10 - Sequential Decision Theory
from III - Decision-Theoretic Planning
Published online by Cambridge University Press: 21 August 2009
Summary
Chapter 9 essentially took a break from planning by indicating how to make a single decision in the presence of uncertainty. In this chapter, we return to planning by formulating a sequence of decision problems. This is achieved by extending the discrete planning concepts from Chapter 2 to incorporate the effects of multiple decision makers. The most important new decision maker is nature, which causes unpredictable outcomes when actions are applied during the execution of a plan. State spaces and state transition equations reappear in this chapter; however, in contrast to Chapter 2, additional decision makers interfere with the state transitions. As a result of this effect, a plan needs to incorporate state feedback, which enables it to choose an action based on the current state. When the plan is determined, it is not known what future states will arise. Therefore, feedback is required, as opposed to specifying a plan as a sequence of actions, which sufficed in Chapter 2. This was only possible because actions were predictable.
Keep in mind throughout this chapter that the current state is always known. The only uncertainty that exists is with respect to predicting future states. Chapters 11 and 12 will address the important and challenging case in which the current state is not known. This requires defining sensing models that attempt to measure the state. The main result is that planning occurs in an information space, as opposed to the state space.
- Type
- Chapter
- Information
- Planning Algorithms , pp. 408 - 461Publisher: Cambridge University PressPrint publication year: 2006
- 1
- Cited by