Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-21T14:44:10.141Z Has data issue: false hasContentIssue false

7 - Iron and Stony-iron Meteorites: Evidence for the Formation, Crystallization, and Early Impact Histories of Differentiated Planetesimals

from Part Two - Chemical and Mineralogical Diversity

Published online by Cambridge University Press:  25 February 2017

Linda T. Elkins-Tanton
Affiliation:
Arizona State University
Benjamin P. Weiss
Affiliation:
Massachusetts Institute of Technology
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Planetesimals
Early Differentiation and Consequences for Planets
, pp. 136 - 158
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agee, C. B., Ziegler, K., and Muttik, N., 2015. New unique pyroxene pallasite: Northwest Africa 10019. LPI Contribution, 1856, abstract # 5084.Google Scholar
Albarède, F., Bouchet, R. A., and Blichert-Toft, J. 2013. Siderophile elements in IVA irons and the compaction of their parent asteroidal core. Earth and Planetary Science Letters, 362, 122129.CrossRefGoogle Scholar
Asphaug, E., Agnor, C.B., Williams, Q., 2006. Hit-and-run planetary collisions. Nature 439, 155-160.CrossRefGoogle ScholarPubMed
Baker, J., Bizzarro, M., Wittig, N., Connelly, J., Haack, H., 2005. Early planetesimal melting from an age of 4.5662 Gyr for differentiated meteorites. Nature, 436, 1127-1131.CrossRefGoogle ScholarPubMed
Baker, J.A., Schiller, M., Bizzarro, M., 2012. 26Al–26Mg deficit dating ultramafic meteorites and silicate planetesimal differentiation in the early Solar System? Geochimica et Cosmochimica Acta, 77, 415-431.CrossRefGoogle Scholar
Benedix, G. K., McCoy, T. J., Keil, K., and Love, S. G. 2000. A petrologic study of the IAB iron meteorites: Constraints on the formation of the IAB-Winonaite parent body. Meteoritics & Planetary Science, 35, 11271141.CrossRefGoogle Scholar
Bizzarro, M., Baker, J. A., Haack, H., and Lundgaard, K. L. 2005. Rapid timescales for accretion and melting of differentiated planetesimals inferred from 26Al–26Mg chronometry. Astrophysical Journal Letters, 632, L41.CrossRefGoogle Scholar
Boesenberg, J. S., Davis, A. M., Prinz, M. et al. 2000. The pyroxene pallasites, Vermillion and Yamato 8451: Not quite a couple. Meteoritics & Planetary Science, 35, 757769.CrossRefGoogle Scholar
Boesenberg, J. S., Delaney, J. S., Hewins, R. H., 2012. A petrological and chemical reexamination of main group pallasite formation. Geochimica et Cosmochimica Acta, 89, 134158.CrossRefGoogle Scholar
Bogard, D.D. and Garrison, D.H. 1998. 39Ar–40Ar ages and thermal history of mesosiderites. Geochimica et Cosmochimica Acta, 62, 14591468.CrossRefGoogle Scholar
Buchwald, V. F. 1975. Handbook of Iron Meteorites, Their History, Distribution, Composition, and Structure. Center for Meteorite Studies, Arizona State University. For digital version see http://evols.library.manoa.hawaii.edu/handle/10524/33750Google Scholar
Bunch, T. E., Rumble, D. III, Wittke, J. H., and Irving, A. J., 2005. Pyroxene-rich pallasites, Zinder and NWA 1911: Not like the others. Meteoritics & Planetary Science, 40, Abstract #5219.Google Scholar
Buseck, P.R. 1977. Pallasite meteorites – mineralogy, petrology and geochemistry. Geochimica et Cosmochimica Acta, 41, 711721.CrossRefGoogle Scholar
