Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-vsgnj Total loading time: 0 Render date: 2024-07-17T03:03:01.698Z Has data issue: false hasContentIssue false

14 - Evidence for Differentiation among Asteroid Families

from Part Three - Asteroids as Records of Formation and Differentiation

Published online by Cambridge University Press:  25 February 2017

Linda T. Elkins-Tanton
Affiliation:
Arizona State University
Benjamin P. Weiss
Affiliation:
Massachusetts Institute of Technology
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Planetesimals
Early Differentiation and Consequences for Planets
, pp. 298 - 320
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Beck, A. W. and McSween, H. Y. Jr. 2010. Diogenites as polymict breccia composed of orthopyroxenite and harzburgite. Meteoritics & Planetary Science, 45, 850872.CrossRefGoogle Scholar
Bell, J. F. 1988. A probable asteroidal parent body for the CO or CV chondrites. Meteoritics, 23, 256257.Google Scholar
Bendjoya, Ph. and Zappalà, V. 2002. Asteroid family identification. In Asteroids III, ed. Bottke, W. F. Jr., Cellino, A., Paolicchi, P., and Binzel, R. P.. Tucson, AZ: University of Arizona Press. Tucson, 613618.Google Scholar
Benedix, G. K., Lauretta, D. S., and McCoy, T. J. 2005. Thermodynamic constraints on the formation conditions of winonaites and silicate-bearing IAB irons. Geochimica et Cosmochimica, 69, 51235131.Google Scholar
Binzel, R. P. and Xu, S. 1993. Chips off of asteroid 4 Vesta: Evidence for the parent body of basaltic achondrite meteorites. Science, 260, 186191.Google Scholar
Binzel, R. P., Rivkin, A. S., Bus, S. J., et al. 2001. MUSES-C target asteroid (25143) 1998 SF36: A reddened ordinary chondrite. Meteoritics & Planetary Science, 36, 11671172.Google Scholar
Bottke, W. F. Jr., Durda, D. D., Nesvorný, D., et al. 2005. The fossilized size distribution of the main asteroid belt. Icarus, 175, 111140.CrossRefGoogle Scholar
Brunetto, R., Romano, F., Blanco, A., et al. 2006. Space weathering of silicates simulated by nanosecond pulse UV excimer laser. Icarus, 180, 546554.Google Scholar
Burbine, T. H., Meibom, A. and Binzel, R. P. 1996. Mantle material in the main belt: Battered to bits? Meteoritics & Planetary Science, 31, 607620.CrossRefGoogle Scholar
Burbine, T. H., Buchanan, P. C., Binzel, R. P., et al. 2001. Vesta, Vestoids, and the HEDs: Relationships and the origin of spectral differences. Meteoritics & Planetary Science, 36, 761781.Google Scholar
Burbine, T. H., McCoy, T. J., Keil, K., et al. 2002a. Meteoritic parent bodies: Their number and identification. In Asteroids III, ed. Bottke, W. F. Jr., Cellino, A., Paolicchi, P., and Binzel, R. P.. Tucson, AZ: University of Arizona Press, 653667.Google Scholar
Burbine, T. H., McCoy, T. J., Nittler, L. R., et al. 2002b. Spectra of extremely reduced assemblages: Implications for Mercury. Meteoritics & Planetary Science, 37, 12331244.CrossRefGoogle Scholar
Burbine, T. H., McCoy, T. J., Jarosewich, E., et al. 2003. Deriving asteroid mineralogies from reflectance spectra: Implications for the MUSES-C target asteroid. Antarctic Meteorite Research, 16, 185195.Google Scholar
Bus, S. J. 1999. Compositional structure in the asteroid belt. Results of a spectroscopic survey. Ph.D Thesis, Massachusetts Institute of Technology.Google Scholar
Bus, S. J., ed. 2011. IRTF near-ir spectroscopy of asteroids V2.0. EAR-A-I0046-4-IRTFSPEC-V2.0. NASA Planetary Data System.Google Scholar
Bus, S. J. and Binzel, R. P. 2002. Phase II of the small main-belt asteroid spectroscopic survey: A feature-based taxonomy. Icarus, 158, 146177.Google Scholar
