource at www.catalogueoflife.org/col. Species 2000: Naturalis, Cambridge.Google Scholar
Rosset, P.M. and Altieri, M.A. (2017). Agroecology; Science and Politics. Practical Action Publishing, Cambridge.Google Scholar
Rubio Teso, M.L., Kinoshita Kinoshita, K. and Iriondo Alegría, J.M. (2016). Optimized site selection for the in situ conservation of forage CWR: a combination of community and genetic level perspectives. In: Maxted, N., Dulloo, M.E. and Ford-Lloyd, B.V. (eds.) Enhancing Crop Gene Pool Use: Capturing Wild Relative and Landrace Diversity for Crop Improvement. CAB International, Cambridge, pp. 199205.Google Scholar
Ruddiman, W.F., Ellis, E.C., Kaplan, J.O. and Fuller, D.Q. (2015). Defining the epoch we live in. Science 348: 3839.Google Scholar
Ruge-Wehling, B., Linz, A., Habeku, A. and Wehling, P. (2006). Mapping of RYMl6Hb, the second soilborne virus resistance gene introgressed from Hordeum bulbosum . Theoretical and Applied Genetics, 113: 867673.Google Scholar
Ruiz, J.J. and Garcia-Martinez, S. (2009). Tomato varieties ‘Muchamiel’ and ‘De la Pera’ from the Sout-east of Spain: genetic improvement to promote on-farm conservation. In: Veteläinen, M., Negri, V. and Maxted, N. (eds.) European Landraces: On-Farm conservation, Management and Use. Bioversity Technical Bulletin 15. Bioversity International, Cambridge, pp. 171176.Google Scholar
Ryder, E.J. (1988). Efficient sampling from a collection. HortScience, 23: 8284.Google Scholar
Sackville Hamilton, R. and Chorlton, K. (1995). Collecting vegetative material of forage grasses and legumes. In: Guarino, L., Ramanatha Rao, V. and Reid, R. (eds.) Collecting Plant Genetic Diversity: Technical Guidelines. CAB International, Cambridge, pp. 467484.Google Scholar
Safriel, U.N., Anikster, Y. and Waldman, M. (1997). Management of nature reserves for conservation of wild relatives and the significance of marginal populations. Bocconea, 7: 233239.Google Scholar
Sahoo, S.L., Rout, J.R. and Kanungo, S. (2012). Synthetic seeds. In: Sharma, H.P., Dogra, J.V.V. and Misra, A.N. (eds.) Plant Tissue Culture: Totipotency to Transgenic. Cambridge, pp. 101114.Google Scholar
Saitou, N. and Nei, M. (1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4: 406425.Google Scholar
Sakai, A. (2000). Development of cryopreservation techniques. In: Engelmann, F. and Hiroko, T. (eds.) Cryopreservation of Tropical Plant Germplasm. Current Research Progress and Application. Japan International Research Centre for Agricultural Sciences, Cambridge, pp. 17.Google Scholar
Salafsky, N., Margoluis, R. and Redford, K. (2001). Adaptive Management: A Tool for Conservation Practitioners. BSP Publications, Cambridge.Google Scholar
Salazar, G.A. (1996). Conservation threats. In: Hágsater, E. and Dumont, V. (eds.) Orchids – Status Survey and Conservation Action Plan. IUCN. Cambridge, pp. 610.Google Scholar
Sanchez-Velasquez, L.R. (1991). Zea diploperennis: Mejoramiento genetico del maiz, ecologia y la conservación de recursos naturales. Tiempos de ciencia 24 Qulio–septiembre: 1–8. University of Guadalajara, Jalisco.Google Scholar
Saunders, G. and Parfitt, A. (2005). Opportunity Maps for Landscape-Scale Conservation of Biodiversity: A Good Practice Study. English Nature Research Reports, Number 641. English Nature, Cambridge.Google Scholar
Sax, D.F., Gaines, S.D. and Brown, J.H. (2002). Species invasions exceed extinctions on islands worldwide: a comparative study of plants and birds. American Naturalist, 160: 766783.Google Scholar
Scheldeman, X. and van Zonneveld, M. (2010). Training Manual on Spatial Analysis of Plant Diversity and Distribution. Bioversity International, Cambridge.Google Scholar
Schippmann, U., Leaman, D. and Cunningham, A.B. (2006). A comparison of cultivation and wild collection of medicinal and aromatic plants under sustainability aspects. In: Bogers, R.J. , Cracker, L.E. and Lange, D. (eds.) Medicinal and Aromatic Plants. Springer, Cambridge, pp. 7595.Google Scholar
