Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-23T03:58:43.080Z Has data issue: false hasContentIssue false

8 - Moonlets in Dense Planetary Rings

from III - Ring Systems by Type and Topic

Published online by Cambridge University Press:  26 February 2018

F. Spahn
Affiliation:
University of Potsdam Potsdam, GERMANY
H. Hoffmann
Affiliation:
University of Potsdam Potsdam, GERMANY
H. Rein
Affiliation:
University of Toronto Toronto, Ontario, CANADA
M. Seiss
Affiliation:
University of Potsdam Potsdam, GERMANY
M. Sremčević
Affiliation:
University of Colorado Boulder, Colorado, USA
M.S. Tiscareno
Affiliation:
SETI Institute Mountain View, California, USA
Matthew S. Tiscareno
Affiliation:
SETI Institute, California
Carl D. Murray
Affiliation:
Queen Mary University of London
Get access

Summary

INTRODUCTION

When, in 1610, Galileo Galilei directed his telescope at Saturn, he discovered some puzzling addenda on either side of that planet, changing their appearance over the course of a few years – and even more disturbing, at certain instants they seemed to disappear and then return. These appendages remained a scientific riddle for about half a century until Christian Huygens came up with a seemingly correct model – he proposed that a solid ring is girdling Saturn. In 1675, G. D. Cassini's detection of a division in Saturn's rings – the Cassini Division separating the outer A and inner B rings – questioned Huygens’ hypothesis of a solid ring.

Almost 200 years later, in his famous work, Maxwell (1859) proved that a solid ring cannot be a stable configuration, suggesting instead that a myriad of individual tiny satellites form the rings of Saturn. This theoretical prediction was later confirmed experimentally by J. E. Keeler, who measured Doppler frequency shifts on either side of Saturn's rings (Keeler, 1889, 1895), showing that individual ring particles encircle Saturn at Kepler speeds.

Since those studies in the nineteenth century, the mesoscopic particulate nature of Saturn's rings has been widely accepted. Since the prediction of a flat monolayer ring by Jeffreys (1947), mainly suggested by the frequent inelastic collisions among the ring particles, only a little has been said about the properties of ring particles themselves – their size distribution, composition, etc., and their evolution as a granular ensemble.

Hénon (1981), motivated by the Pioneer and Voyager space missions to the outer solar system in the late 1970s and early 1980s, assumed a broad size distribution of the ring particles in order to explain spacecraft observations of the dense rings of Saturn. Properties like the apparent thickness of the rings or the distribution of the widths of dilute or empty gaps have been addressed by an extended power-law to characterize the size distribution of the ring particles. The idea behind this approach is that, depending on its size, a ring particle (especially sub-kilometer or kilometer-sized boulders, hereafter called moonlets) should gravitationally carve density features in the surrounding ring matter.