Castillo-Rogez, J. C. and McCord, T. B. 2010. Ceres’ evolution and present state constrained by shape data. Icarus, 205, 443459.CrossRefGoogle Scholar
Chapman, C. R., 1974. Asteroid size distribution: Implications for the origin of stony-iron and iron meteorites. Geophysical Research Letters, 1, 341344.CrossRefGoogle Scholar
Chapman, C. R. 1996. S-type asteroids, ordinary chondrites, and space weathering: The evidence from Galileo’s fly-bys of Gaspra and Ida. Meteoritics & Planetary Science, 31, 699725.CrossRefGoogle Scholar
Clark, B. E., Bus, S. J., Rivkin, A. S., et al. 2004. E-type asteroid spectroscopy and compositional modeling. Journal of Geophysical Research, 109, E02001.Google Scholar
Clark, B. E., Ockert-Bell, M. E., Cloutis, E. A., et al. 2009. Spectroscopy of K-complex asteroids: Parent bodies of carbonaceous meteorites? Icarus, 202, 119133.CrossRefGoogle Scholar
Clenet, H., Jutzi, M., Barrat, J.-A., et al. 2014. A deep crust–mantle boundary in the asteroid 4 Vesta. Nature, 511, 303306.Google Scholar
de León, J., Pinilla-Alonso, N., Campins, H., et al. 2012. Near-infrared spectroscopic survey of B-type asteroids: Compositional analysis. Icarus, 218, 196206.Google Scholar
DeMeo, F. E., Binzel, R. P., Slivan, S. M., et al. 2009. An extension of the Bus asteroid taxonomy into the near-infrared. Icarus, 202, 160180.Google Scholar
de Sanctis, M. C., Migliorini, A., Luzia Jasmim, F., et al. 2011. Spectral and mineralogical characterization of inner main-belt V-type asteroids. Astronomy & Astrophysics, 533, A77.Google Scholar
Duffard, R. and Roig, F. 2009. Two new V-type asteroids in the outer main belt? Planetary and Space Science, 57, 229234.Google Scholar
Gaffey, M. J. 1976. Spectral reflectance characteristics of the meteorite classes. Journal of Geophysical Research, 81, 905920.CrossRefGoogle Scholar
Gaffey, M. J. 1984. Rotational spectral variations of asteroid (8) Flora: Implications for the nature of the S-type asteroids and for the parent bodies of the ordinary chondrites. Icarus, 60, 83114.Google Scholar
Gaffey, M. J. 1986. The spectral and physical properties of metal in meteorite assemblages: Implications for asteroid surface materials. Icarus, 66, 468486.Google Scholar
Gaffey, M. J., Bell, J. F., Brown, R. H., et al. 1993. Mineralogical variations with the S-type asteroid class. Icarus, 106, 573602.Google Scholar
Gardner-Vandy, K. G., Lauretta, D. S., and McCoy, T. J. 2013. A petrologic, thermodynamic and experimental study of brachinites: Partial melt residues of an R chondrite-like precursor. Geochimica et Cosmochimica Acta, 122, 3637.Google Scholar
Goodrich, C. A. 1992. Ureilites: A critical review. Meteoritics, 27, 327352.CrossRefGoogle Scholar
Grady, M. M. 2000. Catalogue of Meteorites, 5th edn. Cambridge: Cambridge University Press.Google Scholar
Granahan, J. C. 1993. Investigations of asteroid family geology. Ph.D Thesis, University of Hawaii.Google Scholar
Granahan, J. C. 2011. Spatially resolved spectral variations of asteroid 951 Gaspra. Icarus, 213, 265272.Google Scholar
Granahan, J. C. and Bell, J. F. 1991. On the geologic reality of asteroid families. Lunar and Planetary Science Conference, 22, 477478.Google Scholar
Greenwood, R. C., Barrat, J.-A., Yamaguchi, A., et al. 2013. The oxygen isotope composition of diogenites: Evidence for early global melting on a single, compositionally diverse, HED parent body. Earth and Planetary Science Letters, 390, 165174.Google Scholar
Hardersen, P. S., Gaffey, M. J., and Abell, P. A. 2004. Mineralogy of asteroid 1459 Magnya and implications for its origin. Icarus, 167, 170177.Google Scholar