Schmidt, L. (2011). Collecting woody perennials. In: Guarino, L., Ramanatha Rao, V. and Goldberg, E. (eds.) Collecting Plant Genetic Diversity: Technical Guidelines. 2011 Update. Bioversity International, Cambridge. Available at: http://cropgene bank.sgrp.cgiar.org/index.php?option=com_content&view=article&id=682 (accessed 13 August 2018).Google Scholar
Scholten, M., Maxted, N., Ford-Lloyd, B.V. and Green, N. (2008). Hebridean and Shetland oat (Avena strigosa Schreb.) and Shetland cabbage (Brassica oleracea L.) landraces: occurrence and conservation issues. Plant Genetic Resources Newsletter, 154: 15.Google Scholar
Schulp, C.J., Thuiller, W. and Verburg, P. (2014). Wild food in Europe: a synthesis of knowledge and data of terrestrial wild food as an ecosystem service. Ecological Economics, 105: 292305.Google Scholar
Schultes, R.E. and von Reis, S. (1995). Ethnobotany: Evolution of a Discipline. Dioscorides Press, Cambridge.Google Scholar
Scoones, I. and Thompson, J. (1994). Beyond Farmer First: Rural People’s Knowledge, Agricultural Research and Extension Practice. ITDG Publishing.Google Scholar
Scoones, I. and Thompson, J. (2009). Farmer First Revisited. Innovation for Agricultural Research and Development. ITDG Publishing.Google Scholar
Sedcole, J.R. (1977). Number of plants necessary to recover a trait. Crop Science, 17: 667668.Google Scholar
Seppä, H., Alenius, T., Bradshaw, R.H.W., et al. (2009). Invasion of Norway spruce (Picea abies) and the rise of the boreal ecosystem in Fennoscandia. Journal of Ecology, 97: 629640.Google Scholar
Shafer, C.L. (1990). Nature Reserves, Island Theory and Conservation Practice. Smithsonian Press, Cambridge.Google Scholar
Shaffer, M.L. (1981). Minimum population sizes for species conservation. BioScience American Institute of Biological Sciences, 31: 131134.Google Scholar
Shands, H.L. (1991). Complementarity of in situ and ex situ germplasm conservation from the standpoint of the future user. Israel Journal of Botany, 40: 521528.Google Scholar
Shanley, P. and Laird, S.A. (2002). ‘Giving back’: making research results relevant to local groups and conservation. In: Laird, S.A. (ed.) Biodiversity and Knowledge: Equitable Partnerships in Practice. Earthscan, London, pp. 102–124.Google Scholar
Shanley, P., Pierce, A.R., Laird, S.A. and Guillen, A (2002). Tapping the Green Market: Certification and Management of Non-Timber Forest Products. Earthscan, Cambridge.Google Scholar
Shannon, C.E. (2001). A mathematical theory of communication. ACM SIGMOBILE Mobile Computing and Communications Review, 5: 355.Google Scholar
Sharrock, S., Oldfield, S. and Wilson, O. (2014). Plant Conservation Report 2014: a review of progress in implementation of the Global Strategy for Plant Conservation 2011–2020. Secretariat of the Convention on Biological Diversity, Montréal, Canada and Botanic Gardens Conservation International, Richmond, UK. Technical Series No. 81.Google Scholar
Shrestha, P., Gezu, G., Swain, S., et al. (2013a). The community seed bank: a common driver for community biodiversity management. In: De Boef, W.S., Peroni, N., Subedi, A., Thijssen, M.H. and O’Keeffe, E. (eds) Community Biodiversity Management: Promoting Resilience and the Conservation of Plant Genetic Resources. Routledge, Cambridge, pp. 109117.Google Scholar
Shrestha, P., Subedi, A. and Sthapit, B. (2013b). Enhancing awareness of the value of local biodiversity in Nepal. In: De Boef, W.S., Peroni, N., Subedi, A. and Thijssen, M.H. (eds.) Community Biodiversity Management: Promoting Resilience and the Conservation of Plant Genetic Resources. Earthscan, London, pp. 72–76.Google Scholar
Singh, A.K., Varaprasad, K.S. and Venkateswaran, K. (2012). Conservation costs of plant genetic resources for food and agriculture: seed gene banks. Agricultural Research, 1: 223239.Google Scholar
Singh, M., Malhotra, R.S., Ceccarelli, S., Sarker, A., Grando, S. and Erskine, W. (2003). Spatial variability models to improve dryland field trials. Experimental Agriculture, 39: 151160.Google Scholar
Slikkerveer, L. (1994). Indigenous agricultural knowledge systems in developing countries: a bibliography. Indigenous Knowledge Systems Research and Development Studies, no. 1. Special Issue: INDAKS Project Report 1 in collaboration with the European Commission DG XII. Leiden Ethnosystems and Development Programme (LEAD), Leiden.Google Scholar