Campbell, A. J. and Humayun, M. 2005. Compositions of group IVB iron meteorites and their parent melt. Geochimica et Cosmochimica Acta, 69, 47334744.CrossRefGoogle Scholar
Chabot, N. L. 2004. Sulfur contents of the parental metallic cores of magmatic iron meteorites. Geochimica et Cosmochimica Acta, 68, 36073618.CrossRefGoogle Scholar
Chabot, N. L. and Drake, M. J. 2000. Crystallization of magmatic iron meteorites: The effects of phosphorus and liquid immiscibility. Meteoritics & Planetary Science, 35, 807816.CrossRefGoogle Scholar
Chabot, N. L. and Haack, H. 2006. Evolution of asteroidal cores. In: Meteorites and the Early Solar System II, ed. Lauretta, D.S. and McSween, H.Y. Jr. Tucson, AZ: University of Arizona Press, 747771.CrossRefGoogle Scholar
Chabot, N. L. and Jones, J. H. 2003. The parameterization of solid metal–liquid metal partitioning of siderophile elements. Meteoritics & Planetary Science, 38, 14251436.CrossRefGoogle Scholar
Chabot, N. L., Campbell, A. J., Jones, J. H., Humayun, M., and Lauer, H. V. 2006. The influence of carbon on partitioning behavior during planetary evolution. Geochimica et Cosmochimica Acta, 70, 13221335.CrossRefGoogle Scholar
Chabot, N. L., Wollack, E. A., McDonough, W. F., and Ash, R. 2014.The effect of light elements in metallic liquids on partitioning behavior. Lunar and Planetary Science Conference, 45, 1165.Google Scholar
Clayton, R. N. and Mayeda, T. K. 1978. Genetic relations between iron and stony meteorites. Earth and Planetary Science Letters, 40, 168174.CrossRefGoogle Scholar
Clayton, R. N. and Mayeda, T. K. 1996. Oxygen isotope studies of achondrites. Geochimica et Cosmochimica Acta, 60, 19992017.CrossRefGoogle Scholar
Clayton, R.N., Mayeda, T. K., Olsen, E. J., and Prinz, M. 1983. Oxygen isotope relationships in iron meteorites. Earth and Planetary Science Letters, 65, 229232.CrossRefGoogle Scholar
Corrigan, C. M., Chabot, N. L., McCoy, T. J . et al. 2009. The iron–nickel–phosphorus system: Effects on the distribution of trace elements during the evolution of iron meteorites. Geochimica et Cosmochimica Acta, 73, 26742691.CrossRefGoogle Scholar
Davis, A. M. and Olsen, E. J. 1991. Phosphates in pallasite meteorites as probes of mantle processes in small planetary bodies. Nature, 353, 637640.CrossRefGoogle Scholar
Franchi, I. A. 2008. Oxygen isotopes in asteroidal materials. Reviews in Mineralogy and Geochemistry, 68, 345397.CrossRefGoogle Scholar
Ghosh, A., Weidenschilling, S. J., McSween, H. Y. Jr., and Rubin, A. 2006. Asteroidal heating and thermal stratification of the asteroid belt. In Meteorites and the Early Solar System II, ed. Lauretta, D. S. and McSween, H. Y. Jr., Tucson, AZ: University of Arizona Press, 555566.CrossRefGoogle Scholar
Gilmour, J. D., Pravdivtseva, O. V., Busfield, A., and Hohenberg, C. M., 2006. The I–Xe chronometer and the early solar system. Meteoritics & Planetary Science, 41, 1931.CrossRefGoogle Scholar
Goldstein, J. I., Scott, E. R. D., and Chabot, N. L. 2009. Iron meteorites: Crystallization, thermal history, parent bodies, and origin. Chemie der Erde, 69, 293325.CrossRefGoogle Scholar
Goldstein, J. I., Yang, J., and Scott, E. R. D. 2014. Determining cooling rates of iron and stony-iron meteorites from measurements of Ni and Co at kamacite–taenite interfaces. Geochimica et Cosmochimica Acta, 140, 297320.CrossRefGoogle Scholar