Type
Chapter
Information
Planetary Ring Systems
Properties, Structure, and Evolution
, pp. 157 - 197
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abramowitz, M., and Stegun, I. A. 1970. Handbook of Mathematical Functions. Dover Publications, NY. Albers, N. 2006. On the relevance of particle adhesion: Applications to Saturn's rings. Ph. D. thesis, Universitat Potsdam.Google Scholar
Albers, N., and Spahn, F. 2006. The influence of particle adhesion on the stability of agglomerates in Saturn's rings. Icarus, 181, 292-301.CrossRefGoogle Scholar
Araki, S. 1988. The dynamics of particle disks. II —Effects of spin degrees of freedom. Icarus, 76, 182-198.CrossRefGoogle Scholar
Araki, S., and Tremaine, S. 1986. The dynamics of dense particle disks. Icarus, 65, 83-109.CrossRefGoogle Scholar
Baillie, K., Colwell, J. E., Esposito, L. W., and Lewis, M. C. 2013. Meter-sized moonlet population in Saturn's C ring and Cassini Division. AJ, 145, 171.CrossRefGoogle Scholar
Barnes, J., and Hut, P. 1986. A hierarchical O(N log N) force-calculation algorithm. Nature, 324, 446—449.Google Scholar
Beurle, K., Murray, C. D., Williams, G. A., et al. 2010. Direct evidence for gravitational instability and moonlet formation in Saturn's rings. AJ, 718, L176-L180.Google Scholar
Bodrova, A., Schmidt, J., Spahn, E., and Brilliantov, N. 2012. Adhesion and collisional release of particles in dense planetary rings. Icarus, 218, 60-68.CrossRefGoogle Scholar
Bodrova, A., Levchenko, D., and Brilliantov, N. 2014. Universality of temperature distribution in granular gas mixtures with a steep particle size distribution. EPL, 106, 14001.CrossRefGoogle Scholar
Borderies, N. 1989. Ring dynamics. Celestial Mechanics and Dynamical Astronomy, 46, 207-230.CrossRefGoogle Scholar
Borderies, N., Goldreich, P., and Tremaine, S. 1982. Sharp edges of planetary rings. Nature, 299, 209-211.CrossRefGoogle Scholar
Borderies, N., Goldreich, P., and Tremaine, S. 1983. Perturbed particle disks. Icarus, 55, 124-132.CrossRefGoogle Scholar
Borderies, N., Goldreich, P., and Tremaine, S. 1985. A granular flow model for dense planetary rings. Icarus, 63, 406-420.CrossRefGoogle Scholar
Borderies, N., Goldreich, P., and Tremaine, S. 1989. The formation of sharp edges in planetary rings by nearby satellites. Icarus, 80, 344-360.CrossRefGoogle Scholar
Bridges, F. G., Hatzes, A., and Lin, D. N. C. 1984. Structure, stability and evolution of Saturn's rings. Nature, 309, 333-335.CrossRefGoogle Scholar
Brilliantov, N. V., and Poschel, T. 2000a. Deviation from Maxwell distribution in granular gases with constant restitution coefficient. Phys. Rev. E, 61, 2809.CrossRefGoogle Scholar
Brilliantov, N. V., and Poschel, T. 2000b. Velocity distribution in granular gases of viscoelastic particles. Phys. Rev. E, 61, 5573.CrossRefGoogle Scholar
Brilliantov, N. V., Spahn, E., Hertzsch, J. -M., and Poschel, T. 1996. Model for collisions in granular gases. Phys. Rev. E, 53, 5382—5392.CrossRefGoogle ScholarPubMed
Brilliantov, N. V., Albers, N., Spahn, E., and Poschel, T. 2007. Collision dynamics of granular particles with adhesion. Phys. Rev. E, 76, 051302.CrossRefGoogle ScholarPubMed
Brilliantov, N. V., Krapivsky, P. L., Bodrova, A., et al. 2015. Size distribution of particles in Saturn s rings from aggregation and fragmentation. PNAS, 112, 9536-9541.CrossRefGoogle Scholar
