Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-05T04:44:58.165Z Has data issue: false hasContentIssue false

18 - The Origin of Planetary Ring Systems

from III - Ring Systems by Type and Topic

Published online by Cambridge University Press:  26 February 2018

S. Charnoz
Affiliation:
Université Paris-Diderot and Institut de Physique du Globe Paris, FRANCE
R. M. Canup
Affiliation:
Southwest Research Institute Boulder, Colorado, USA
A. Crida
Affiliation:
Observatoire de la Côte d'Azur Nice, FRANCE
L. Dones
Affiliation:
Southwest Research Institute Boulder, Colorado, USA
Matthew S. Tiscareno
Affiliation:
SETI Institute, California
Carl D. Murray
Affiliation:
Queen Mary University of London
Get access

Summary

INTRODUCTION

The origin of planetary rings is one of the least understood processes related to planet formation and evolution. Whereas rings seem ubiquitous around giant planets, their great diversity of mass, structure, and composition is a challenge for any formation scenario. Satellite destruction by cometary impacts and meteoroid bombardment seem to be key processes leading to the very low-mass rings of Uranus, Neptune, and Jupiter. By contrast, moon destruction is unlikely to have produced Saturn's much more massive rings recently, so they still represent a strong challenge for astronomers.

Recent advances in our understanding of ring and satellite formation and destruction suggest that these processes are closely interconnected, so that rings and satellites may be two aspects of the same geological system. Indeed, rings may not be only beautiful planetary ornaments, but, possibly, an essential step in the process of satellite formation, at least for the small and mid-sized moons. These recent advances have taken advantage of the many tantalizing results from the Cassini mission, as well as advances in numerical simulation techniques. However, no single theory seems able to explain the origin of the different planetary rings known in our solar system, and it now seems evident that rings may result from a variety of processes like giant collisions, tidal stripping of comets or satellites, as well as planet formation itself. Understanding rings appears to be an important step toward understanding the origin and evolution of planetary environments.

Most work on the origin of rings has been devoted to Saturn, and somewhat less to the rings of Jupiter, Uranus, and Neptune. So our chapter will be mainly focused on the case of Saturn. However, processes that are common to all rings or particularly to those of Saturn will be clearly delineated. In order to build any theory of ring formation it is important to specify physical processes that affect the long-term evolution of rings, as well as to describe the different observations that any ring formation model should explain. This is the topic of Section 18.2. In Section 18.3, we focus our attention on Saturn's rings and their main properties, and then discuss the pros and cons of a series of ring formation models. We also discuss the link between rings and satellites. In Section 18.4, we extend the discussion to the other giant planets (Jupiter, Uranus, and Neptune).

Type
Chapter
Information
Planetary Ring Systems
Properties, Structure, and Evolution
, pp. 517 - 538
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aggarwal, H. R., and Oberbeck, V. R. 1974. Roche limit of a solid body. Astrophys. J., 191, 577–588.CrossRefGoogle Scholar
Alibert, Y., Mousis, O., and Benz, W. 2005. Modeling the Jovian subnebula. I. Thermodynamic conditions and migration of protosatellites. Astron. Astrophys., 439, 1205–1213.CrossRefGoogle Scholar
Alvarellos, J. L., Zahnle, K. J., Dobrovolskis, A. R., and Hamill, P. 2005. Fates of satellite ejecta in the Saturn system. Icarus, 178, 104–123.CrossRefGoogle Scholar
Asphaug, E., and Benz, W. 1996. Size, density, and structure of comet Shoemaker-Levy 9 inferred from the physics of tidal breakup. Icarus, 121, 225–248.CrossRefGoogle Scholar
Barr, A. C., and Canup, R. M. 2010. Origin of the Ganymede–Callisto dichotomy by impacts during the late heavy bombardment. Nature Geosci., 3, 164–167.CrossRefGoogle Scholar
Benz, W., and Asphaug, E. 1999. Catastrophic disruptions revisited. Icarus, 142, 5–20.CrossRefGoogle Scholar
Boué, G., and Laskar, J. 2010. A collisionless scenario for Uranus tilting. Astrophys. J. Lett., 712, L44–L47.CrossRefGoogle Scholar
Braga-Ribas, F., Sicardy, B., Ortiz, J. L., et al. 2014. A ring system detected around the Centaur (10199) Chariklo. Nature, 508, 72–75.CrossRefGoogle Scholar
Burns, J. A. 1986. The evolution of satellite orbits. Pages 117–158 of: Burns J, A., and Matthews, M. S. (eds.), IAU Colloq. 77: Satellites.