Smith, R.D. (1995). Collecting and handling seeds in the field. In: Guarino, L., Ramanatha Rao, V. and Reid, R. (eds.) Collecting Plant Genetic Diversity: Technical Guidelines. CAB International, Cambridge, pp. 419456.Google Scholar
Smith, R.D., Dickie, J.B., Linington, S.H., Pritchard, H.W. and Probert, R.J. (2003). Seed Conservation: Turning Science into Practice. Royal Botanic Gardens, Kew, Cambridge.Google Scholar
Smith, R.D. and Linington, S. (1997). The management of the Kew Seed Bank for the conservation of arid land and U.K. wild species. Bocconea, 273–280.Google Scholar
Smýkal, P., Trněný, O., Brus, J., et al. (2018). Genetic structure of wild pea (Pisum sativum subsp. elatius) populations in the northern part of the Fertile Crescent reflects moderate cross-pollination and strong effect of geographic but not environmental distance. PLoS ONE, 13: e0194056.Google Scholar
Sokal, R.R. and Michener, C.D. (1958). A statistical method for evaluating systematic relationships. University of Kansas Science Bulletin, 38: 14091438.Google Scholar
Song, Y., Yanyan, Z., Song, X. and Vernooy, R. (2016). Access and benefit sharing in participatory plant breeding in southwest China. Farming Matters (Special Issue on Access and Benefit Sharing of Genetic Resources), May Issue, 18–23.Google Scholar
Spellerberg, I.F. (1996). Conservation Biology. Longman Group Ltd, Cambridge.Google Scholar
Sperling, L. (1996). Results, methods and institutional issues in participatory selection: the case of beans in Rwanda. In: Eyzaguirre, P. and Iwanaga, M. (eds.) Participatory Plant Breeding. International Plant Genetic Resources Institute, Cambridge, pp. 4456.Google Scholar
Sperling, L., Ashby, J., Weltzien, E., Smith, M. and McGuire, S. (2001). Base-broadening for client-oriented impact: insights drawn from participatory plant breeding field experience. In: Cooper, H.D., Spillane, C. and Hodgkin, T. (eds.) Broadening the Genetic Basis of Crop Production. CABI, Cambridge, pp. 419435.Google Scholar
Spinney, L. (2014). Wonder food. New Scientist, 28 June 2014, 40–43.Google Scholar
Stadler, L.J. (1945a). Gamete selection in corn breeding. Journal of the American Society of Agronomy, 36: 988989.Google Scholar
Stadler, L.J. (1945b). Gamete selection in corn breeding. Maize Genetics Cooperative Newsletter, 19: 3340.Google Scholar
Steadman, D.W. (2006). Extinction and Biogeography of Tropical Pacific Birds. University of Chicago Press, Cambridge.Google Scholar
Stearn, W. (1966). Botanical Latin. David & Charles, Cambridge.Google Scholar
Steffen, W., Richardson, K., Rockstrom, J., et al. (2015). Planetary boundaries: guiding human development on a changing planet. Science, 347: 6219.Google Scholar
Stein, B., Glick, P., Edelson, N. and Staudt, A. (2014). Climate-Smart Conservation: Putting Adaptation Principles into Practice. National Wildlife Federation, Cambridge.Google Scholar
Sthapit, B., Lamers, H.A.H., Ramanatha Rao, V. and Bailey, A. (2016). Tropical Fruit Tree Diversity: Good Practices for in Situ and On-farm Conservation. Earthscan, Cambridge.Google Scholar
Sthapit, B., Ramanatha Rao, V., Lamers, H. and Sthapit, S. (2017). Uncovering the role of custodian farmers in the on-farm conservation of agricultural biodiversity. In: Hunter, D., Guarino, L., Spillane, C. and McKeown, P. (eds.) Handbook of Agriculture Biodiversity. Routledge, Cambridge, pp. 549562.Google Scholar
Sthapit, B., Subedi, A., Jarvis, D., et al. (2012). Community-based approach to on-farm conservation and sustainable use of agricultural biodiversity in Asia. Indian Journal of Plant Genetic Research, 25: 97110.Google Scholar
Stoll-Kleemann, S. and Welp, M. (2008). Participatory and integrated management of biosphere reserves. Gaia, 17(S1): 161–168.Google Scholar
Stolton, S., Dudley, N. and Kun, Z. (2010). Diverting places: linking travel, pleasure and protection. In: Stolton, S. and Dudley, N. (eds.) Arguments for Protected Areas: Multiple Benefits for Conservation and Use. Earthscan, Cambridge, pp. 189204.Google Scholar