Burns, J. A., and Cuzzi, J. N. C. 2006. Our local astrophysical laboratory. Science, 312, 1753-1755.CrossRefGoogle ScholarPubMed
Canup, R. M. 2010. Origin of Saturn's rings and inner moons by mass removal from a lost Titan-sized satellite. Nature, 468, 943-946.CrossRefGoogle ScholarPubMed
Charnoz, S., Brahic, A., Thomas, P. C., and Porco, C. C. 2007. The equatorial ridges of Pan and Atlas: Terminal accretionary ornaments? Science, 318, 1622-1624.CrossRefGoogle ScholarPubMed
Charnoz, S., Morbidelli, A., Dones, L., and Salmon, J. 2009. Did Saturn's rings form during the Late Heavy Bombardment? Icarus, 199, 413-28.CrossRefGoogle Scholar
Charnoz, S., Salmon, J., and Crida, A. 2010. The recent formation of Saturn's moonlets from viscous spreading of the main rings. Nature, 465, 752-754.CrossRefGoogle ScholarPubMed
Colwell, J. E., Nicholson, P. D., Tiscareno, M. S., et al. 2009. The structure of Saturn's rings. Page 375 of: Dougherty, M. K., Esposito, L. W., and Krimigis, S. M. (eds.), Saturn from Cassini-Huygens. Springer.Google Scholar
Crida, A., Papaloizou, J. C. B., Rein, H., Charnoz, S., and Salmon, J. 2010. Migration of a moonlet in a ring of solid particles: Theory and application to Saturn's propellers. AJ, 140, 944-953.CrossRefGoogle Scholar
Cuzzi, J. N., and Scargle, J. D. 1985. Wavy edges suggest moonlet in Encke's gap. ApJ, 292, 276-290.CrossRefGoogle Scholar
Daisaka, H., Tanaka, H., and Ida, S. 2001. Viscosity in a dense planetary ring with self-gravitating particles. Icarus, 154, 296—312.CrossRefGoogle Scholar
Dermott, S. E., and Murray, C. D. 1981. The dynamics of tadpole and horseshoe orbits. I -Theory. II -The coorbital satellites of Saturn. Icarus, 48, 1-22.CrossRefGoogle Scholar
Dermott, S. E., Murray, C. D., and Sinclair, A. T. 1980. The narrow rings of Jupiter, Saturn and Uranus. Nature, 284, 309—313.CrossRefGoogle Scholar
Dones, L. 1991. A recent cometary origin for Saturn's rings? Icarus, 92, 194-203.CrossRefGoogle Scholar
Dones, L., Cuzzi, J. N., and Showalter, M. R. 1993. Voyager Photometry of Saturn's A ring. Icarus, 105, 184—215.CrossRefGoogle Scholar
Esposito, L. W., Albers, N., Meinke, B. K., et al. 2012. A predator-prey model for moon-triggered clumping in Saturn's rings. Icarus, 217, 103-114.CrossRefGoogle Scholar
Flynn, B. C., and Cuzzi, J. N. 1989. Regular structure in the inner Cassini Division of Saturn's rings. Icarus, 82, 180—199.CrossRefGoogle Scholar
Goldreich, P., and Tremaine, S. 1978a. The excitation and evolution of density waves. ApJ, 222, 850-858.CrossRefGoogle Scholar
Goldreich, P., and Tremaine, S. D. 1978b. The formation of the Cassini division in Saturn's rings. Icarus, 34, 240—253.CrossRefGoogle Scholar
Goldreich, P., and Tremaine, S. D. 1978c. The velocity dispersion in Saturn's rings. Icarus, 34, 227-239.CrossRefGoogle Scholar
Goldreich, P., and Tremaine, S. 1979. Towards a theory for the Uranian rings. Nature, 277, 97-99.CrossRefGoogle Scholar
Goldreich, P., and Tremaine, S. 1982. The dynamics of planetary rings. ARA&A, 20, 249-283.Google Scholar
Guimaraes, A. H. E., Albers, N., Spahn, E., et al. 2012. Aggregates in the strength and gravity regine: Particle sizes in Saturn's rings. Icarus, 220, 660-678.CrossRefGoogle Scholar
