Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-23T03:59:29.922Z Has data issue: false hasContentIssue false

8 - Arguments for the Non-existence of Magma Oceans in Asteroids

from Part Two - Chemical and Mineralogical Diversity

Published online by Cambridge University Press:  25 February 2017

Linda T. Elkins-Tanton
Affiliation:
Arizona State University
Benjamin P. Weiss
Affiliation:
Massachusetts Institute of Technology
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Planetesimals
Early Differentiation and Consequences for Planets
, pp. 159 - 179
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agee, C. B., Longhi, J., eds. 1992. Workshop of the Physics and Chemistry of Magma Oceans from 1 bar to 4 Mbar (LPI Technical Report 92-03). Houston, TX: Lunar and Planetary Institute.Google Scholar
Akai, J. 1992. T–T–T diagram of serpentine and saponite, and estimation of metamorphic heating degree of Antarctic carbonaceous chondrites. Proceedings of the NIPR Symposium on Antarctic Meteorites, 5, 120135.Google Scholar
Asphaug, E. 2014. Impact origin of the Moon? Annual Review of Earth and Planetary Science, 42, 551–78.CrossRefGoogle Scholar
Benedix, G. K., McCoy, T. J., Keil, K., Bogard, D. D., and Garrison, D.H. 1998. A petrologic and isotopic study of winonaites: Evidence for early partial melting, brecciation, and metamorphism. Geochimica et Cosmochimica Acta, 62, 25352553.CrossRefGoogle Scholar
Benedix, G. K., McCoy, T. J., Keil, K., and Love, S. G. 2000. A petrologic study of the IAB iron meteorites: Constraints on the formation of the IAB–winonaite parent body. Meteoritics & Planetary Science, 35, 11271141.CrossRefGoogle Scholar
Binzel, R. P. and Xu, S. 1993. Chips off of asteroid 4 Vesta: Evidence for the parent body of basaltic achondrite meteorites. Science, 260, 186191.CrossRefGoogle ScholarPubMed
Britt, D. T. and Consolmagno, G. J. 2003. Stony meteorite porosities and densities: a review of the data through 2001. Meteoritics & Planetary Science, 38, 11611180.CrossRefGoogle Scholar
Brown, M. 2004. The mechanisms of melt extraction from lower continental crust of orogens: is it a selforganized critical phenomenon? Transactions of the Royal Society of Edinburgh, Earth Sciences, 95, 3548.CrossRefGoogle Scholar
Bruhn, D., Groebner, N., and Kohlstedt, D. L. 2000. An interconnected network of coreforming melts produced by shear deformation. Nature, 403, 883886.CrossRefGoogle ScholarPubMed
Canup, R. 2004. Dynamics of lunar formation. Annual Review of Astronomy & Astrophysics, 42, 441475.CrossRefGoogle Scholar
Castillo-Rogez, J., Johnson, T. V., and Lee, M. H., et al. 2009. 26Al decay: heat production and a revised age for Iapetus. Icarus, 204, 658662.CrossRefGoogle Scholar
Castillo-Rogez, J. C. and McCord, T. B. 2010. Ceres’ evolution and present state constrained by shape data. Icarus, 205, 443459.CrossRefGoogle Scholar
Consolmagno, G. J., and Drake, M. J. 1977. Composition and evolution of the eucrite parent body: Evidence from rare earth elements. Geochimica et Cosmochimica Acta, 41, 12711282.CrossRefGoogle Scholar
Consolmagno, G. J., Britt, D. T., and Macke, R. J. 2008. The significance of meteorite density and porosity. Chemie der Erde, 68, 129.CrossRefGoogle Scholar
Davison, T. M., Ciesla, F. J., Collins, G. S., 2010. Post-impact thermal evolution of porous planetesimals. Geochimica et Cosmochimica Acta, 95, 252269.CrossRefGoogle Scholar
Davison, T. M., Collins, G. S., Ciesla, F. J., 2012. Numerical modeling of heating in porous planetesimal collisions. Icarus 208, 468481.CrossRefGoogle Scholar