Stolton, S., Maxted, N., Ford-Lloyd, B., Kell, S.P. and Dudley, N. (2006). Food Stores: Using Protected Areas to Secure Crop Genetic Diversity. WWF Arguments for Protection series. WWF, Cambridge, pp. 1133.Google Scholar
Street, K., Mackay, M., Zuev, E., et al. (2008). Diving into the gene pool – a rational system to access specific traits from large germplasm collections. Available at: http://hdl.handle.net/2123/3390 (accessed 12 September 2014).Google Scholar
Suneson, C.A. (1956). An evolutionary plant breeding method. Agronomy Journal, 48: 188191.Google Scholar
Sutherland, W.J. (2000). The Conservation Handbook: Research, Management and Policy. Blackwell Science, Cambridge, pp. 1278.Google Scholar
Swofford, D.L. (2002). PAUP: Phylogenetic Analysis Using Parsimony, Version 4. Sinauer Associates, Cambridge.Google Scholar
Sykes, J.T. (1975). Tree crops. In: Frankel, O.H. and Hawkes, J.G. (eds.) Crop Genetic Resources for Today and Tomorrow. Cambridge University Press, Cambridge, pp. 123137.Google Scholar
Taba, S., van Ginkel, M., Hoisington, D. and Poland, D. (2004). Wellhausen-Anderson Plant Genetic Resources Center: Operations Manual, 2004. Centro Internacional de Mejoramiento de Maíz y Trigo, Cambridge.Google Scholar
Tadesse, W., Abdalla, O., Ogbonnaya, F., et al. (2012). Agronomic performance of elite stem rust resistant spring wheat genotypes and association among trial sites in the Central and West Asia and North Africa Region. Crop Science, 52: 11051114.Google Scholar
Tanksley, S.D. and McCouch, S.R. (1997). Seed banks and molecular maps: unlocking genetic potential from the wild. Science, 277: 10631066.Google Scholar
Tanwar, H., Sharma, S., Mor, V.S., Yadav, J. and Bhuker, A. (2018). Image analysis: a modern approach to seed quality testing. Current Journal of Applied Science and Technology, 27: 111.Google Scholar
Taylor, P. and Hunter, D. (2008). The Learning and Teaching for Transformation initiative; helping higher learning institutes to participate. Policy and Practice 3: 7580.Google Scholar
ten Kate, K. and Laird, S.A. (1999). The Commercial Use of Biodiversity: Access to Genetic Resources and Benefit Sharing. Earthscan, Cambridge.Google Scholar
Terry, J., Probert, R.J. and Linington, S.H. (2003). Processing and maintenance of the Millennium Seed Bank collections. In: Smith, R.D., Dickie, J.B., Linington, S.H., Pritchard, H.W., Probert, R.J.(eds.) Seed Conservation: Turning Science into Practice. Royal Botanic Gardens, Kew, Cambridge, pp. 307325.Google Scholar
Thachuk, C., Crossa, J., Franco, J., et al. (2009). Core Hunter: an algorithm for sampling genetic resources based on multiple genetic measures. BMC Bioinformatics, 10: 243. https://doi.org/10.1186/1471-2105-10-243.Google Scholar
Thijssen, M., de Boef, W.S., Subedi, A., Peroni, N. and O’Keeffe, E. (2013). General introduction. In: De Boef, W.S., Peroni, N., Subedi, A. and Thijssen, M.H. (eds.) Community Biodiversity Management: Promoting Resilience and the Conservation of Plant Genetic Resources. Earthscan, Cambridge, pp. 310.Google Scholar
Thomson, L., Graudal, L. and Kjaer, E. (2001). Selection and management of in situ gene conservation areas for target species. In: FAO, DFSC, IPGRI (eds.) Forest Genetic Resources Conservation and Management, in Managed Natural Forest and Protected Areas, Vol. 2. International Plant Genetic Resources Institute, Cambridge.Google Scholar
Thormann, I., Kell, S.P., Magos Brehm, J., Dulloo, M.E. and Maxted, N. (2017). CWR Checklist and Inventory Data Template v.1. doi:10.7910/DVN/B8YOQL, Harvard Dataverse.Google Scholar
Thormann, I., Parra-Quijano, M., Endresen, D.T.F., et al. (2014). Predictive characterization of crop wild relatives and landraces. Technical guidelines version 1. Bioversity International, Rome, Italy. Available at: www.bioversityinternational.org/index.php?id=244&tx_news_pi1%5Bnews%5D=4967&cHash=7cd3c6c2b8360927b83fa6ef7cc28d99 (accessed 17 July 2017).Google Scholar
Tittensor, D.P., Walpole, M., Hill, S.L., et al. (2014). A mid-term analysis of progress toward international biodiversity targets. Science, 346: 241244.Google Scholar