Hameen-Anttila, K. A., and Lukkari, J. 1980. Numerical simulations of collisions in Keplerian systems. Ap&SS, 71, 475—497.Google Scholar
Hameen-Anttila, K. A., and Salo, H. 1993. Generalized theory of impacts in particulate systems. Earth Moon and Planets, 62, 47-84.CrossRefGoogle Scholar
Hedman, M. M., and Nicholson, P. D. 2014. More Kronoseismology with Saturn's rings. MNRAS, 444(Oct), 1369-1388.
Hedman, M. M., and Nicholson, P. D. 2016. The B-ring's surface mass density from hidden density waves: Less than meets the eye? Icarus, 279, 109-124.
Hedman, M. M., Nicholson, P. D., Salo, H., et al. 2007. Self-gravity wake structures in Saturn's A ring revealed by Cassini VIMS. AJ, 133, 2624-2629.CrossRefGoogle Scholar
Hedman, M. M., Nicholson, P. D., Baines, K. H., et al. 2010. The Architecture of the Cassini Division. AJ, 139, 228-251.CrossRefGoogle Scholar
Hedman, M. M., Nicholson, P. D., Cuzzi, J. N., et al. 2013. Connections between spectra and structure in Saturn's main rings based on Cassini VIMS data. Icarus, 223, 105-130.CrossRefGoogle Scholar
Henon, M. 1981. A simple model of Saturn's rings. Nature, 293, 33-35.CrossRefGoogle Scholar
Henon, M., and Petit, J. -M. 1986. Series expansion for encounter-type solutions of Hill's problem. Celestial Mechanics, 38, 67—100.CrossRefGoogle Scholar
Hertzsch, J. -M., Scholl, H., Spahn, E., and Katzorke, I. 1997. Simulation of collisions in planetary rings. A&A, 320, 319-324.Google Scholar
Hoffmann, H., SeiB, M., and Spahn, E. 2013. Vertical Relaxation of a Moonlet Propeller in Saturn's A Ring. ApJ, 765, L4.CrossRefGoogle Scholar
Hoffmann, H., SeiB, M., Salo, H., and Spahn, E. 2015. Vertical structures induced by embedded moonlets in Saturn's rings. Icarus, 252, 400-414.CrossRefGoogle Scholar
Horn, L. J., Showalter, M. R., and Russell, C. T. 1996. Detection and behavior of Pan wakes in Saturn's A ring. Icarus, 124, 663-676.CrossRefGoogle Scholar
Jacobson, R. A. 2014. The small Saturnian satellites —chaos and conundrum. Page 304. 05 of: AAS/Division of Dynamical Astronomy Meeting. AAS/Division of Dynamical Astronomy Meeting, vol. 45.Google Scholar
Jacobson, R. A., Spitale, J., Porco, C. C., et al. 2008. Revised orbits of Saturn's small inner satellites. AJ, 135, 261—263.CrossRefGoogle Scholar
Jeffreys, H. 1947. The effects of collisions on Saturn's rings. MNRAS, 107, 263.CrossRefGoogle Scholar
Julian, W. H., and Toomre, A. 1966. Non-axisymmetric responses of differentially rotating disks of stars. ApJ, 146, 810.CrossRefGoogle Scholar
Keeler, J. E. 1889. The outer ring of Saturn. AJ, 8, 175-175.CrossRefGoogle Scholar
Keeler, J. E. 1895. A spectroscopic proof of the meteoric constitution of Saturn's rings. ApJ, 1, 416.CrossRefGoogle Scholar
Lawney, B. P., Jenkins, J. T., and Burns, J. A. 2012. Collisional features in a model of a planetary ring. Icarus, 220, 383—391.CrossRefGoogle Scholar
Lee, V., Waitukaitis, S. R., Miskin, M. Z., and Jaeger, H. M. 2015. Direct observation of particle interactions and clustering in charged granular streams. Nature Physics, 11, 733-737.CrossRefGoogle Scholar
Lewis, M. C., and Stewart, G. R. 2000. Collisional dynamics of perturbed planetary rings. I. AJ, 120, 3295-3310.CrossRefGoogle Scholar
Lewis, M. C., and Stewart, G. R. 2005. Expectations for Cassini observations of ring material with nearby moons. Icarus, 178, 124-143.CrossRefGoogle Scholar