Burns, J. A., Showalter, M. R., and Morfill, G. E. 1984. The ethereal rings of Jupiter and Saturn. Pages 200–272 of: Greenberg, R., and Brahic, A. (eds.), IAU Colloq. 75: Planetary Rings.
Burns, J. A., Showalter, M. R., Hamilton, D. P., et al. 1999. The formation of Jupiter's faint rings. Science, 284, 1146.CrossRefGoogle ScholarPubMed
Burns, J. A., Hamilton, D. P., and Showalter, M. R. 2001. Dusty rings and circumplanetary dust: Observations and simple physics. Pages 641–725 of: Grün, E., Gustafson, B. A. S., Dermott, S., and Fechtig, H. (eds.), Interplanetary Dust, Berlin: Springer.Google Scholar
Burns, J. A., Simonelli, D. P., Showalter, M. R., et al. 2004. Jupiter's ring-moon system. Pages 241–262 of: Bagenal, F., Dowling, T. E., and McKinnon, W. B. (eds.), Jupiter. The Planet, Satellites and Magnetosphere. Cambridge University Press.Google Scholar
Cameron, A. G. W., and Ward, W. R. 1976 (Mar.). The Origin of the Moon. In: Lunar and Planetary Science Conference. Lunar and Planetary Science Conference, vol. 7.Google Scholar
Canup, R. M. 2010. Origin of Saturn's rings and inner moons by mass removal from a lost Titan-sized satellite. Nature, 468, 943–946.CrossRefGoogle ScholarPubMed
Canup, R. M. 2013. Modification of the rock content of the inner saturnian satellites by an outer solar system LHB. Page 2298 of: Lunar and Planetary Science Conference, vol. 44.Google Scholar
Canup, R. M., and Asphaug, E. 2001. Origin of the Moon in a giant impact near the end of the Earth's formation. Nature, 412, 708–712.CrossRefGoogle Scholar
Canup, R. M., and Esposito, L. W. 1995. Accretion in the Roche zone: Coexistence of rings and ring moons. Icarus, 113, 331–352.CrossRefGoogle Scholar
Canup, R. M., and Esposito, L. W. 1996. Accretion of the moon from an impact-generated disk. Icarus, 119, 427–446.CrossRefGoogle Scholar
Canup, R. M., and Ward, W. R. 2002. Formation of the Galilean satellites: Conditions of accretion. Astron. J., 124, 3404–3423.CrossRefGoogle Scholar
Canup, R. M., and Ward, W. R. 2006. A common mass scaling for satellite systems of gaseous planets. Nature, 441, 834–839.CrossRefGoogle ScholarPubMed
Chandrasekhar, S. 1969. Ellipsoidal Figures of Equilibrium. The Silliman Foundation Lectures. New Haven: Yale University Press.Google Scholar
Charnoz, S., and Michaut, C. 2015. Evolution of the protolunar disk: Dynamics, cooling timescale and implantation of volatiles onto the Earth. Icarus, 260, 440–463.CrossRefGoogle Scholar
Charnoz, S., Morbidelli, A., Dones, L., and Salmon, J. 2009a. Did Saturn's rings form during the Late Heavy Bombardment? Icarus, 199, 413–428.CrossRefGoogle Scholar
Charnoz, S., Dones, L., Esposito, L. W., Estrada, P. R., and Hedman, M. M. 2009b. Origin and evolution of Saturn's ring system. Pages 537–575 of: Dougherty M, K., Esposito, L. W., and Krimigis, S. M. (eds.), Saturn from Cassini-Huygens. Springer.Google Scholar
Charnoz, S., Salmon, J., and Crida, A. 2010. The recent formation of Saturn's moonlets from viscous spreading of the main rings. Nature, 465, 752–754.CrossRefGoogle ScholarPubMed
Charnoz, S., Crida, A., Castillo-Rogez, J. C., et al. 2011. Accretion of Saturn's mid-sized moons during the viscous spreading of young massive rings: Solving the paradox of silicate-poor rings versus silicate-rich moons. Icarus, 216, 535–550.CrossRefGoogle Scholar
Chiang, E. I., and Goldreich, P. 2000. Apse alignment of narrow eccentric planetary rings. Astrophys. J., 540, 1084–1090.CrossRefGoogle Scholar
Colwell, J. E., and Esposito, L. W. 1990a. A model of dust production in the Neptune ring system. Geophys. Res. Lett., 17, 1741–1744.CrossRefGoogle Scholar
Colwell, J. E., and Esposito, L. W. 1990b. A numerical model of the Uranian dust rings. Icarus, 86, 530–560.CrossRefGoogle Scholar
Colwell, J. E., and Esposito, L. W. 1992. Origins of the rings of Uranus and Neptune. I –Statistics of satellite disruptions. J. Geophys. Res., 97, 10227.CrossRefGoogle Scholar
