Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-23T04:19:14.912Z Has data issue: false hasContentIssue false

15 - Dawn at Vesta: Paradigms and Paradoxes

from Part Three - Asteroids as Records of Formation and Differentiation

Published online by Cambridge University Press:  25 February 2017

Linda T. Elkins-Tanton
Affiliation:
Arizona State University
Benjamin P. Weiss
Affiliation:
Massachusetts Institute of Technology
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Planetesimals
Early Differentiation and Consequences for Planets
, pp. 321 - 339
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ammannito, E., De Sanctis, M. C., Capaccioni, F., et al., 2013a. Vestan lithologies mapped by the visual and infrared spectrometer on Dawn. Meteoritics & Planetary Science, 48, 21852198.CrossRefGoogle Scholar
Ammannito, E., De Sanctis, M. C., Palomba, E., et al. 2013b. Olivine in an unexpected location on Vesta’s surface. Nature, 504, 122125.CrossRefGoogle Scholar
Ammannito, E., De Sanctis, M. C., Combe, J. P., et al. 2015. The vestan Rheasilvia basin at high spatial and spectral resolution. Icarus, 259, 194202.CrossRefGoogle Scholar
Beck, A. W. and McSween, H. Y. 2010. Diogenites as polymict breccias composed of orthopyroxenite and harzburgite. Meteoritics & Planetary Science, 45, 850872.CrossRefGoogle Scholar
Beck, A. W., McCoy, T. J., Sunshine, J. M., et al., 2013. Challenges in detecting olivine on the surface of 4 Vesta. Meteoritics & Planetary Science, 48, 21552165.CrossRefGoogle Scholar
Beck, A. W., Lawrence, D. J., Peplowski, P. N., et al., 2015. Using HED meteorites to interpret neutron and gamma-ray data from asteroid 4 Vesta. Meteoritics & Planetary Science, 50, 13111337.CrossRefGoogle Scholar
Binzel, R. P. and Xu, S. 1993. Chips off asteroid 4 Vesta: Evidence for the parent body of basaltic achondrite meteorites. Science, 260, 186191.CrossRefGoogle ScholarPubMed
Binzel, R. P., Gaffey, M. J., Thomas, P., et al., 1997. Geologic mapping of Vesta from 1994 Hubble Space Telescope images. Icarus, 128, 95103.CrossRefGoogle Scholar
Buczkowski, D. L., Wyrick, D. Y., Iyer, K. A., et al., 2012. Large-scale troughs on Vesta: A signature of planetary tectonics. Geophysical Research Letters, 39, L18205.CrossRefGoogle Scholar
Buczkowski, D. L. , Wyrick, D. Y., Toplis, M., et al., 2014. The unique geomorphology and physical properties of the Vestalia Terra plateau. Icarus, 244, 89103.CrossRefGoogle Scholar
Burbine, T. H., Meibom, A., and Binzel, R. P. 1996. Mantle material in the main belt: Battered to bits? Meteoritics & Planetary Science, 31, 607620.CrossRefGoogle Scholar
Combe, J.-P., McCord, T. B., McFadden, L. A., et al., 2015. Composition of the northern regions of Vesta analyzed by the Dawn mission. Icarus, 259, 5371.CrossRefGoogle Scholar
Consolmagno, G. J., Golabek, G. J., Turrini, D., et al., 2015. Is Vesta an intact and pristine protoplanet? Icarus, 254, 190201.CrossRefGoogle Scholar
De Sanctis, M. C., Combe, J.-P., Ammannito, E., et al. 2012. Detection of widespread hydrated materials on Vesta by VIR imaging spectrometer on board the Dawn mission. Astrophysical Journal Letters, 758, L36.CrossRefGoogle Scholar
De Sanctis, M. C., Ammannito, E., Capria, M. T., et al. 2013. Vesta’s mineralogical composition as revealed by the visible and infrared spectrometer on Dawn. Meteoritics & Planetary Science, 48, 21662184.CrossRefGoogle Scholar
Denevi, B. W., Blewett, D. T., Buczkowski, D. L., et al. 2012. Pitted terrain on Vesta and implications for the presence of volatiles. Science, 338, 246249.CrossRefGoogle ScholarPubMed
Ermakov, A. I., Zuber, M. T., Smith, D. E., et al. 2014. Constraints on Vesta’s interior structure using gravity and shape models from the Dawn mission. Icarus, 240, 146160.CrossRefGoogle Scholar
Jaumann, R. J., Williams, D. A., Buczkowski, D. L., et al. 2012. Vesta’s shape and morphology. Science, 336, 687690.CrossRefGoogle ScholarPubMed
Jutzi, M., Asphaug, E., Gillet, P., et al. 2013. The structure of asteroid 4 Vesta as revealed by models of planet-scale collisions. Nature, 494, 207210.CrossRefGoogle ScholarPubMed