Day, J. M. D., Walker, R. J., Qin, L., and Rumble, D. 2012a. Late accretion as a natural consequence of planetary growth. Nature Geoscience, 5, 614617.CrossRefGoogle Scholar
Day, J. M. D., Walker, R. J., Ash, R. D., et al. 2012b. Origin of felsic achondrites Graves Nunataks 06128 and 06129, and ultramafic brachinites and brachinite-like achondrites by partial melting of volatile-rich primitive parent bodies. Geochimica et Cosmochimica Acta, 81, 94128.CrossRefGoogle Scholar
Ermakov, A. I., Zuber, M. T., Smith, D. E., et al. 2014. Constraints on Vesta’s interior structure using gravity and shape models from the Dawn mission. Icarus, 240, 146160.CrossRefGoogle Scholar
Fu, R. R. and Elkins-Tanton, L. T. 2014. The fate of magmas in planetesimals and the retention of primitive chondritic crusts. Earth and Planetary Science Letters, 390, 128137.CrossRefGoogle Scholar
Gaetani, G. A. and Grove, T. L. 1999. Wetting of mantle olivine by coreforming melts: The influence of variable fO2/fS2 conditions. Earth and Planetary Science Letters, 169, 147163.CrossRefGoogle Scholar
Ghosh, A. and McSween, H. Y. 1998. A thermal model for the differentiation of asteroid 4 Vesta, based on radiogenic heating. Icarus, 134, 187206.CrossRefGoogle Scholar
Goodrich, C. A., Van Orman, J., and Wilson, L. 2007. Fractional melting and smelting on the Ureilite parent body. Geochimica et Cosmochimica Acta, 71, 28762895.CrossRefGoogle Scholar
Greenwood, R. C., Franchi, I. A., Jambon, A., and Buchanan, P. 2005. Widespread magma oceans on asteroidal bodies in the early solar system. Nature, 435, 916918.CrossRefGoogle ScholarPubMed
Greenwood, R. C., Barrat, J.-A., Scott, E. R. D., et al. 2012a. Has Dawn gone to the wrong asteroid? Oxygen constraints on the nature and composition of the HED parent body. Lunar and Planetary Science Conference, 43, 2711.Google Scholar
Greenwood, R. C., Franchi, I. A., Gibson, J. M., and Benedix, G. K., 2012b. Oxygen isotope variation in primitive achondrites: The influence of primordial, asteroidal and terrestrial processes. Geochimica et Cosmochimica Acta, 94, 146163.CrossRefGoogle Scholar
Greenwood, R. C., Barrat, J.-A., Yamaguchi, A., et al. 2014. The oxygen isotope composition of diogenites: Evidence for early global melting on a single, compositionally diverse, HED parent body. Earth and Planetary Science Letters, 390, 165174.CrossRefGoogle Scholar
Hevey, P. J. and Sanders, I. S. 2006. A model for planetesimal melt down by 26Al and its implications for meteorite parent bodies. Meteoritics & Planetary Science, 41, 95106.CrossRefGoogle Scholar
Ikeda, Y. and Takeda, H., 1985. A model for the origin of basaltic achondrites based on the Yamato 7308 howardite. Journal of Geophysical Research, 90, C649C663.CrossRefGoogle Scholar
Janots, E., Gnos, E., Hofmann, B., et al. 2012. Jiddat al Harasis 556: A howardite impact breccia with an H chondrite component. Meteoritics & Planetary Science, 47, 15581574.CrossRefGoogle Scholar
Jurewicz, A. J. G., Mittlefehldt, D. W., and Jones, J. H. 1993. Experimental partial melting of the Allende (CV) and Murchison (CM) chondrites and the origin of asteroidal basalts. Geochimica et Cosmochimica Acta, 57, 21232139.CrossRefGoogle Scholar
Jurewicz, A. J. G., Jones, J. H., Mittlefehldt, D. W., and Longhi, J. 2004. Devolatilized-Allende partial melts as an analog for primitive angrite magmas. Lunar and Planetary Science Conference, 35, 1417.Google Scholar