Hardersen, P. S., Reddy, V., Roberts, R., et al. 2014. More chips off of asteroid (4) Vesta: Characterization of eight Vestoids and their HED meteorite analogs. Icarus, 242, 269282.Google Scholar
Hasselmann, P. H., Carvano, J. M., and Lazzaro, D., 2012. SDSS-based asteroid taxonomy V1.1. EAR-A-I0035-5-SDSSTAX-V1.1. NASA Planetary Data System.Google Scholar
Hiroi, T., Pieters, C. M., and Takeda, H. 1994. Grain size of the surface regolith of asteroid 4 Vesta estimated from its reflectance spectrum in comparison with HED meteorites. Meteoritics, 29, 394396.Google Scholar
Huaman, M. E., Carruba, V., and Domingos, R. C. 2014. Dynamical evolution of V-type photometric candidates. Monthly Notices of the Royal Astronomical Society, 444, 29852992.Google Scholar
Ikeda, Y. and Takeda, H., 1985. A model for the origin of basaltic achondrites based on the Yamato 7308 howardite. Journal of Geophysical Research, 90, C649C663.Google Scholar
Isaacson, P. J., Pieters, C. M., Besse, S., et al., 2011. Remote compositional analysis of lunar olivine-rich lithologies with Moon Mineralogy Mapper (M3) spectra. Journal of Geophysical Research, 116, E00G11.Google Scholar
Ivezić, Ž, Lupton, R. H., Jurić, M., et al. 2002. Color confirmation of asteroid families. Astronomical Journal, 124, 29432948.Google Scholar
Jurewicz, A. J. G., Mittlefehldt, D. W., and Jones, J. H., 1991. Partial melting of the Allende (CV3) meteorite: Implications for origins of basaltic meteorites. Science, 252, 695698.CrossRefGoogle ScholarPubMed
Keil, K. 2002. Geological history of asteroid 4 Vesta: The “smallest terrestrial planet”. In Asteroids III, ed. Bottke, W. F. Jr., Cellino, A., Paolicchi, P., and Binzel, R. P.. Tucson, AZ: University of Arizona Press, 573584.CrossRefGoogle Scholar
Keil, K., 2010. Enstatite achondrite meteorites (aubrites) and the histories of their asteroidal parent bodies. Chemie der Erde, 70, 295317.Google Scholar
Kelley, M. S. and Gaffey, M. J. 2002. High-albedo asteroid 434 Hungaria: Spectrum, composition, and genetic connections. Meteoritics & Planetary Science, 37, 18151827.Google Scholar
Kelley, M. S., Vilas, F., Gaffey, M. J., et al. 2003. Quantified mineralogical evidence for a common origin of 1929 Kollaa with 4 Vesta and the HED meteorites. Icarus, 165, 215218.Google Scholar
Küppers, M., O’Rourke, L., Bockelée, D. 2014. Localized sources of water vapour on the dwarf planet (1) Ceres. Nature, 505, 525527.Google Scholar
Larson, H. P. and Fink, U., 1975. Infrared spectral observations of asteroid 4 Vesta. Icarus, 26, 420427.Google Scholar
Lazzaro, D., Michtchenko, T., Carvano, J. M., et al. 2000. Discovery of a basaltic asteroid in the outer main belt. Science, 288, 20332035.Google Scholar
Le Corre, L., Reddy, V., Sanchez, J. A., et al. 2015. Exploring exogenic sources for the olivine on asteroid (4) Vesta. Icarus, 258, 483499.Google Scholar
Lucas, M. P. and Emery, J. P. 2014. Asteroid–Meteorite connections in the Hungaria background population: correlations with primitive achondrites? Lunar and Planetary Science Conference, 45, 1766.Google Scholar
Mainzer, A. K., Bauer, J., Grav, T., et al. 2011. Preliminary results from NEOWISE: An enhancement to the Wide-field Infrared Survey Explorer for solar system science. Astrophysical Journal, 731, 53.Google Scholar
Mandler, B. E. and Elkins-Tanton, L. T. 2013. The origin of eucrites, diogenites, and olivine diogenites: Magma ocean crystallization and shallow magma chamber processes on Vesta. Meteoritics & Planetary Science, 48, 117.Google Scholar
Masiero, J. R., Mainzer, A. K., Grav, T., et al. 2011. Main belt asteroids with WISE/NEOWISE. I. Preliminary albedos and diameters. Astrophysical Journal, 741, 68.Google Scholar