Konopliv, A. S., Asmar, S. W., Park, R. S. et al. 2014. The Vesta gravity field, spin pole and rotation period, landmark positions and ephemeris from the Dawn tracking and optical data. Icarus, 240, 103117.CrossRefGoogle Scholar
Li, S. and Milliken, R. E. 2015. Quantitative mapping of minerals on Vesta using Dawn VIR data. Lunar and Planetary Science Conference, 46, 2179.Google Scholar
Lunning, N. G., McSween, H. Y., Tenner, T. J., et al. 2015. Insights into the mantle of asteroid 4 Vesta from mineral fragments in meteorite breccias. Earth and Planetary Science Letters, 418, 126135.CrossRefGoogle Scholar
Macke, R. J., Britt, D. T., and Consolmagno, G. J. 2011. Density, porosity, and magnetic susceptibility of achondritic meteorites. Meteoritics & Planetary Science, 46, 311326.CrossRefGoogle Scholar
Marchi, S., McSween, H. Y., O’Brien, D. P., et al. 2012. The violent collisional history of asteroid 4 Vesta. Science, 336, 690694.CrossRefGoogle ScholarPubMed
Mandler, B. E. and Elkins-Tanton, L. T. 2013. The origin of eucrites, diogenites, and olivine diogenites: Magma ocean crystallization and shallow magma chamber processes on Vesta. Meteoritics & Planetary Science, 48, 23332349.CrossRefGoogle Scholar
Marzari, F., Farinella, P., and Davis, D. R. 1999. Origin, aging, and death of asteroid families. Icarus, 142, 6377.CrossRefGoogle Scholar
McCord, T. B., Adams, J. B., and Johnson, T. V. 1970. Asteroid Vesta: Spectral reflectivity and compositional implications. Science, 168, 14451447.CrossRefGoogle ScholarPubMed
McCord, T. B., Li, J-Y., Combe, J-P., et al. 2012. Dark material on Vesta from the infall of carbonaceous volatile-rich material. Nature, 291, 8386.CrossRefGoogle Scholar
McSween, H. Y., Mittlefehdlt, D. W., Beck, A. W., et al. 2011. HED meteorites and their relationship to the geology of Vesta. Space Science Reviews, 163, 141174.CrossRefGoogle Scholar
McSween, H. Y. Jr., Binzel, R. P., De Sanctis, M. C., et al. 2013a. Dawn; the Vesta–HED connection; and the geologic context for eucrites, diogenites, and howardites. Meteoritics & Planetary Science, 48, 20902014.CrossRefGoogle Scholar
McSween, H. Y. Jr., Ammannito, E., Reddy, V., et al. 2013b. Composition of the Rheasilvia basin, a window into Vesta’s interior. Journal of Geophysical Research, 118, 335346.CrossRefGoogle Scholar
Mizzon, H., Monnereau, M., Toplis, M., et al. 2015. A numerical model of the physical and chemical evolution of Vesta based on compaction equations and the olivine-anorthite-silica ternary diagram. Lunar and Planetary Science Conference, 46, 1832.Google Scholar
Neumann, W., Breuer, D., and Spohn, T. 2014. Differentiation of Vesta: Implications for a shallow magma ocean. Earth and Planetary Science Letters, 395, 267280.CrossRefGoogle Scholar
Noguchi, T., Nakamura, T., Kimura, M., et al. 2011. Incipient space weathering observed on the surface of Itokawa dust particles. Science, 333, 11211125.CrossRefGoogle ScholarPubMed
O’Brien, D. P., Marchi, S., Morbidelli, A., et al. 2015. Constraining the cratering chronology of Vesta. Planetary and Space Science, 103, 131142.CrossRefGoogle Scholar
Park, R. S., Konopliv, A. S., Asmar, S. W., et al. 2014. Gravity field expansion in ellipsoidal harmonic and polyhedral internal representations applied to Vesta. Icarus, 240, 118132.CrossRefGoogle Scholar
Pieters, C. M., Ammannito, E., Blewett, D. P., et al. 2012. Distinctive space weathering on Vesta from regolith mixing processes. Nature, 491, 7982.CrossRefGoogle ScholarPubMed
Prettyman, T. H., Mittlefehldt, D. W., Yamashita, N., et al. 2012. Elemental mapping by Dawn reveals exogenic H in Vesta’s regolith. Science, 338, 242246.CrossRefGoogle Scholar
Prettyman, T. H., Mittlefehldt, D. W., Yamashita, N., et al. 2013. Neutron absorption constraints on the composition of 4 Vesta. Meteoritics & Planetary Science, 48, 22112236.CrossRefGoogle Scholar
Prettyman, T. H., Yamashita, N., Reedy, R. C., et al. 2015. Concentrations of potassium and thorium within Vesta’s regolith. Icarus, 259, 3952.CrossRefGoogle Scholar
Preusker, F., Scholten, F., Matz, K.-D., et al. 2014. Global Shape of (4) Vesta from Dawn FC stereo images. Lunar and Planetary Science Conference, 45, 2027.Google Scholar