Keil, K. 2002. Geological history of asteroid 4 Vesta: The “smallest terrestrial planet”. In Asteroids III, ed. Bottke, W. F. Jr., Cellino, A., Paolicchi, P., and Binzel, R. P.. Tucson, AZ: University of Arizona Press, 573584.CrossRefGoogle Scholar
Keil, K. 2010. Enstatite achondrite meteorites (aubrites) and the histories of their asteroidal parent bodies. Chemie der Erde, 70, 295317.CrossRefGoogle Scholar
Keil, K. 2012. Angrites, a small but diverse suite of ancient, silica-undersaturated asteroidal volcanic-plutonic meteorites, and the history of their parent asteroid. Chemie der Erde, 72, 191218.CrossRefGoogle Scholar
Keil, K., 2014. Brachinite meteorites: Partial melt residues from an FeO-rich asteroid. Chemie der Erde, 74, 311329.CrossRefGoogle Scholar
Keil, K. and Bischoff, A. 2008. Northwest Africa 2526: a partial melt residue of enstatite chondrite parentage. Meteoritics & Planetary Science, 43, 12331240.CrossRefGoogle Scholar
Keil, K. and Wilson, L. 1993. Explosive volcanism and the compositions of cores of differentiated asteroids. Earth and Planetary Science Letters, 117, 111124.CrossRefGoogle Scholar
Keil, K., Ntaflos, T., Taylor, G. J., et al. 1989. The Shallowater aubrite: Evidence for origin by planetesimal impacts. Geochimica et Cosmochimica Acta, 53, 32913307.CrossRefGoogle Scholar
Keil, K., Stöffler, D., Love, S. G., Scott, E. R. D., 1997. Constraints on the role of impact heating and melting in asteroids. Meteoritics & Planetary Science, 32 349363.CrossRefGoogle Scholar
Kita, N. T., Yin, Q.-Z., MacPherson, G. J., et al. 2013. 26Al–26Mg isotope systematics of the first solids in the early solar system. Meteoritics & Planetary Science. 48, 13831400.CrossRefGoogle Scholar
Kleine, T., Hans, U., Irving, A. J., and Bourdon, B. 2012. Chronology of the angrite parent body and implications for core formation in protoplanets. Geochimica et Cosmochimica Acta, 84, 186203.CrossRefGoogle Scholar
Kubaschewski, O. 1982. Iron–Binary Phase Diagrams. New York: Springer.Google Scholar
Lunning, N. G., McSween, H. Y., Tenner, T. J., Kita, N. T., and Bodnar, R. J. 2015. Olivine and pyroxene from the mantle of asteroid 4 Vesta. Earth and Planetary Science Letters, 418, 126135.CrossRefGoogle Scholar
Maaloe, S. 2003. Melt dynamics of a partially molten mantle with randomly oriented veins. Joural of Petrology, 44, 11931210.CrossRefGoogle Scholar
Mandler, B. E. and Elkins-Tanton, L.T. 2013. The origin of eucrites, diogenites, and olivine diogenites: magma ocean crystallization and shallow magma chamber processes on Vesta. Meteoritics & Planetary Science, 48, 23332349.CrossRefGoogle Scholar
Mare, E. R., Tomkins, A. G., and Godel, B. M. 2014. Restriction of parent body heating by metal–troilite melting: Thermal models for the ordinary chondrites. Meteoritics & Planetary Science, 49, 636651.CrossRefGoogle Scholar
Mayne, R. G., McSween, H. Y. Jr., McCoy, T. J., Gale, A., 2009. Petrology of the unbrecciated eucrites. Geochimica et Cosmochimica Acta, 73, 794819.CrossRefGoogle Scholar
McCoy, T. J., Keil, K., Clayton, R. N., et al. 1996. A petrologic, chemical, and isotopic study of Monument Draw and comparison with other acapulcoites: Evidence for formation by incipient partial melting. Geochimica et Cosmochimica Acta, 60, 26812708.CrossRefGoogle Scholar
McCoy, T. J., Keil, K., Clayton, R. N., et al. 1997a. A petrologic and isotopic study of lodranites: Evidence for early formation as partial melt residues from heterogeneous precursors. Geochimica et Cosmochimica Acta, 61, 623637.CrossRefGoogle Scholar
McCoy, T., Keil, K., Muenow, D. W., and Wilson, L. 1997b. Partial melting and melt migration in the acapulcoite–lodranite parent body. Geochimica et Cosmochimica Acta, 61, 639650.CrossRefGoogle Scholar