Greenwood, R. C., Franchi, I. A., Jambon, A., Barrat, J. A., and Burbine, T. H. 2006. Oxygen isotope variation in stony-iron meteorites. Science, 313, 17631765.CrossRefGoogle ScholarPubMed
Greenwood, R.C., Barrat, J.A., Scott, E.R.D., et al. 2015. Geochemistry and oxygen isotope composition of main-group pallasites and olivine-rich clasts in mesosiderites: Implications for the “Great Dunite Shortage” and HED-mesosiderite connection. Geochimica et Cosmochimica Acta, 169, 115136.CrossRefGoogle Scholar
Haack, H. and Scott, E. R. D. 1992. Asteroid core crystallization by inward dendritic growth. Journal of Geophysical Research, 97, 1472714734.CrossRefGoogle Scholar
Haack, H. and Scott, E. R. D. 1993. Chemical fractionations in group IIIAB iron meteorites: Origin by dendritic crystallization of an asteroidal core. Geochimica et Cosmochimica Acta, 57, 34573472.CrossRefGoogle Scholar
Haack, H., Scott, E. R. D., and Rasmussen, K. L. 1996. Thermal and shock history of mesosiderites and their large parent asteroid. Geochimica et Cosmochimica Acta, 60, 26092619.CrossRefGoogle Scholar
Hassanzadeh, J., Rubin, A. E., and Wasson, J. T. 1990. Compositions of large metal nodules in mesosiderites: Links to iron meteorite group IIIAB and the origin of mesosiderite subgroups. Geochimica et Cosmochimica Acta, 54, 31973208.CrossRefGoogle Scholar
Hevey, P. J. and Sanders, I. A. 2006. A model for planetesimal meltdown by 26Al and its implications for meteorite parent bodies. Meteoritics & Planetary Science, 41, 95106.CrossRefGoogle Scholar
Hewins, R. H. 1983. Impact versus internal origins for mesosiderites. Journal of Geophysical Research, 88, Suppl., B257B266.CrossRefGoogle Scholar
Hopfe, W. D. and Goldstein, J. I. 2001. The metallographic cooling rate method revised: Application to iron meteorites and mesosiderites. Meteoritics & Planetary Science, 36, 135154.CrossRefGoogle Scholar
Jones, J. H. and Drake, M. J. 1983. Experimental investigations of trace element fractionation in iron meteorites, II: The influence of sulfur. Geochimica et Cosmochimica Acta, 47, 11991209.CrossRefGoogle Scholar
Jones, J. H. and Malvin, D. J. 1990. A nonmetal interaction-model for the segregation of trace-metals during solidification of Fe–Ni–S, Fe–Ni–P, and Fe–Ni–S–P alloys. Metallurgical Materials Transactions B, 21, 697706.CrossRefGoogle Scholar
Hutchison, R. 2004. Meteorites: A Petrologic, Chemical and Isotopic Synthesis. Cambridge: Cambridge University Press.Google Scholar
Jones, R. H., Wasson, J. T. Larson, T., and Sharp, Z. D., 2003. Milton: A new, unique pallasite. Lunar and Planetary Science Conference, 34, 1683.Google Scholar
Kleine, T., Touboul, M., Bourdon, B., et al. 2009. Hf–W chronology of the accretion and early evolution of asteroids and terrestrial planets. Geochimica et Cosmochimica Acta, 73, 51505188.CrossRefGoogle Scholar
Larsen, K.K., Trinquier, A., Paton, C., et al. 2011. Evidence for magnesium isotope heterogeneity in the solar protoplanetary disk. Astrophysical Journal Letters, 735, L37.CrossRefGoogle Scholar
Larsen, K.K., Schiller, M., and Bizzarro, M., 2016. Accretion timescales and style of asteroidal differentiation in an 26Al-poor protoplanetary disk. Geochimica et Cosmochimica Acta, 176, 295315.CrossRefGoogle Scholar