Colwell, J. E., and Esposito, L. W. 1993. Origins of the rings of Uranus and Neptune. II –Initial conditions and ring moon populations. J. Geophys. Res., 98, 7387–7401.CrossRefGoogle Scholar
Colwell, J. E., Esposito, L. W., and Bundy, D. 2000. Fragmentation rates of small satellites in the outer solar system. J. Geophys. Res., 105, 17 589–17 600.CrossRefGoogle Scholar
Colwell, J. E., Nicholson, P. D., Tiscareno, M. S., et al. 2009. The structure of Saturn's rings. Pages 375–412 of: Dougherty M, K., Esposito, L. W., and Krimigis, S. M. (eds.), Saturn from Cassini-Huygens. Springer.Google Scholar
Cook, A. F., and Franklin, F. A. 1970. The effect of meteoroidal bombardment on Saturn's rings. Astron. J., 75, 195.CrossRefGoogle Scholar
Correia, A. C. M., and Rodríguez, A. 2013. On the equilibrium figure of close-in planets and satellites. Astrophys. J., 767, 128.CrossRefGoogle Scholar
Crida, A. 2015. Shepherds of Saturn's ring. Nature Geosci., 8, 666–667.CrossRefGoogle Scholar
Crida, A., and Charnoz, S. 2012. Formation of regular satellites from ancient massive rings in the solar system. Science, 338, 1196.CrossRefGoogle ScholarPubMed
Crida, A., and Charnoz, S. 2014. Complex satellite systems: a general model of formation from rings. Pages 182–189 of: IAU Symposium. IAU Symposium, vol. 310.Google Scholar
Ćuk, M., Dones, L., and Nesvorný, D. 2016. Dynamical evidence for a late formation of Saturn's moons. Astrophys. J., 820, 97.CrossRefGoogle Scholar
Cuzzi, J. N., and Durisen, R. H. 1990. Bombardment of planetary rings by meteoroids –General formulation and effects of Oort Cloud projectiles. Icarus, 84, 467–501.CrossRefGoogle Scholar
Cuzzi, J. N., and Estrada, P. R. 1998. Compositional evolution of Saturn's rings due to meteoroid bombardment. Icarus, 132, 1–35.CrossRefGoogle Scholar
Cuzzi, J. N., Burns, J. A., Charnoz, S., et al. 2010. An evolving view of Saturn's dynamic rings. Science, 327, 1470.CrossRefGoogle ScholarPubMed
Daisaka, H., Tanaka, H., and Ida, S. 2001. Viscosity in a dense planetary ring with self-gravitating particles. Icarus, 154, 296–312.CrossRefGoogle Scholar
Davidsson, B. J. R. 1999. Tidal splitting and rotational breakup of solid spheres. Icarus, 142, 525–535.CrossRefGoogle Scholar
de Pater, I., Gibbard, S. G., Chiang, E., et al. 2005. The dynamic neptunian ring arcs: evidence for a gradual disappearance of Liberté and resonant jump of courage. Icarus, 174, 263–272.CrossRefGoogle Scholar
Di Sisto, R. P., and Zanardi, M. 2016. Surface ages of mid-size saturnian satellites. Icarus, 264, 90–101.CrossRefGoogle Scholar
Dones, L. 1991. A recent cometary origin for Saturn's rings? Icarus, 92, 194–203.CrossRefGoogle Scholar
Dones, L., Chapman, C. R., McKinnon, W. B., et al. 2009. Icy satellites of Saturn: Impact cratering and age determination. Pages 613–635 of: Dougherty M, K., Esposito, L. W., and Krimigis, S. M. (eds.), Saturn from Cassini-Huygens. Springer.Google Scholar
Dones, L., Brasser, R., Kaib, N., and Rickman, H. 2015. Origin and evolution of the cometary reservoirs. Space Sci. Rev., 197, 191–269.CrossRefGoogle Scholar
Doyle, L. R., Dones, L., and Cuzzi, J. N. 1989. Radiative transfer modeling of Saturn's outer Bring. Icarus, 80, 104–135.CrossRefGoogle Scholar
Dumas, C., Terrile, R. J., Smith, B. A., Schneider, G., and Becklin, E. E. 1999. Stability of Neptune's ring arcs in question. Nature, 400, 733–735.CrossRefGoogle Scholar
Durisen, R. H. 1984. Transport effects due to particle erosion mechanisms. Pages 416–446 of: Greenberg, R., and Brahic, A. (eds.), IAU Colloq. 75: Planetary Rings.Google Scholar
Durisen, R. H. 1995. An instability in planetary rings due to ballistic transport. Icarus, 115, 66–85.CrossRefGoogle Scholar