McCoy, T. J., Dickinson, T. L., and Lofgren, G. E. 1999. Partial melting of the Indarch (EH4) meteorite: A textural, chemical, and phase relations view of melting and melt migration. Meteoritics & Planetary Science, 34, 735746.CrossRefGoogle Scholar
McCoy, T. J., Mittlefehldt, D. W., and Wilson, L. 2006a. Asteroid differentiation. In Meteorites and the Early Solar System II, ed. Lauretta, D. S. and McSween, H. Y. Jr. Tucson, AZ: University of Arizona Press, 733745,CrossRefGoogle Scholar
McCoy, T. J., Ketcham, R. A., and Wilson, L. et al., 2006b. Formation of vesicles in asteroidal basaltic meteorites. Earth and Planetary Science Letters, 246, 102108.CrossRefGoogle Scholar
McSween, H. Y. Jr., Binzel, R. P., De Sanctis, M. C., et al. 2013. Dawn; the Vesta–HED connection; and the geologic context for eucrites, diogenites, and howardites. Meteoritics & Planetary Science, 48, 20902104.CrossRefGoogle Scholar
Merk, R., Breuer, D., and Spohn, T. 2002. Numerical modeling of Al-26-induced radioactive melting of asteroids considering accretion. Icarus, 159, 183191.CrossRefGoogle Scholar
Minarik, W. G., Ryerson, F. J., and Watson, E. B. 1996. Textural entrapment of core-forming melts. Science, 272, 530533.CrossRefGoogle Scholar
Muenow, D. M., Keil, K., and Wilson, L. 1992. High-temperature mass spectrometric degassing of enstatite chondrites: implications for pyroclastic volcanism on the aubrite parent body. Geochimica et Cosmochimica Acta, 56, 42674280.CrossRefGoogle Scholar
Neumann, W., Breuer, D., and Spohn, T. 2014. Differentiation of Vesta: implications for a shallow magma ocean. Earth and Planetary Science Letters, 395, 267280.CrossRefGoogle Scholar
Nicolas, A., 1986. A melt extraction model based on structural studies in mantle peridotites. Journal of Petrology, 27, 9991022.CrossRefGoogle Scholar
Righter, K. and Drake, M. J. 1997. A magma ocean on Vesta: core formation and petrogenesis of eucrites and diogenites. Meteoritics & Planetary Science, 32, 929944.CrossRefGoogle Scholar
Rubie, D. C., Jacobson, S. A., Morbidelli, A., et al. 2015. Accretion and differentiation of the terrestrial planets with implications for the compositions of early-formed solar system bodies and accretion of water. Icarus, 248, 89108.CrossRefGoogle Scholar
Rushmer, T., Minarik, W. G., and Taylor, G. J. 2000. Physical processes of core formation. In Origin of the Earth and Moon, ed. Canup, R. M. and Righter, K.. Tucson, AZ: University of Arizona Press, 227245.CrossRefGoogle Scholar
Rushmer, T., Petford, N., Humayun, M., and Campbell, A. J. 2005. Fe–liquid segregation in deforming planetesimals: coupling core-forming compositions with transport phenomena. Earth and Planetary Science Letters, 239, 185202.CrossRefGoogle Scholar
Ruzicka, A. 2014. Silicate-bearing iron meteorites and their implications for the evolution of asteroidal parent bodies. Chemie der Erde, 74, 348.CrossRefGoogle Scholar
Ruzicka, A., Snyder, G. A., and Taylor, L. A. 1997. Vesta as the howardite, eucrite and diogenite parent body: Implications for the size of a core and for large-scale differentiation. Meteoritics & Planetary Science, 32, 825840.CrossRefGoogle Scholar
Schiller, M., Baker, J. A., and Bizzarro, M. 2010. 26Al–26Mg dating of asteroidal magmatism in the young solar system. Geochimica et Cosmochimica Acta, 74, 48444864.CrossRefGoogle Scholar