Masiero, J. R., Mainzer, A. K., Bauer, J. M., et al. 2013. Asteroid family identification using the hierarchical clustering method and WISE/NEOWISE physical properties. Astrophysical Journal, 770, 7.Google Scholar
Mayne, R. G., Sunshine, J. M., McSween, H. Y., et al. 2011. The origin of Vesta’s crust: Insights from spectroscopy of the Vestoids. Icarus, 214, 147160.Google Scholar
McCord, T. B. and Gaffey, M. J. 1974. Asteroids: Surface composition from reflection spectroscopy. Science, 186, 352355.Google Scholar
McCord, T. B. and Sotin, C. 2005. Ceres: Evolution and current state. Journal of Geophysical Research: Planets, 110, E05009.Google Scholar
McCord, T. B., Adams, J. B., and Johnson, T. V. 1970. Asteroid Vesta: Spectral reflectivity and compositional implications. Science, 168, 14451447.Google Scholar
McCoy, T. J., Keil, K., Muenow, D. W., et al. 1997. Partial melting and melt migration in the acapulcoite–lodranite parent body. Geochimica et Cosmochimica Acta, 61, 639650.CrossRefGoogle Scholar
McCoy, T. J., Nittler, L. R., Burbine, T. H., et al. 2000. Anatomy of a partially differentiated asteroid: A “NEAR”-sighted view of acapulcoites and lodranites. Icarus, 148, 2936.Google Scholar
McCoy, T. J., Robinson, M. S., Nittler, L. R., et al. 2002. The Near Earth Asteroid Rendezvous mission to asteroid 433 Eros: A milestone in the study of asteroids and their relationship to meteorites. Chemie der Erde, 62, 89121.Google Scholar
McSween, H. Y., Ammannito, E., Reddy, V., et al. 2013. Composition of the Rheasilvia basin, a window into Vesta’s interior. Journal of Geophysical Research: Planets, 118, 335346.Google Scholar
Michel, P., Tanga, P., Benz, W., et al. 2002. Formation of asteroid families by catastrophic disruption: Simulations with fragmentation and gravitational reaccumulation. Icarus, 160, 1023.Google Scholar
Michel, P., Benz, W., and Richardson, D. C. 2003. Disruption of fragmented parent bodies as the origin of asteroid families. Nature, 421, 608611.Google Scholar
Michtchenko, T. A., Lazzaro, D., Ferraz-Mello, S., et al. 2002. Origin of the basaltic asteroid 1459 Magnya: A dynamical and mineralogical study of the outer main belt. Icarus, 158, 343359.Google Scholar
Milliken, R. E. and Rivkin, A. S. 2009. Brucite and carbonate assemblages from altered olivine-rich materials on Ceres. Nature Geoscience, 2, 258261.Google Scholar
Moskovitz, N. A., Willman, M., Burbine, T. H., et al. 2010. A spectroscopic comparison of HED meteorites and V-type asteroids in the inner main belt. Icarus, 208, 773788.Google Scholar
Mothé-Diniz, T. and Nesvorný, D. 2008a. Visible spectroscopy of extremely young asteroid families. Astronomy & Astrophysics Letters, 486, L9L12.Google Scholar
Mothé-Diniz, T. and Nesvorný, D. 2008b. Tirela: An unusual asteroid family in the outer main belt. Astronomy & Astrophysics, 492, 593598.Google Scholar
Mothé-Diniz, T., Roig, F., and Carvano, J. M. 2005. Reanalysis of asteroid families structure through visible spectroscopy. Icarus, 174, 5480.CrossRefGoogle Scholar
Mothé-Diniz, T., Carvano, J. M., Bus, S. J., et al. 2008. Mineralogical analysis of the Eos family from near-infrared spectra. Icarus, 195, 277294.Google Scholar
Nakamura, T., Noguchi, T., Tanaka, M, et al. 2011. Itokawa dust particles: A direct link between S-type asteroids and ordinary chondrites. Science, 333, 1113–115.Google Scholar
Nathues, A., Mottola, S., Kaasalainen, M., et al. 2005. Spectral study of the Eunomia asteroid family I. Eunomia. Icarus, 175, 452463.Google Scholar