Durisen, R. H., Cramer, N. L., Murphy, B. W., et al. 1989. Ballistic transport in planetary ring systems due to particle erosion mechanisms. I –Theory, numerical methods, and illustrative examples. Icarus, 80, 136–166.CrossRefGoogle Scholar
Durisen, R. H., Bode, P. W., Cuzzi, J. N., Cederbloom, S. E., and Murphy, B. W. 1992. Ballistic transport in planetary ring systems due to particle erosion mechanisms. II –Theoretical models for Saturn's A-and B-ring inner edges. Icarus, 100, 364–393.CrossRefGoogle Scholar
Durisen, R. H., Bode, P. W., Dyck S, G., et al. 1996. Ballistic transport in planetary ring systems due to particle erosion mechanisms. III. Torques and mass loading by meteoroid impacts. Icarus, 124, 220–236.CrossRefGoogle Scholar
Elliott, J. P., and Esposito, L. W. 2011. Regolith depth growth on an icy body orbiting Saturn and evolution of bidirectional reflectance due to surface composition changes. Icarus, 212, 268–274.CrossRefGoogle Scholar
Esposito, L. W., Brahic, A., Burns, J. A., and Marouf, E. A. 1991. Particle properties and processes in Uranus' rings. Pages 410–465 of: Uranus. University of Arizona Press.Google Scholar
Estrada, P. R., Durisen, R. H., Cuzzi, J. N., and Morgan, D. A. 2015. Combined structural and compositional evolution of planetary rings due to micrometeoroid impacts and ballistic transport. Icarus, 252, 415–439.CrossRefGoogle Scholar
Fernandez, J. A., and Ip, W. -H. 1984. Some dynamical aspects of the accretion of Uranus and Neptune –The exchange of orbital angular momentum with planetesimals. Icarus, 58, 109–120.CrossRefGoogle Scholar
Fernández-Valenzuela, E., Ortiz, J. L., Duffard, R., Morales, N., and Santos-Sanz, P. 2016. Physical properties of centaur (54598) Bienor from photometry. Mon. Not. R. Astron. Soc., 466, 4147–4158.Google Scholar
Ferrari, C., and Reffet, E. 2013. The dark side of Saturn's Bring: Seasons as clues to its structure. Icarus, 223, 28–39.CrossRefGoogle Scholar
Filacchione, G., Ciarniello, M., Capaccioni, F., et al. 2014. Cassini-VIMS observations of Saturn's main rings: I. Spectral properties and temperature radial profiles variability with phase angle and elevation. Icarus, 241, 45–65.CrossRefGoogle Scholar
Fortney, J. J., Marley, M. S., and Barnes, J. W. 2007. Planetary radii across five orders of magnitude in mass and stellar insolation: Application to transits. Astrophys. J., 659, 1661–1672.CrossRefGoogle Scholar
Fuller, J., Luan, J., and Quataert, E. 2016. Resonance locking as the source of rapid tidal migration in the Jupiter and Saturn moon systems. Mon. Not. R. Astron. Soc., 458, 3867–3879.CrossRefGoogle Scholar
Goldreich, P., and Porco, C. C. 1987. Shepherding of the Uranian Rings. II. Dynamics. Astron. J., 93, 730–737.CrossRefGoogle Scholar
Goldreich, P., and Soter, S. 1966. Q in the solar system. Icarus, 5, 375–389.CrossRefGoogle Scholar
Goldreich, P., and Tremaine, S. 1980. Disk-satellite interactions. ApJ, 241, 425–441.CrossRefGoogle Scholar
Goldreich, P., and Tremaine, S. 1982. The dynamics of planetary rings. Annu. Rev. Astron. Astrophys., 20, 249–283.CrossRefGoogle Scholar
Goldreich, P., and Ward, W. R. 1973. The formation of planetesimals. Astrophys. J., 183, 1051–1062.CrossRefGoogle Scholar
Gomes, R., Levison, H. F., Tsiganis, K., and Morbidelli, A. 2005. Origin of the cataclysmic Late Heavy Bombardment period of the terrestrial planets. Nature, 435, 466–469.CrossRefGoogle ScholarPubMed
Hahn, J. M., and Malhotra, R. 1999. Orbital evolution of planets embedded in a planetesimal disk. Astron. J., 117, 3041–3053.CrossRefGoogle Scholar
Harris, A. 1984. The origin and evolution of planetary rings. Pages 641–659 of: Brahic, A., and Greenberg, R. (eds.), Planetary Rings, University of Arizona Press, Tucson AZ, pp. 641–659.Google Scholar
Hedman, M. M., and Nicholson, P. D. 2016. The B-ring's surface mass density from hidden density waves: Less than meets the eye? Icarus, 279, 109–124.