Scott, E. R. D., Greenwood, R. C., Franchi, J. A., and Sanders, I. S. 2009. Oxygen isotopic constraints on the origin and parent bodies of eucrites, diogenites, and howardites. Geochimica et Cosmochimica Acta, 73, 58355853.CrossRefGoogle Scholar
Shannon, M. C. and Agee, C.B. 1996. High pressure constraints on percolative core formation. Geophysical Research Letters, 23, 27172720.CrossRefGoogle Scholar
Sleep, N. H. 1988. Tapping of melt by veins and dikes. Journal of Geophysical Research, 93, 1025510272.CrossRefGoogle Scholar
Šrámek, O., Milelli, L, Ricard, Y., and Labrosse, S. 2012. Thermal evolution and differentiation of planetesimals and planetary embryos. Icarus, 217, 339354.CrossRefGoogle Scholar
Stevenson, D. J. 1990. Fluid dynamics of core formation. In Origin of the Earth, ed. Newsom, H. E., and Jones, J. H.. New York: Oxford University Press, pp. 231249.CrossRefGoogle Scholar
Schwartz, J. M. and McCallum, I. S. 2005. Comparative study of equilibrated and unequilibrated eucrites; subsolidus thermal histories of Haraiya and Pasamonte. American Mineralogist, 90, 18711886.CrossRefGoogle Scholar
Tait, A. W., Tomkins, A. G., Godel, B. M., et al. 2014. Investigation of the H7 ordinary chondrite, Watson 012: Implications for recognition and classification of type 7 meteorites. Geochimica et Cosmochimica Acta, 134, 175196.CrossRefGoogle Scholar
Tarduno, J. A., Cottrell, R. D., Nimmo, F., et al. 2012. Evidence for a dynamo in the main group pallasite parent body. Science, 338, 939942.CrossRefGoogle ScholarPubMed
Taylor, G. J. 1992. Core formation on asteroids. Journal of Geophysical Research, 97, 14,71714,726.CrossRefGoogle Scholar
Taylor, G. J. and Norman, M. D. 1991. Evidence of magma oceans on asteroids, the Moon and Earth. In Workshop of the Physics and Chemistry of Magma Oceans from 1 bar to 4 Mbar (LPI Technical Report 92-03), ed. Agee, C.B. and Longhi, J.. Houston, TX: Lunar and Planetary Institute, 5865.Google Scholar
Taylor, G. J., Keil, K., McCoy, T., Haack, H., and Scott, E. R. D. 1993. Asteroid differentiation: Pyroclastic volcanism to magma oceans. Meteoritics, 28, 3452.CrossRefGoogle Scholar
Toplis, M. J., Mizzon, H., Monnereau, M., et al. 2013. Chondritic models of 4 Vesta: Implications for geochemical and geophysical properties. Meteoritics & Planetary Science, 48, 23002315.CrossRefGoogle Scholar
Wadhwa, M., Srinivasan, G., and Carlson, R. W. 2006. Timescales of planetesimal differentiation in the early Solar System. In Meteorites and the Early Solar System II, ed. Lauretta, D. S. and McSween, H. Y. Jr. Tucson, AZ: University of Arizona Press, 715731.CrossRefGoogle Scholar
Walte, N. P., Rubie, D. C., Bons, P. D., and Frost, D. J. 2011. Deformation of a crystalline aggregate with a small percentage of high-dihedral-angle liquid: implications for core–mantle differentiation during planetary formation. Earth and Planetary Science Letters, 305, 124134.CrossRefGoogle Scholar
Walter, M. J. 2000. A shear pathway to the core. Nature, 403, 839840.CrossRefGoogle ScholarPubMed
Warren, P. H. 1985. The magma ocean concept and lunar evolution. Annual Reviews Earth and Planetary Science, 13, 201240.CrossRefGoogle Scholar
Warren, P. H. 2011. Stable-isotopic anomalies and the accretionary assemblage of the Earth and Mars: a subordinate role for carbonaceous chondrites. Earth and Planetary Science Letters, 311, 93100.CrossRefGoogle Scholar
Wasson, J. T. 2013. No magma ocean on Vesta (or elsewhere in the astereoid belt: Volatile loss from HEDs (abstract). Lunar and Planetary Science Conference, 44, 2836.Google Scholar