Lugmair, G.W. and Shukolyukov, A. 1998. Early solar system timescales according to 53Mn–53Cr systematics. Geochimica et Cosmochimica Acta, 62, 28632886.CrossRefGoogle Scholar
MBD 2015. Meteoritical Bulletin Database. http://www.lpi.usra.edu/meteor/metbull.php. Accessed July 7, 2015.Google Scholar
McDermott, K.H., Greenwood, R.C., Franchi, I.A., Anand, M., Scott, E.R.D., 2015. A petrological, geochemical and oxygen isotope study of silicate inclusions in IIE iron meteorites and their relationship with the H chondrites. Geochimica et Cosmochimica Acta, 173, 97113.CrossRefGoogle Scholar
Mittlefehldt, D. W. McCoy, T. J., Goodrich, C. A., and Kracher, A. 1998. Non-chondritic meteorites from asteroidal bodies. In Planetary Materials (Reviews in Mineralogy, Volume 36), ed. Papike, J. J.. Washington, DC: Mineralogical Society of America, ch. 4.Google Scholar
Moroz, L. V., Ustinov, V. I., Kononkova, N. N., Zaslavskaya, N. I., and Shukolyukov, Y. A. 1988. Oxygen isotopes of chromite and chemical composition of the minerals from polymineral nodules in Sikhote-Alin meteorite. Lunar and Planetary Science Conference, 19, 809.Google Scholar
Petaev, M. I., Clarke, R. S. Jr., Jarosewich, E. et al. 2000. The Chaunskij anomalous mesosiderite: petrology, chemistry, oxygen isotopes, classification and origin. Geochemistry International, 38, S322S350.Google Scholar
Powell, B. N. 1969. Petrology and chemistry of mesosiderites – I. Textures and composition of nickel–iron. Geochimica et Cosmochimica Acta, 33, 789810.CrossRefGoogle Scholar
Powell, B. N. 1971. Petrology and chemistry of mesosiderites – II. Silicate textures and compositions and metal–silicate relationships. Geochimica et Cosmochimica Acta, 35, 534.Google Scholar
Olsen, E., Davis, A., Clarke, R. S. et al. 1994. Watson: A new link in the IIE iron chain. Meteoritics, 29, 200213.CrossRefGoogle Scholar
Quitté, G. and Birck, J. L. 2004. Tungsten isotopes in eucrites revisited and the initial 182Hf/180Hf of the solar system based on iron meteorite data. Earth and Planetary Science Letters, 219, 201207.CrossRefGoogle Scholar
Quitté, G., Birck, J-L., and Allègre, C. J. 2005. Stony-iron meteorites: History of the metal phase according to tungsten isotopes. Geochimica et Cosmochimica Acta, 69, 13211332.CrossRefGoogle Scholar
Rasmussen, K. L., Malvin, D. J., Buchwald, V. F., and Wasson, J. T. 1984. Compositional trends and cooling rates of group IVB iron meteorites. Geochimica et Cosmochimica Acta, 48, 805813.CrossRefGoogle Scholar
Rasmussen, K.L. 1989a. Cooling rates and parent bodies of iron meteorites from group IIICD, IAB, and IVB. Physica Scripta, 39, 410416.CrossRefGoogle Scholar
Rasmussen, K.L. 1989b. Cooling rates of IIIAB iron meteorites. Icarus, 80, 315325.CrossRefGoogle Scholar
Rubin, A. E. and Mittlefehldt, D. W., 1993. Evolutionary history of the mesosiderite asteroid: A chronologic and petrologic synthesis. Icarus, 101, 201212.CrossRefGoogle Scholar
Ruzicka, A. 2014. Silicate-bearing iron meteorites and their implications for the origin of asteroidal parent bodies. Chemie der Erde, 74, 348.CrossRefGoogle Scholar
Ruzicka, A. and Hutson, M. 2006. Differentiation and evolution of the IVA meteorite parent body: Clues from pyroxene geochemistry in the Steinbach stony-iron meteorite. Meteoritics & Planetary Science, 41, 19591987.CrossRefGoogle Scholar