Toomey, G. (1999). Farmers as Researchers: The Rise of Participatory Plant Breeding. International Development Research Centre, Cambridge.Google Scholar
Torricelli, R., Pacicco, L., Bodesmo, M., Raggi, L. and Negri, V. (2016). Assessment of Italian landrace density and species richness: useful criteria for developing in situ conservation strategies. In: Maxted, N., Ehsan Dulloo, M. and Ford-Lloyd, B.V. (eds.) Enhancing Crop Gene Pool Use: Capturing Wild Relative and Landrace Diversity for Crop Improvement. CAB International, Cambridge, pp. 297312.Google Scholar
Towill, L.E. (2004). Pollen storage as a conservation tool. In: Guerrent, E., Havens, K. and Maunder, M. (eds.) Ex situ Plant Conservation: Supporting Species Survival in the Wild. Island Press, Cambridge, pp. 180188.Google Scholar
Traill, L.W., Bradshaw, C.J.A. and Brook, B.W. (2007). Minimum viable population size: a meta-analysis of 30 years of published estimates. Biological Conservation, 139: 159166.Google Scholar
Trauger, A. (ed.) (2015). Food Sovereignty in International Context: Discourse, Politics and Practice of Place. Routledge, Cambridge.Google Scholar
Trethowan, R.M., Reynolds, M.P., Ortiz-Monasterio, I. and Ortiz, R. (2007). The genetic basis of the Green Revolution in wheat production. Plant Breeding Reviews, 28: 3958.Google Scholar
Tsobou, R., Mapongmetsem, P.M. and Van Damme, P. (2016). Medicinal plants used for treating reproductive health care problems in Cameroon, Central Africa. Economic Botany: 70: 145159.Google Scholar
Turner, N.J., Łuczaj, L.J., Migliorini, L.P., et al. (2011). Edible and tended wild plants, traditional ecological knowledge and agroecology. Critical Reviews in Plant Science 30(1–2): 198225.Google Scholar
Turner, W. (1551). A New Herball. pt 1 Mierdman, London; pt 2 Barckman, Cologne.Google Scholar
Tuxill, H. and Nabhan, G.P. (2001). People, Plants and Protected Areas. Earthscan from Routledge, Cambridge.Google Scholar
Tyagi, R.K. and Agrawal, A. (2015). Revised gene bank standards for management of plant genetic resources. Indian Journal of Agricultural Sciences, 85: 157165.Google Scholar
United Nations. (2009). State of the World’s Indigenous Peoples. Cambridge.Google Scholar
United Nations. (2011). World Population Prospects: The 2010 Revision. United Nations, Department of Economic and Social Affairs, Population Division, Cambridge.Google Scholar
Unnikrishnan, P.M. and Suneetha, M.S. (2012). Biodiversity, Traditional Knowledge and Community Health: Strengthening Linkages. UNU_IAS Policy Report.Google Scholar
Upadhyaya, H. and Ortiz, R. (2001). A mini core subset for capturing diversity and promoting utilization of chickpea genetic resources in crop improvement. Theoretical and Applied Genetics, 102: 12921298.Google Scholar
Valdani Vicari & Associati, Arcadia International, Wageningen UR: Centre for Genetic Resource, The Netherlands, Plant Research International and the Socio-Economics Research Institute, Fungal Biodiversity Centre of the Royal Academy of Arts and Science and Information and Coordination Centre for Biological Diversity of the German Federal Office for Agriculture and Food. (2015). Better integration of ex situ and in situ approaches towards conservation and sustainable use of GR at national and EU level: from complementarity to synergy. Workshop Report for Preparatory action on EU plant and animal genetic resources (AGRI-2013-EVAL-7). Directorate General for Agriculture and Rural Development, European Commission, Brussels.Google Scholar
Valdani Vicari & Associati, Arcadia International, Wageningen UR: Centre for Genetic Resource, the Netherlands, Plant Research International and the Socio-Economics Research Institute, Fungal Biodiversity Centre of the Royal Academy of Arts and Science and Information and Coordination Centre for Biological Diversity of the German Federal Office for Agriculture and Food. (2016). The impact of climate change on the conservation and utilisation of crop wild relatives in Europe. Workshop Report for Preparatory action on EU plant and animal genetic resources (AGRI-2013-EVAL-7). Directorate General for Agriculture and Rural Development, European Commission, Brussels.Google Scholar