Hesselbrock, A., and Minton, D. A. 2017. An ongoing satellite-ring cycle of Mars and the origin of Phobos and Deimos. Nat. Geosc., 10, 266–269.CrossRefGoogle Scholar
Horányi, M., and Cravens, T. E. 1996. The structure and dynamics of Jupiter's ring. Nature, 381, 293–295.CrossRefGoogle Scholar
Horányi, M., and Juhász, A. 2010. Plasma conditions and the structure of the Jovian ring. J. Geophys. Res. (Space Physics), 115, A09202.CrossRefGoogle Scholar
Hyodo, R., and Charnoz, S. 2017. Dynamical evolution of the debris disk after a satellite catastrophic disruption around Saturn. Astron. J., 154, Id. 34.CrossRefGoogle Scholar
Hyodo, R., and Ohtsuki, K. 2015. Saturn's F ring and shepherd satellites a natural outcome of satellite system formation. Nature Geosci., 8, 686–689.CrossRefGoogle Scholar
Hyodo, R., Charnoz, S., Genda, H., and Ohtsuki, K. 2016. Formation of centaurs' rings through their partial tidal disruption during planetary encounters. Astrophys. J. Lett., 828, L8.Google Scholar
Hyodo, R., Charnoz, S., Ohtsuki, K., and Genda, H. 2017. Ring formation around giant planets by tidal disruption of a single passing large Kuiper belt object. Icarus, 282, 195–213.CrossRefGoogle Scholar
Ip, W. -H. 1983. Collisional interactions of ring particles –The ballistic transport process. Icarus, 54, 253–262.CrossRefGoogle Scholar
Ip, W. -H. 1984. Ring torque of Saturn from interplanetary meteoroid impact. Icarus, 60, 547–552.CrossRefGoogle Scholar
Ishiguro, M., Yang, H., Usui, F., et al. 2013. High-resolution imaging of the gegenschein and the geometric albedo of interplanetary dust. Astrophys. J., 767, 75.CrossRefGoogle Scholar
Jeffreys, H. 1947. The relation of cohesion to Roche's limit. Mon. Not. R. Astron. Soc., 107, 260–272.CrossRefGoogle Scholar
Kalas, P., Graham, J. R., Chiang, E., et al. 2008. Optical images of an exosolar planet 25 light-years from Earth. Science, 322, 1345–1348.CrossRefGoogle ScholarPubMed
Kenworthy, M. A., and Mamajek, E. E. 2015. Modeling giant extrasolar ring systems in eclipse and the case of J1407b: Sculpting by exomoons? Astrophys. J., 800, 126.CrossRefGoogle Scholar
Kirchoff, M. R., and Schenk, P. 2009. Crater modification and geologic activity in Enceladus' heavily cratered plains: Evidence from the impact crater distribution. Icarus, 202, 656–668.CrossRefGoogle Scholar
Kirchoff, M. R., Bierhaus, E. B., Dones, L., et al. 2018. Cratering histories in the Saturnian system. In: Enceladus and the Icy Moons of Saturn, Schenk, P. M., Clask, R. N., Howett, C. J. A., Verbiscer, A. J. and Waite, H. (eds.), University of Arizona Press.Google Scholar
Kokubo, E., Ida, S., and Makino, J. 2000. Evolution of a circumterrestrial disk and formation of a single moon. Icarus, 148, 419–436.CrossRefGoogle Scholar
Lainey, V., Arlot, J. -E., Karatekin, Ö., and van Hoolst, T. 2009. Strong tidal dissipation in Io and Jupiter from astrometric observations. Nature, 459, 957–959.CrossRefGoogle ScholarPubMed
Lainey, V., Karatekin, Ö., Desmars, J., et al. 2012. Strong tidal dissipation in Saturn and constraints on Enceladus' thermal state from astrometry. Astrophys. J., 752, 14.CrossRefGoogle Scholar
Lainey, V., Jacobson, R. A., Tajeddine, R., et al. 2017. New constraints on Saturn's interior from Cassini astrometric data. Icarus, 281, 286–296.CrossRefGoogle Scholar
Latter, H. N., Ogilvie, G. I., and Chupeau, M. 2014. The ballistic transport instability in Saturn's rings –III. Numerical simulations. Mon. Not. R. Astron. Soc., 441, 2773–2781.Google Scholar
Levison, H. F., Kretke, K. A., and Duncan, M. J. 2015. Growing the gas-giant planets by the gradual accumulation of pebbles. Nature, 524, 322–324.CrossRefGoogle ScholarPubMed
Lin, D. N. C., and Papaloizou, J. 1979. Tidal torques on accretion discs in binary systems with extreme mass ratios. Mon. Not. R. Astron. Soc., 186, 799–812.CrossRefGoogle Scholar