Ruzicka, A. and Hutson, M. 2010. Comparative petrology of silicates in the Udei Station (IAB) and Miles (IIE) iron meteorites: Implications for the origin of silicate-bearing irons. Geochimica et Cosmochimica Acta, 74, 394433.CrossRefGoogle Scholar
Ruzicka, A., Boynton, W.V., Ganguly, J., 1994. Olivine coronas, metamorphism, and the thermal history of the Morristown and Emery mesosiderites. Geochimica et Cosmochimica Acta, 58, 27252741.CrossRefGoogle Scholar
Schulz, T., Upadhyay, D., Münker, C., and Mezger, K. 2012. Formation and exposure history of non-magmatic iron meteorites and winonaites: Clues from Sm and W isotopes. Geochimica et Cosmochimica Acta, 85, 200212.CrossRefGoogle Scholar
Scott, E. R. D. 1972. Chemical fractionation in iron meteorites and its interpretation. Geochimica et Cosmochimica Acta, 36, 12051236.CrossRefGoogle Scholar
Scott, E. R. D. 1977. Pallasites—metal composition, classification and relationships with iron meteorites. Geochimica et Cosmochimica Acta, 41, 349360.CrossRefGoogle Scholar
Scott, E. R. D., Haack, H., and Love, S. G. 2001. Formation of mesosiderites by fragmentation and reaccretion of a large differentiated asteroid. Meteoritics & Planetary Science, 36, 869881.CrossRefGoogle Scholar
Scott, E. R. D., Bottke, W. F., Marchi, S., and Delaney, J. S. 2014. How did the mesosiderites form and do they come from Vesta or a Vesta-like body. Lunar and Planetary Science, 45, abstract #2260.Google Scholar
Stewart, B. W., Papanastassiou, D. A. and Wasserburg, G. J. 1994. Sm–Nd chronology and petrogenesis of mesosiderites. Geochimica et Cosmochimica Acta, 58, 34873509.CrossRefGoogle Scholar
Tarduno, J. A., Cottrell, R. D., Nimmo, F., et al. 2012. Evidence for a dynamo in the main group pallasite parent body. Science, 338, 939942.CrossRefGoogle ScholarPubMed
Trinquier, A., Birck, J.-L., Allégre, C. J., Göpel, C., and Ulfbeck, D. 2008. 53Mn–53Cr systematics of the early solar system revisited. Geochimica et Cosmochimica Acta, 72, 51465163.CrossRefGoogle Scholar
Ulff-Møller, F. 1998. Effects of liquid immiscibility on trace element fractionation in magmatic iron meteorites: A case study of group IIIAB. Meteoritics & Planetary Science, 33, 207220.CrossRefGoogle Scholar
van Niekerk, D. 2005. Zinder: A new pyroxene-bearing pallasite. Meteoritics & Planetary Science, 40, 5328.Google Scholar
Vogel, N. and Renne, P. R. 2008. 40Ar–39Ar dating of plagioclase grain size separates from silicate inclusions in IAB iron meteorites and implications for the thermochronological evolution of the IAB parent body. Geochimica et Cosmochimica Acta, 72, 12311255.CrossRefGoogle Scholar
Wadhwa, M., Shukolyukov, A., Davis, A. M., Lugmair, G. W., and Mittlefehldt, D.W. 2003. Differentiation history of the mesosiderite parent body: Constraints from trace elements and manganese–chromium isotope systematics in Vaca Muerta silicate clasts. Geochimica et Cosmochimica Acta, 67, 50475069.CrossRefGoogle Scholar
Wang, P. L., Rumble, D., and McCoy, T. J. 2004. Oxygen isotopic compositions of IVA iron meteorites: implications for the thermal evolution derived from in situ ultraviolet laser microprobe analyses. Geochimica et Cosmochimica Acta, 68, 11591171.CrossRefGoogle Scholar