Van Dyke, F. (2008). Conservation biology: Foundations, Concepts, Applications. McGraw-Hill, Cambridge.Google Scholar
van Treuren, R., de Groot, E.C. and van Hintum, T.J.L. (2013). Preservation of seed viability during 25 years of storage under standard gene bank conditions. Genetic Resources and Crop Evolution, 60: 14071421.Google Scholar
van Zonneveld, M., Scheldeman, X., Escribano, P., et al. (2012). Mapping genetic diversity of cherimoya (Annona cherimola Mill.): application of spatial analysis for conservation and use of plant genetic resources. PLoS One, 7(1): e29845. https://doi.org/10.1371/journal.pone.0029845.Google Scholar
Vaughan, D.A. (1994). The Wild Relatives of Rice, A Genetic Resource Handbook. IRRI, Cambridge.Google Scholar
Vaughan, J.G. and Geissler, C.A. (2009). The New Oxford Book of Food Plants. Oxford University Press, Cambridge.Google Scholar
Vavilov, N.I. (1917). 0 proiskhozhdenii kulturnoirzhi [On the origin of the cultivated rye]. Bulletin of the Bureau of Applied Botany, 10(7–10): 561590 [Russian].Google Scholar
Vavilov, N.I. (1926). Tzentry proiskhozhdeniya kulturnykhrastenii [The centers of origin of cultivated plants]. Works of Applied Botany and Plant Breeding, 16(2): 248 [Russian, English].Google Scholar
Vavilov, N.I. (1951). The Origin, Variation, Immunity and Breeding of Cultivated Plants. Transl. by Chester, K.S.. Ronald Press, Cambridge [English].Google Scholar
Vavilov, N.I. (1965). Izbrannye trudy. Problemy proiskhozhdeniya, geografii, genetiki, selektzii astenii, rastenievodstva I agronomii. [Selected works. The problems of origin, geography, genetics, plant breeding, plant industry and agronomy]. Vol. 5. USSR Academy of Science Press, M.-L. [Russian].Google Scholar
Veitch, C.R. and Clout, M.N. (2002). Turning the Tide: The Eradication of Invasive Species. Proceedings of the International Conference on Eradication of Island Invasives. IUCN, Cambridge.Google Scholar
Verdcourt, B. and Halliday, P. (1978). A revision of Psophocarpus (Leguminosae-Papilionoideae-Phaseolus). Kew Bulletin, 33: 191227.Google Scholar
Vernooy, R. (2003). Seeds That Give: Participatory Plant Breeding. International Development Research Centre, Cambridge.Google Scholar
Vernooy, R. (2013). In the hands of many: a review of community gene/seed banks of the world. In: Shrestha, P., Vernooy, R. and Chaudhary, P. (eds) Community Seed Banks in Nepal: Past, Present, Future. Proceedings of a National Workshop, 14–15 June 2012, Pokhara, Nepal. Local Initiatives for Biodiversity, Research and Development, Pokhara, and Bioversity International, Rome, pp. 3–15. Available at: www.bioversityinternational.org/uploads/tx_news/Community_seed_ banks_in_Nepal__past__present_and_future_1642.pdf Google Scholar
Vernooy, R., Shrestha, P. and Sthapit, B. (2015). Community Seed Banks: Origins, Evolution and Prospects. Earthscan from Routledge, Cambridge.Google Scholar
Vernooy, R., Shrestha, P. and Sthapit, B. (2017a). Seeds to keep and seeds to share: the multiple roles of community seed banks. In: Hunter, D., Guarino, L., Spillane, C. and McKeown, P. (eds.) Handbook of Agriculture Biodiversity. Routledge, Cambridge, pp. 580591.Google Scholar
Vernooy, R., Sthapit, B. and Bessette, G. (2017b). Community Seed Banks: Concept and Practice (Facilitator Handbook). Bioversity International, Cambridge.Google Scholar
Veteläinen, M., Negri, V. and Maxted, N. (eds.) (2009a). European Landraces: On-farm conservation, Management and Use. Bioversity Technical Bulletin 15. Bioversity International, Cambridge, pp. 1359.Google Scholar
Veteläinen, M., Negri, V. and Maxted, N. (2009b). A European strategic approach to conserving crop landraces. In: Veteläinen, M., Negri, V. and Maxted, N. (eds.) European Landraces: On-farm Conservation, Management and Use. Bioversity Technical Bulletin 15. Bioversity International, Cambridge, pp. 305325.Google Scholar
Vincent, H., Amri, A., Castañeda-Álvarez, N.P., et al. (2019). Modeling of crop wild relative species identifies areas globally for in situ conservation. Communications Biology, 2: 136. https://doi.org/10.1038/s42003-019-0372-z.Google Scholar