Lin, D. N. C., and Papaloizou, J. 1986. On the tidal interaction between protoplanets and the protoplanetary disk. III –Orbital migration of protoplanets. Astrophys. J., 309, 846–857.CrossRefGoogle Scholar
Lissauer, J. J., Peale, S. J., and Cuzzi, J. N. 1984. Ring torque on Janus and the melting of Enceladus. Icarus, 58(May), 159–168.CrossRefGoogle Scholar
Lissauer, J. J., Dawson, R. I., and Tremaine, S. 2014. Advances in exoplanet science from Kepler. Nature, 513, 336–344.CrossRefGoogle ScholarPubMed
Lynden-Bell, D., and Pringle, J. E. 1974. The evolution of viscous discs and the origin of the nebular variables. Mon. Not. R. Astron. Soc., 168, 603–637.CrossRefGoogle Scholar
Malhotra, R. 1995. The Origin of Pluto's orbit: Implications for the solar system beyond Neptune. Astron. J., 110, 420.CrossRefGoogle Scholar
Marley, M. S., Fortney, J. J., Hubickyj, O., Bodenheimer, P., and Lissauer, J. J. 2007. On the luminosity of young Jupiters. Astrophys. J., 655, 541–549.CrossRefGoogle Scholar
Martin, R. G., and Livio, M. 2015. The solar system as an exoplanetary system. Astrophys. J., 810, 105.CrossRefGoogle Scholar
Meyer-Vernet, N., and Sicardy, B. 1987. On the physics of resonant disk–satellite interaction. Icarus, 69, 157–175.CrossRefGoogle Scholar
Morbidelli, A., Tsiganis, K., Batygin, K., Crida, A., and Gomes, R. 2012. Explaining why the uranian satellites have equatorial prograde orbits despite the large planetary obliquity. Icarus, 219, 737–740.CrossRefGoogle Scholar
Morfill, G. E., Fechtig, H., Gruen, E., and Goertz, C. K. 1983. Some consequences of meteoroid impacts on Saturn's rings. Icarus, 55, 439–447.CrossRefGoogle Scholar
Mosqueira, I., and Estrada, P. R. 2002. Apse alignment of the uranian rings. Icarus, 158, 545–556.CrossRefGoogle Scholar
Mosqueira, I., and Estrada, P. R. 2003a. Formation of the regular satellites of giant planets in an extended gaseous nebula I: subnebula model and accretion of satellites. Icarus, 163, 198–231.Google Scholar
Mosqueira, I., and Estrada, P. R. 2003b. Formation of the regular satellites of giant planets in an extended gaseous nebula II: satellite migration and survival. Icarus, 163, 232–255.Google Scholar
Movshovitz, N., Nimmo, F., Korycansky, D. G., Asphaug, E., and Ower, J. M. 2015. Disruption and reaccretion of midsized moons during an outer solar system Late Heavy Bombardment. GLR, 42, 256–263.CrossRefGoogle Scholar
Movshovitz, N., Nimmo, F., Korycansky, D. G., Asphaug, E., and Owen, J. M. 2016. Impact disruption of gravity-dominated bodies: New simulation data and scaling. Icarus, 275, 85–96.CrossRefGoogle Scholar
Namouni, F., and Porco, C. 2002. The confinement of Neptune's ring arcs by the moon Galatea. Nature, 417, 45–47.CrossRefGoogle ScholarPubMed
Nicholson, P. D., Hedman, M. M., Clark, R. N., et al. 2008. A close look at Saturn's rings with Cassini VIMS. Icarus, 193, 182–212.CrossRefGoogle Scholar
Northrop, T. G., and Connerney, J. E. P. 1987. A micrometeorite erosion model and the age of Saturn's rings. Icarus, 70, 124–137.CrossRefGoogle Scholar
Ogihara, M., and Ida, S. 2012. N-body simulations of satellite formation around giant planets: Origin of orbital configuration of the galilean moons. Astrophys. J., 753, 60.CrossRefGoogle Scholar
Ortiz, J. L., Duffard, R., Pinilla-Alonso, N., et al. 2015. Possible ring material around centaur (2060) Chiron. Astron. Astrophys., 576, A18.CrossRefGoogle Scholar
Pan, M., and Wu, Y. 2016. On the mass and origin of Chariklo's rings. ApJ, 821, 18.CrossRefGoogle Scholar
Pollack, J. B. 1975. The rings of Saturn. Space Sci. Rev., 18, 3–93.CrossRefGoogle Scholar
Pollack, J. B. 1976. Evolution of Jupiter, Saturn and Their Satellite Systems. Tech. rept. NASA.
