from III - Ring Systems by Type and Topic
Published online by Cambridge University Press: 26 February 2018
INTRODUCTION
Ring systems around magnetized planets are expected to have varied interactions with the magnetic fields, hot plasma, and energetic particles of the associated magnetospheres. In our solar system all the giant planets, Jupiter to Neptune, have magnetospheres with embedded rings. Each ring system and its associated moons have strong interactions with their radiation environments (the most intense of which is at Jupiter). Such interactions both erode diffuse rings (such as the E ring of Saturn) and supply plasma and energetic particles to the magnetosphere and its radiation belts. Compositional and structural measurements of rings are enabled by these interactions, such as the information obtained by detection of the secondary neutron and gamma-ray emissions produced by galactic cosmic ray (GCR) interactions with the rings. It is also notable that Earth has both a magnetosphere with radiation belts, and an artificial ring system of satellites and debris, that continuously interact. Konradi (1988) even projected that the high energy trapped protons of the inner Van Allen Belt should now be experiencing significant depletion by this interaction, and we will later discuss the possible evidence for this. Magnetized exoplanets with rings would have similar interactions.
The ring systems of Jupiter and Saturn have been explored by multiple spacecraft. The Jovian ring environment was first explored in situ in 1974 by Pioneer 11, which subsequently flew under Saturn's main rings in 1979. After passing through the Saturn ring plane near the G ring in 1981, Voyager 2 encountered Uranus in 1986 and then Neptune in 1989, but in neither case were the rings and arcs of these two ice giant planets traversed. The Galileo Probe passed across the Jovian ring in December 1995 en route to the first direct penetration into Jupiter's atmosphere. The Cassini Orbiter crossed over the Saturn A and B rings in mid-2004 (Figure 14.1) as part of the Saturn Orbital Insertion (SOI). Cassini will again traverse the main rings during its Grand Finale orbit phase many times, crossing the ring plane just inwards of the D ring, prior to final atmospheric entry in 2017. With the exception of the Cassini Plasma Spectrometer (CAPS) instrument, turned off in 2012 due to electrical problems, Cassini will continue to operate through the final observations.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.