Reddy, V., Le Corre, L., and O’Brien, D. P., et al. 2012. Delivery of dark material to Vesta via carbonaceous chondritic impacts. Icarus, 221, 544559.CrossRefGoogle Scholar
Righter, K. and Drake, M. J. 1997. A magma ocean on Vesta: Core formation and petrogenesis of eucrites and diogenites. Meteoritics & Planetary Science, 32, 929944.CrossRefGoogle Scholar
Ruesch, O., Hiesinger, H., De Sanctis, M. C., et al. 2014. Detections and geologic context of local enrichments of olivine on Vesta with VIR/Dawn data. Journal of Geophysical Research, 119, 20782108.CrossRefGoogle Scholar
Russell, C. T. and Raymond, C. A. 2011. The Dawn mission to Vesta and Ceres. Space Science Reviews Special Issue on Dawn Mission, 163, 323.CrossRefGoogle Scholar
Russell, C. T., Raymond, C. A., Coradini, A., et al. 2012. Dawn at Vesta: Testing the protoplanetary paradigm. Science, 336, 684686.CrossRefGoogle ScholarPubMed
Ruzicka, A., Snyder, G. A., and Taylor, L. A. 1997. Vesta as the howardite, eucrite and diogenite parent body: Implications for the size of a core and for large-scale differentiation. Meteoritics & Planetary Science, 32, 825840.CrossRefGoogle Scholar
Sarafian, A. R., Roden, M.F., and Patino-Douce, A. E. 2013. The volatile content of Vesta: Clues from apatite in eucrites. Meteoritics & Planetary Science, 48, 21352154.CrossRefGoogle Scholar
Schenk, P., O’Brien, D. P., Marchi, S., et al. 2012. The geologically recent giant impact basins at Vesta’s south pole. Science, 336, 694697.CrossRefGoogle ScholarPubMed
Schiller, M., Baker, J., Creech, J., et al. 2011. Rapid timescales for magma ocean crystallization on the howardite–eucrite–diogenite parent body. Astrophysical Journal Letters, 740, L22.CrossRefGoogle Scholar
Schmedemann, N., Kneissl, T., Ivanov, B. A., et al. 2015. The cratering record, chronology and surface ages of (4) Vesta in comparison to smaller asteroids and ages of HED meteorites. Planetary and Space Science, 103, 104130.CrossRefGoogle Scholar
Scully, J.E.C., Russell, C.T., Yin, A., et al. 2015. Geomorphological evidence for transient water flow on Vesta. Earth and Planetary Science Letters, 411, 151163.CrossRefGoogle Scholar
Srinivasan, G., Goswami, J. N., and Bhandari, N. 1999. 26Al in eucrite Piplia Kalan: Plausible heat source and formation chronology. Science, 284, 13481350.CrossRefGoogle ScholarPubMed
Thangjam, G., Reddy, V., Le Corre, L., et al. 2013. Lithologic mapping of HED terrains on Vesta using Dawn framing camera color data. Meteoritics & Planetary Science, 48, 21992210.CrossRefGoogle Scholar
Toplis, M. J., Mizzon, H., Monnereau, M., et al. 2013. Chondritic models of 4 Vesta: Implications for geochemical and geophysical properties. Meteoritics & Planetary Science, 48, 23002315.CrossRefGoogle Scholar
Trinquier, A., Birck, J. L., Allegre, C. J., et al. 2008. 53Mn–53Cr systematics of the early solar system revisited. Geochimica et Cosmochimica Acta, 72, 51465163.CrossRefGoogle Scholar
Usui, T. and Iwamori, H. 2013. Mixing relations in the howardite–eucrite–diogenite suite: A new statistical approach of independent component analysis for the Dawn mission. Meteoritics & Planetary Science, 48, 22892299.CrossRefGoogle Scholar
Warren, P. H. 1997. Magnesium oxide iron oxide mass balance constraints and a more detailed model for the relationship between eucrites and diogenites. Meteoritics & Planetary Science, 32, 945963.CrossRefGoogle Scholar
Warren, P. H., Rubin, A. E., Isa, J., et al. 2014. Northwest Africa 5738: Multistage fluid-driven secondary alteration in an extraordinarily evolved eucrite. Geochimica et Cosmochimica Acta, 141, 199227.CrossRefGoogle Scholar
Williams, D.A., Blewett, D. T., Buczkowski, D. L., et al. 2015. Complete global geologic map of Vesta from Dawn and mapping plans for Ceres. Lunar and Planetary Science Conference, 46, 1126.Google Scholar
Williams, D. A., Jaumann, R., McSween, H. Y., et al. 2014. The chronostratigraphy of protoplanet Vesta. Icarus, 244, 158165.CrossRefGoogle Scholar
Wilson, L. and Keil, K. 2012. Volcanic activity on differentiated asteroids: A review and analysis. Chemie der Erde, 72, 289321.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×