Pollack, J. B., Grossman, A. S., Moore, R., and Graboske, Jr., H. C. 1977. A calculation of Saturn's gravitational contraction history. Icarus, 30, 111–128.CrossRefGoogle Scholar
Porco, C. C. 1991. An explanation for Neptune's ring arcs. Science, 253, 995–1001.CrossRefGoogle ScholarPubMed
Porco, C. C., and Goldreich, P. 1987. Shepherding of the Uranian rings. I –Kinematics. Astron. J., 93, 724–737.CrossRefGoogle Scholar
Porco, C. C., Helfenstein, P., Thomas, P. C., et al. 2006. Cassini observes the active south pole of Enceladus. Science, 311, 1393–1401.CrossRefGoogle ScholarPubMed
Poulet, F., and Sicardy, B. 2001. Dynamical evolution of the Prometheus–Pandora system. Mon. Not. R. Astron. Soc., 322, 343–355.CrossRefGoogle Scholar
Pringle J, E. 1981. Accretion discs in astrophysics. Annu. Rev. Astron. Astrophys., 19, 137–162.CrossRefGoogle Scholar
Reffet, E., Verdier, M., and Ferrari, C. 2015. Thickness of Saturn's Bring as derived from seasonal temperature variations measured by Cassini CIRS. Icarus, 254, 276–286.CrossRefGoogle Scholar
Rice, W. K. M., and Armitage, P. J. 2009. Time-dependent models of the structure and stability of self-gravitating protoplanetary discs. Mon. Not. R. Astron. Soc., 396, 2228–2236.CrossRefGoogle Scholar
Robbins, S. J., Stewart, G. R., Lewis, M. C., Colwell, J. E., and Sremčević, M. 2010. Estimating the masses of Saturn's A and Brings from high-optical depth N-body simulations and stellar occultations. Icarus, 206, 431–445.Google Scholar
Roche, E. 1849. Mémoire sur la figure d'une masse fluide, soumise à l'attraction d'un point éloigné. Mémoire de la section des sciences, Académie des sciences et des lettres de Montpellier, 1, 243–262.
Rosenblatt, P., and Charnoz, S. 2012. On the formation of the martian moons from a circum-martian accretion disk. Icarus, 221, 806–815.CrossRefGoogle Scholar
Rosenblatt, P., Charnoz, S., Dunseath, K., et al. 2016. Accretion of Phobos and Deimos in an extended debris disc stirred by transient moons. Nature Geosci., 9, 581–583.CrossRefGoogle Scholar
Ruprecht, J. D., Bosh, A. S., Person, M. J., et al. 2015. 29 November 2011 stellar occultation by 2060 Chiron: Symmetric jet-like features. Icarus, 252, 271–276.CrossRefGoogle Scholar
Salmon, J., and Canup, R. M. 2014. Forming inner ice-rich moons at Saturn from a massive early ring. Page 501. 08 of: AAS/Division for Planetary Sciences Meeting Abstracts. AAS/Division for Planetary Sciences Meeting Abstracts, vol. 46.Google Scholar
Salmon, J., and Canup, R. M. 2015. Strong orbital expansion of Saturn's inner ice-rich moons through ring torques and mutual resonances during their accretion from a massive ring. Page 104. 08 of: AAS/Division for Planetary Sciences Meeting Abstracts. AAS/Division for Planetary Sciences Meeting Abstracts, vol. 47.Google Scholar
Salmon, J., and Canup, R. M. 2017. Accretion of Saturn's inner midsized moons from a massive primordial ice ring. ApJ, 386, id. 109.Google Scholar
Salmon, J., Charnoz, S., Crida, A., and Brahic, A. 2010. Long-term and large-scale viscous evolution of dense planetary rings. Icarus, 209, 771–785.CrossRefGoogle Scholar
Sasaki, T., Stewart, G. R., and Ida, S. 2010. Origin of the different architectures of the jovian and saturnian satellite systems. Astrophys. J., 714, 1052–1064.CrossRefGoogle Scholar