Warren, P. H. 2011. Stable-isotopic anomalies and the accretionary assemblage of the Earth and Mars: A subordinate role for carbonaceous chondrites. Earth and Planetary Science Letters, 311, 93100.CrossRefGoogle Scholar
Wasson, J. T. 1999. Trapped melt in IIIAB irons; solid/liquid elemental partitioning during the fractionation of the IIIAB magma. Geochimica et Cosmochimica Acta, 63, 28752889.CrossRefGoogle Scholar
Wasson, J. T. and Wang, J. 1986. A nonmagmatic origin of group-IIE iron meteorites. Geochimica et Cosmochimica Acta, 50, 725732.CrossRefGoogle Scholar
Wasson, J. T. and Richardson, J. W. 2001. Fractionation trends among IVA iron meteorites: Contrasts with IIIAB trends. Geochimica et Cosmochimica Acta, 65, 951970.CrossRefGoogle Scholar
Wasson, J. T. and Kallemeyn, G. W. 2002. The IAB iron-meteorite complex: a group, five subgroups, numerous grouplets, closely related, mainly formed by crystal segregation in rapidly cooling melts. Geochimica et Cosmochimica Acta, 66, 24452473.CrossRefGoogle Scholar
Wasson, J. T. and Choi, B.-G. 2003. Main-group pallasites – chemical composition, relationship to IIIAB irons, and origin. Geochimica et Cosmochimica Acta, 67, 30793096.CrossRefGoogle Scholar
Wasson, J.T. and Hoppe, P. 2012. Co/Ni ratios at taenite/kamacite interfaces and relative cooling rates in iron meteorites. Geochimica et Cosmochimica Acta, 84, 508524.CrossRefGoogle Scholar
Wasson, J. T., Schaudy, R., Bild, R. W., and Chou, C. L. 1974. Mesosiderites – I. Compositions of their metallic portions and possible relationship to other metal-rich meteorite groups. Geochimica et Cosmochimica Acta, 38, 135149.CrossRefGoogle Scholar
Wasson, J. T., Choi, B. G., Jerde, E. A., and Ulff-Møller, F. 1998. Chemical classification of iron meteorites: XII. New members of the magmatic groups. Geochimica et Cosmochimica Acta, 62, 715724.CrossRefGoogle Scholar
Wasson, J. T., Huber, H., and Malvin, D. J. 2007. Formation of IIAB iron meteorites. Geochimica et Cosmochimica Acta, 71, 760781.CrossRefGoogle Scholar
Willis, J. and Goldstein, J. I. 1982. The effects of C, P, and S on trace element partitioning during solidification in Fe–Ni alloys. Journal of Geophysical Research, 87, Supplement, 435445.CrossRefGoogle Scholar
Yang, J. and Goldstein, J. I. 2006. Metallographic cooling rates of the IIIAB iron meteorites. Geochimica et Cosmochimica Acta, 70, 31973215.CrossRefGoogle Scholar
Yang, J., Goldstein, J. I., and Scott, E. R. D. 2007. Iron meteorite evidence for early formation and catastrophic disruption of protoplanets. Nature, 446, 888891.CrossRefGoogle ScholarPubMed
Yang, J., Goldstein, J. I., and Scott, E. R.D. 2008. Metallographic cooling rates of IVA iron meteorites. Geochimica et Cosmochimica Acta, 72, 30433061.CrossRefGoogle Scholar
Yang, J., Goldstein, J.I., Scott, E. R. D., 2010a. Main-group pallasites: thermal history, relationship to IIIAB irons, and origin. Geochimica et Cosmochimica Acta, 74, 44714492.CrossRefGoogle Scholar
Yang, J., Goldstein, J. I., Michael, J. R., Kotula, P. G., and Scott, E. R. D. 2010b. Thermal history and origin of the IVB iron meteorites and their parent body. Geochimica et Cosmochimica Acta, 74, 44934506.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×