Nathues, A., Hoffmann, M., Schäfer, M., et al. 2014. Distribution of potential olivine sites on the surface of Vesta by Dawn FC. Lunar and Planetary Science Conference, 45, 1740.Google Scholar
Nathues, A., Hoffmann, M., Schäfer, M., et al. 2015. Exogenic olivine from Dawn framing camera color data. Icarus, 258, 467482.Google Scholar
Nesvorný, D. 2012. Nesvorny HCM Asteroid Families V2.0. EAR-A-VARGBDET-5-NESVORNYFAM-V2.0. NASA Planetary Data System.Google Scholar
Nesvorný, D., Brož, M., and Carruba, V. 2015. Identification and dynamical properties of asteroid families. In Asteroids IV, ed. Michel, P., DeMeo, F. E., and Bottke, W. F. Jr. Tucson, AZ: University of Arizona Press. Tucson, 297322.Google Scholar
Neveu, M., Desch, S. J., Shock, E. L., et al. 2015. Prerequisites for explosive cryovolcanism on dwarf planet-class Kuiper belt objects. Icarus, 246, 4864.Google Scholar
Noguchi, T., Nakamura, T., Kimura, M., et al. 2011. Incipient space weathering observed on the surface of Itokawa dust particles. Science, 333, 11211125.Google Scholar
Parker, A., Ivezić, Ž, Jurić, M., et al. 2008. The size distributions of asteroid families in the SDSS Moving Object Catalog 4. Icarus, 198, 138155.Google Scholar
Reddy, V., Emery, J. P., Gaffey, M. J., et al. 2009. Composition of 298 Baptistina: Implications for the K/T impactor link. Meteoritics & Planetary Science, 44, 19171927.Google Scholar
Reddy, V., Carvano, J. M., Lazzaro, D., et al. 2011. Mineralogical characterization of Baptistina asteroid family: Implications for K/T impactor source. Icarus, 216, 184197.Google Scholar
Reed, K. L., Gaffey, M. J., and Lebofsky, L. A. 1997. Shape and albedo variations of asteroid 15 Eunomia. Icarus, 125, 446454.Google Scholar
Righter, K. and Drake, M. J. 1997. A magma ocean on Vesta: Core formation and petrogenesis of eucrites and diogenites. Meteoritics & Planetary Science, 32, 929944.Google Scholar
Rivkin, A. S., Asphaug, E., and Bottke, W. F. 2014. The case of the missing Ceres family. Icarus, 243, 429439.Google Scholar
Roig, F., Nesvorný, D., Gil-Hutton, R., et al. 2008. V-type asteroids in the middle main belt. Icarus, 194, 125136.Google Scholar
Russell, C. T., Raymond, C. A., Coradini, A., et al. 2012. Dawn at Vesta: Testing the protoplanetary paradigm. Science, 336, 684686.Google Scholar
Ruzicka, A., Snyder, G. A., and Taylor, L. A. 1997. Vesta as the HED parent body: Implications for the size of a core and for large-scale differentiation. Meteoritics & Planetary Science, 32, 825840.Google Scholar
Sack, R. O., Azeredo, W. J., and Lipschutz, M. E. 1991. Olivine diogenites: The mantle of the eucrite parent body. Geochimica et Cosmochimica Acta, 55, 11111120.Google Scholar
Sanchez, J. A., Reddy, V., Kelley, M. S., et al. 2014. Olivine-dominated asteroids: Mineralogy and origin. Icarus, 228, 288300.Google Scholar
Sasaki, S., Nakamura, K., Hamabe, Y., et al. 2001. Production of iron nanoparticles by laser irradiation in a simulation of lunar-like space weathering. Nature, 410, 555557.Google Scholar
Schenck, P., O’Brien, D. P., Marchi, S., et al. 2012. The geologically recent giant impact basins at Vesta’s south pole. Science, 336, 694697.Google Scholar
Scott, E. R. D., Greenwood, R. C., Franchi, I. A., et al. 2009. Oxygen isotopic constraints on the origin and parent bodies of eucrites, diogenites, and howardites. Geochimica et Cosmochimica Acta, 73, 58355853.Google Scholar
Singer, R. B. and Roush, T. L. 1985. Effects of temperature on remotely sensed mineral absorption features. Journal of Geophysical Research, 90, 1243412444.Google Scholar