Showalter, M. R., Cheng, A. F., Weaver, H. A., et al. 2007. Clump detections and limits on moons in Jupiter's ring system. Science, 318, 232.CrossRefGoogle ScholarPubMed
Sicardy, B., Roddier, F., Roddier, C., et al. 1999. Images of Neptune's ring arcs obtained by a ground-based telescope. Nature, 400, 731–733.CrossRefGoogle Scholar
Slattery, W. L. 1992. Giant impacts on a primitive Uranus. Icarus, 99, 167–174.CrossRefGoogle Scholar
Sridhar, S., and Tremaine, S. 1992. Tidal disruption of viscous bodies. Icarus, 95, 86–99.CrossRefGoogle Scholar
Tajeddine, R., Nicholson, P. D., Lorgaretti, P. -Y., Ei Moutamid, M., and Burns, J. A. 2017. What confines the rings of Saturn? ApJSS, 232, Id. 28.CrossRefGoogle Scholar
Throop, H. B., Porco, C. C., West, R. A., et al. 2004. The jovian rings: new results derived from Cassini, Galileo, Voyager, and Earthbased observations. Icarus, 172, 59–77.CrossRefGoogle Scholar
Tiscareno, M. S., Burns, J. A., Nicholson, P. D., Hedman, M. M., and Porco, C. C. 2007. Cassini imaging of Saturn's rings. II. A wavelet technique for analysis of density waves and other radial structure in the rings. Icarus, 189, 14–34.Google Scholar
Tiscareno, M. S., Mitchell, C. J., Murray, C. D., et al. 2013a. Observations of ejecta clouds produced by impacts onto Saturn's rings. Science, 340, 460–464.CrossRefGoogle Scholar
Tiscareno, M. S., Hedman, M. M., Burns, J. A., Weiss J, W., and Porco, C. C. 2013b. Probing the inner boundaries of Saturn's A ring with the Iapetus −1:0 nodal bending wave. Icarus, 224, 201–208.CrossRefGoogle Scholar
Toomre, A. 1964. On the gravitational stability of a disk of stars. Astrophys. J., 139, 1217–1238.CrossRefGoogle Scholar
Tremaine, S., Touma, J., and Namouni, F. 2009. Satellite dynamics on the Laplace surface. Astron. J., 137, 3706–3717.CrossRefGoogle Scholar
Ward W, R. 1984. The solar nebula and the planetesimal disk. Pages 660–684 of: Greenberg, R., and Brahic, A. (eds.), IAU Colloq. 75: Planetary Rings.
Ward, W. R. 1986. Density waves in the solar nebula –Differential Lindblad torque. Icarus, 67, 164–180.CrossRefGoogle Scholar
Ward, W. R., and Canup, R. M. 2010. Circumplanetary disk formation. Astron. J., 140, 1168–1193.CrossRefGoogle Scholar
Weidenschilling, S. J., and Cuzzi, J. N. 1993. Formation of planetesimals in the solar nebula. Pages 1031–1060 of: Levy E, H., and Lunine, J. I. (eds.), Protostars and Planets III.Google Scholar
Weidenschilling, S. J., Chapman, C. R., Davis, D. R., and Greenberg, R. 1984. Ring particles –Collisional interactions and physical nature. Pages 367–415 of: Greenberg, R., and Brahic, A. (eds.), IAU Colloq. 75: Planetary Rings.
Yoder, C. F. 1995. Astrometric and geodetic properties of Earth and the solar system. Page 1 of: Ahrens T, J. (ed.), Global Earth Physics: A Handbook of Physical Constants. American Geophysical Union.
Zahnle, K., Schenk, P., Levison, H., and Dones, L. 2003. Cratering rates in the outer Solar System. Icarus, 163, 263–289.CrossRefGoogle Scholar
Zebker, H. A., and Tyler, G. L. 1984. Thickness of Saturn's rings inferred from Voyager 1 observations of microwave scatter. Science, 223, 396–398.CrossRefGoogle ScholarPubMed
Zhang, Z., Hayes, A. G., Janssen, M. A., et al. 2017. Cassini microwave observations provide clues to the origin of Saturn's C ring. Icarus, 281, 297–321.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×