Vincent, H., Castañeda-Álvarez, N.P. and Maxted, N. (2016). An approach for in situ gap analysis and conservation planning on a global scale. In: Maxted, N., Dulloo, E.M. and Ford-Lloyd, B.V. (eds.) Enhancing Crop Gene Pool Use: Capturing Wild Relative and Landrace Diversity for Crop Improvement. CAB International, Cambridge, pp. 137148.Google Scholar
Vincent, H., von Bothmer, R., Knüpffer, H., et al. (2012). Genetic gap analysis of wild Hordeum taxa. Plant Genetic Resources: Characterization and Utilization, 10: 242253.Google Scholar
Vincent, H., Wiersema, J., Kell, S.P., et al. (2013). A prioritised crop wild relative inventory as a first step to help underpin global food security. Biological Conservation, 167: 265275.Google Scholar
Vinceti, B., Ickowitz, A., Powell, B., et al. (2013). Challenges and opportunities in strengthening the contribution of forests to sustainable diets. Sustainability 5: 47974824.Google Scholar
Vitt, P., Havens, K., Kramer, A.T., Sollenberger, D. and Yates, E. (2010). Assisted migration of plants: changes in latitudes, changes in attitudes. Biological Conservation, 143: 1827.Google Scholar
Volis, S. and Blecher, M. (2010). Quasi in situ: a bridge between ex situ and in situ conservation of plants. Biodiversity and Conservation, 19: 24412454.Google Scholar
Volk, G.M. (2011). Collecting pollen for genetic resources conservation. In: Guarino, L., Ramanatha Rao, V. and Goldberg, E. (eds.) Collecting Plant Genetic Diversity: Technical Guidelines. 2011 Update. Bioversity International, Cambridge. Available at: http://cropgene bank.sgrp.cgiar.org/index.php?option=com_content&view=article&id=654 Google Scholar
von Bothmer, R. and Seberg, O. (1995). Strategies for the collecting of wild species. In: Guarino, L., Ramanatha Roa, V. and Reid, R. (eds.) Collecting Plant Genetic Diversity. Technical Guidelines. CAB International, Cambridge, pp. 93112.Google Scholar
Von Humboldt, A. and Bonpland, A. (1807). Essai sur la géographie des plantes. Paris, Chez Fr Schoelle Librairie, et Tubingue, chez J. G. Cotta, Librairie.Google Scholar
Wagner, S.C. (2010). Keystone species. Nature Education Knowledge, 3(10): 51.Google Scholar
Wainwright, W., Drucker, A.G., Maxted, N., et al. (2019). Estimating in situ conservation costs of Zambian crop wild relatives under alternative conservation goals. Land Use Policy, 81: 632643.Google Scholar
Walker, T.S. (2006). Participatory Varietal Selection, Participatory Plant Breeding, and Varietal Change. Background paper for the World Development Report 2008. World Bank. Cambridge.Google Scholar
Walley, K.A., Khan, M.S.I. and Bradshaw, A.D. (1974). The potential for evolution of heavy metal tolerance in plants. Heredity, 32: 309319.Google Scholar
Walters, C., Wheeler, L.M. and Grotenhuis, J.M. (2005). Longevity of seeds stored in a gene bank: species characteristics. Seed Science Research, 15: 120.Google Scholar
Ward, J. (1963). Hierarchical grouping to optimize an objective function. Journal of the American Statistical Association, 58: 236244.Google Scholar
Way, M.J. (2003). Collecting seed from non-domesticated plants for long-term conservation. In: Smith, R.D., Dickie, J.B., Linington, S.H., Pritchard, H.W. and Probert, R.J. (eds.) Seed Conservation: Turning Science into Practice. Royal Botanic Gardens, Kew, Richmond, UK.Google Scholar
Weinberg, W. (1908). Über den Nachweis der Vererbung beim MenschenJahreshefte des Vereins für vaterländische Naturkunde in Württemberg, 64: 368382.Google Scholar
Weinberger, K. and Pichop, G.N. (2009). Marketing of African indigenous vegetables along urban and peri-urban supply chains in Sub-Saharan Africa. In: Shackleton, C.M., Pasquini, M.W. and Drescher, A.W. (eds.) African Indigenous Vegetables in Urban Agriculture. Earthscan, Cambridge, pp. 225244.Google Scholar
Weise, S., Oppermann, M., Maggioni, L., van Hintum, T. and Knüpffer, H. (2017). EURISCO: The European Search Catalogue for Plant Genetic Resources. Nucleic Acids Research, 45(D1): D1003–1008.Google Scholar