Solontoi, M. R., Hammergren, M., Gyuk, G., et al. 2012. AVAST survey 0.4–1.0 μm spectroscopy of igneous asteroids in the inner and middle main belt. Icarus, 220, 577585.Google Scholar
Spoto, F., Milani, A., Cellino, A., et al. 2013. Larger classification allows a new interpretation of the Vesta family. American Astronomical Society DPS meeting, 45, 106.07.Google Scholar
Sunshine, J. M., Bus, S. J., and McCoy, T. J., et al. 2004. High-calcium pyroxene as an indicator of igneous differentiation in asteroids and meteorites. Meteoritics & Planetary Science, 39, 13431357.Google Scholar
Sunshine, J. M., Connolly, H. C., McCoy, T. J., et al. 2008. Ancient asteroids enriched in refractory inclusions. Science, 320, 514517.Google Scholar
Tera, F. and Carlson, R. W. 1999. Assessment of the Pb–Pb and U–Pb chronometry of the early solar system. Geochimica et Cosmochimica Acta, 63, 18771889.Google Scholar
Thangjam, G., Nathues, A., Mengel, K., et al. 2014. Olivine-rich exposures at Bellicia and Arruntia craters on (4) Vesta from Dawn FC. Meteoritics & Planetary Science, 49, 18311850.Google Scholar
Tholen, D. J. 1984. Asteroid taxonomy from cluster analysis of photometry. Ph.D Thesis, University of Arizona.Google Scholar
Thomas, P. C., Parker, J. Wm., McFadden, L. A., et al. 2005. Differentiation of the asteroid Ceres as revealed by its shape. Nature, 437, 224226.CrossRefGoogle ScholarPubMed
Thomas, C. A., Lim, L., Moskovitz, N., et al. 2015. Searching for a differentiated asteroid family: A spectral survey of the Massalia, Merxia, and Agnia families. American Astronomical Society DPS meeting, 47, 308.13.Google Scholar
Vernazza, P., Birlan, M., Rossi, A., et al. 2006. Physical characterization of the Karin family. Astronomy & Astrophysics, 460, 945951.Google Scholar
Vernazza, P., Binzel, R. P., Thomas, C. A., et al. 2008. Compositional differences between meteorites and near-Earth asteroids. Nature, 454, 858860.Google Scholar
Warner, B. D., Harris, A. W., Vokrouhlický, D., et al. 2009. Analysis of the Hungaria asteroid population. Icarus, 204, 172182.Google Scholar
Warren, P. H. and Kallemeyn, G. W. 1995. Angrites: A volatile-rich variety of asteroidal basalt (except for alkalis and gallium!). Meteoritics, 30, 593.Google Scholar
Watters, T. R. and Prinz, M. 1979. Aubrites: Their origin and relationship to enstatite chondrites. Lunar and Planetary Science Conference, 10, 10731093.Google Scholar
Willman, M., Jedicke, R., Nesvorný, D., et al. 2008. Redetermination of the space weathering rate using spectra of Iannini asteroid family members. Icarus, 195, 663673.Google Scholar
Yamaguchi, A., Clayton, R. N., Mayeda, T. K., et al. 2002. A new source of basaltic meteorites inferred from Northwest Africa 011. Science, 296, 334336.CrossRefGoogle ScholarPubMed
Yamaguchi, A., Barrat, J.-A., Ito, M., et al. 2011. Posteucritic magmatism on Vesta: Evidence from the petrology and thermal history of diogenites. Journal of Geophysical Research: Planets, 116, E08009.Google Scholar
York, D. G., Adelman, J., Anderson, J. E., et al. 2000. The Sloan Digital Sky Survey: Technical summary. Astronomical Journal, 120, 15791587.Google Scholar
Zappalà, V., Cellino, A., Farinella, P., et al. 1990. Asteroid families. I. Identification by hierarchial clustering and reliability assessment. Astronomical Journal, 100, 20302046.Google Scholar
Zellner, B., Leake, M., Williams, J. G., et al. 1977. The E asteroids and the origin of enstatite achondrites. Geochimica et Cosmochimica Acta, 41, 17591767.Google Scholar
Ziffer, J., Campins, H., Licandro, J., et al. 2011. Near-infrared spectroscopy of primitive asteroid families. Icarus, 213, 538546.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×