Whittington, A. G., Hofmeister, A. M., and Nabelek, P. I. 2009. Temperature-dependent thermal diffusivity of the Earth’s crust and implications for magmatism. Nature, 458, 319321.CrossRefGoogle ScholarPubMed
Wiechert, U. H., Halliday, A. H., Palme, H., and Rumble, D. 2004. Oxygen isotopic evidence for rapid mixing of the HED parent body. Earth and Planetary Science Letters, 221, 373382.CrossRefGoogle Scholar
Wilson, L. and Goodrich, C. A. 2012. Melt formation, migration and rapid extraction from differentiated asteroid interiors: lessons from ureilites extended to all asteroids. Lunar and Planetary Science Conference, 43, 1128.Google Scholar
Wilson, L. and Keil, K. 1991. Consequences of explosive eruptions on small solar system bodies: The case of the missing basalts on the aubrite parent body. Earth and Planetary Science Letters, 104, 505512.CrossRefGoogle Scholar
Wilson, L. and Keil, K., 1996a. Volcanic eruptions and intrusions on the asteroid 4 Vesta. Journal of Geophysical Research – Planets, 101, 18,92718,940.CrossRefGoogle Scholar
Wilson, L. and Keil, K., 1996b. Clast sizes of ejecta from explosive eruptions on asteroids: implications for the fate of the basaltic products of differentiation. Earth and Planetary Science Letters, 140, 191200.CrossRefGoogle Scholar
Wilson, L. and Keil, K., 1997. The fate of pyroclasts produced in explosive eruptions on the asteroid Vesta. Meteoritics & Planetary Science 32, 813823.CrossRefGoogle Scholar
Wilson, L. and Keil, K. 2012. Volcanic activity on differentiated asteroids: a review and analysis. Chemie der Erde, 72, 289321.CrossRefGoogle Scholar
Wilson, L. and Keil, K. 2014. Fast melt production and easy melt migration in differentiated asteroids implies giant sills, not magma oceans (abstract). Workshop on Planetesimal Formation and Differentiation. Department of Terrestrial Magnetism, Carnegie Institution, Washington, DC.Google Scholar
Wilson, L., Goodrich, C. A., and Van Orman, J. A. 2008. Thermal evolution and physics of melt extraction on the ureilite parent body. Geochimica et Cosmochimica Acta, 72, 61546176.CrossRefGoogle Scholar
Wilson, L., Keil, K., McCoy, T. J., 2010. Pyroclast loss or retention during explosive volcanism on asteroids: influence of asteroid size and gas content of melt. Meteoritics & Planetary Science 45, 12841301.CrossRefGoogle Scholar
Wilson, L., Bland, P., Buczkowski, D., Keil, K., and Krot, S. 2015. Hydrothermal and magmatic fluid flow in asteroids. In Asteroids IV, ed. Michel, P., DeMeo, F., and Bottke, W. F.. Tucson, AZ: University of Arizona Press, 553572.Google Scholar
Yamaguchi, A, Barrat, J. A., Ito, M., and Bohn, M. 2011. Posteucritic magmatism on Vesta: Evidence from the petrology and thermal history of diogenites. Journal of Geophysical Research – Planets, 116, E08009.CrossRefGoogle Scholar
Yang, J., Goldstein, J. I., and Scott, E. R. D., 2010. Main-group pallasites: thermal history, relationship to IIIAB irons, and origin. Geochimica et Cosmochimica Acta, 74, 44714492.CrossRefGoogle Scholar
Yoshino, T., Walter, M. J., and Katsura, T. 2003. Core formation in planetesimals triggered by permeable flow. Nature, 422, 154157.CrossRefGoogle ScholarPubMed
Yoshino, T., Walter, M. J., and Katsura, T. 2004. Connectivity of molten Fe alloy in peridotite based on in situ electrical conductivity measurements: implications for core formation in terrestrial planets. Earth and Planetary Science Letters, 222, 625643.CrossRefGoogle Scholar
Zhang, J., Dauphas, N., Davis, A. M., et al. 2012. The proto-Earth as a significant source of lunar material. Nature Geoscience, 5, 251255.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×