Weltzien, E., Smith, M., Meitzner, L. and Sperling, L. (2003). Technical and Institutional Issues in Participatory Plant Breeding from the Perspective of Formal Plant Breeding. A Global Analysis of Issues, Results and Current Experiences. PPB Monograph, No.1. PRGA, Cambridge.Google Scholar
Westengen, O. and Winge, T. (2019). Farmers in Plant Breeding: Current Approaches and Perspectives. Earthscan from Routledge, Cambridge.Google Scholar
Western, D. and Wright, R.M. (eds.) (1994). Natural Connections. Island Press, Cambridge.Google Scholar
WHO/CBD. (2015). Connecting Global Priorities: Biodiversity and Human Health, a State of Knowledge Review. Secretariat of the Convention on Biological Diversity, Cambridge.Google Scholar
Wiens, J.A. (1989). Processes and Variations. The Ecology of Bird Communities, Vol. 2. Cambridge University Press, Cambridge.Google Scholar
Wilkes, G. (2007). Urgent notice to all maize researchers: disappearance and extinction of the last wild teosinte population is more than half completed. A modest proposal for teosinte evolution and conservation in situ. The Balsas, Guerrero, Mexico. Maydica, 52: 4958.Google Scholar
Wilkes, H.G. (1983). Current status of crop plant germplasm. CRC Critical Review of Plant Science, 1: 133181.Google Scholar
Williams, D.E. (2017). Agricultural biodiversity and the Columbian exchange. In: Hunter, D., Guarino, L., Spillane, C. and McKeown, P. (eds.) Handbook of Agriculture Biodiversity. Routledge, Cambridge, pp. 192212.Google Scholar
Willis, J.C. (1922). Age and Area; A Study in Geographic Distribution and Origin of Species. Cambridge University Press, Cambridge.Google Scholar
Willis, K.J. (ed.) (2017). State of the World’s Plants 2017. Report. Royal Botanic Gardens, Kew, Cambridge.Google Scholar
Wilson, E.O. (1992). The Diversity of Life. Allan Lane, Penguin Press, Cambridge.Google Scholar
Wisz, M., Hijmans, R., Li, J., et al. and NCEAS Predicting Species Distributions Working Group. (2008). Effects of sample size on the performance of species distribution models. Diversity and Distributions, 14: 763773.Google Scholar
Withers, L.A. (1995). Collecting in vitro for genetic resources conservation. In: Guarino, L., Ramanatha Rao, V. and Reid, R. (eds.) Collecting Plant Genetic Diversity: Technical Guidelines. CAB International, Cambridge, pp. 511526.Google Scholar
Wittman, H., Desmarais, A.A. and Wiebe, N. (eds.) (2010). Food Sovereignty: Reconnecting Food, Nature and Community. Fernwood, Cambridge.Google Scholar
Woodcock, P., Pullin, A.S. and Kaiser, M.J. (2014). Evaluating and improving the reliability of evidence syntheses in conservation and environmental science: a methodology. Biological Conservation, 176: 5462.Google Scholar
Woodward, F.I. and Williams, B.G. (1987). Climate and plant distribution at global and local scales. Vegetatio, 69: 189197.Google Scholar
Worboys, G.L., Lockwood, M., Kothari, A., Feary, S. and Pulsford, I. (eds.) (2015). Protected Area Governance and Management. ANU Press, Cambridge.Google Scholar
Wright, S. (1922). Coefficient of inbreeding and relationship. American Naturalist, 56: 330338.Google Scholar
Wright, S. (1931). Evolution in Mendelian populations. Genetics, 16: 97159.Google Scholar
Wright, S. (1951). The genetical structure of populations. Annals of Eugenics, 15: 323324.Google Scholar
Wright, S. (1965). The interpretation of population structure by F-statistics with special regard to the system of mating. Evolution, 19: 395420.Google Scholar
Wunder, S. (2014). Forests, livelihoods, and conservation: broadening the empirical base. World Development, 64: 111.Google Scholar
Xiao, P.G and Peng, Y. (1998). Ethnopharmacology and research on medicinal plants in China. In: Prendergast, H.D.V, Etkin, N.L., Harris, D.R. and Houghton, P.J. (eds.) Plants for Food and Medicine. Royal Botanic Gardens, Kew, Cambridge, pp. 3139.Google Scholar
Zeven, A.C. (1998). Landraces: a review of definitions and classifications. Euphytica, 104: 127139.Google Scholar
Ziliak, S. (2017). P values and the search for significance. Nature Methods, 14: 34.Google Scholar
Zimmerer, K.S. (2010). Biological diversity in agriculture and global change. Annual Review of Environment and Resources, 35: 137166.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×