Lewis, M. C., and Stewart, G. R. 2009. Features around embedded moonlets in Saturn's rings: The role of self-gravity and particle size distributions. Icarus, 199, 387-412.CrossRefGoogle Scholar
Lissauer, J. J., Shu, F. H., and Cuzzi, J. N. 1981. Moonlets in Saturn's rings. Nature, 292, 707-711.CrossRefGoogle Scholar
Marouf, E. A., and Tyler, G. L. 1986. Detection of two satellites in the Cassini division of Saturn's rings. Nature, 323, 31—35.CrossRefGoogle Scholar
Maxwell, J. C. 1859. On the Stability of the Motion of Saturn's Rings. Cambridge and London: MacMillan and Co.Google Scholar
Michikoshi, S., and Kokubo, E. 2011. Formation of a propeller structure by a moonlet in a dense planetary ring. ApJ, 732, L23.CrossRefGoogle Scholar
Moons, M., Delhaise, E., and Depaepe, E. 1988. Elliptical Hill's problem (large and small impact parameters). Celestial Mechanics, 43, 349-359.Google Scholar
Murray, C. D., Beurle, K., Cooper, N. J., et al. 2008. The determination of the structure of Saturn's F ring by nearby moonlets. Nature, 453, 739-744.CrossRefGoogle ScholarPubMed
Murray, C. D., Cooper, N. J., Williams, G. A., Attree, N. O., and Boyer, J. S. 2014. The discovery and dynamical evolution of an object at the outer edge of Saturn's A ring. Icarus, 236, 165—168.CrossRefGoogle Scholar
Pan, M., and Chiang, E. 2010. The propeller and the frog. ApJ, 722, L178-L182.CrossRefGoogle Scholar
Pan, M., and Chiang, E. 2012. Care and feeding of frogs. AJ, 143, 9.CrossRefGoogle Scholar
Pan, M., Rein, H., Chiang, E., and Evans, S. N. 2012. Stochastic flights of propellers. MNRAS, 427, 2788-2796.CrossRefGoogle Scholar
Petit, J. -M., and Henon, M. 1987a. A numerical simulation of planetary rings. I -Binary encounters. A&A, 173, 389-404.Google Scholar
Petit, J. -M., and Henon, M. 1987b. A numerical simulation of planetary rings. II -Monte Carlo model. A&A, 188, 198-205.Google Scholar
Petit, J. -M., and Henon, M. 1988. A numerical simulation of plan-etary rings. Ill —Mass segregation, ring confinement, and gap formation. A&A, 199, 343-356.Google Scholar
Porco, C. C., Baker, E., Barbara, J., et al. 2005. Cassini imaging science: Initial results on Saturn's rings and small satellites. Science, 307, 1226-1236.Google ScholarPubMed
Porco, C. C., Thomas, P. C., Weiss, J. W., and Richardson, D. C. 2007. Saturn's small inner satellites: Clues to their origins. Science, 318, 1602.CrossRefGoogle ScholarPubMed
Rein, H., and Liu, S. -F. 2012. REBOUND: an open-source multi-purpose N-body code for collisional dynamics. A&A, 537, A128.Google Scholar
Rein, H., and Papaloizou, J. C. B. 2010. Stochastic orbital migration of small bodies in Saturn's rings. A&A, 524, A22.Google Scholar
Rein, H., and Tamayo, D. 2015. WHFAST: a fast and unbiased implementation of a symplectic Wisdom-Holman integrator for long-term gravitational simulations. MNRAS, 452, 376—388.CrossRefGoogle Scholar
Rein, H., and Tremaine, S. 2011. Symplectic integrators in the shearing sheet. MNRAS, 415, 3168-3176.CrossRefGoogle Scholar
Resibois, P., and De Leener, M. 1977. Classical Kinetic Theory of Fluids. Wiley & Sons, New York.Google Scholar
Richardson, D. C. 1994. Tree code simulations of planetary rings. MNRAS, 269, 493-511.CrossRefGoogle Scholar
Salo, H. 1991. Numerical simulations of dense collisional systems. Icarus, 90, 254-270.CrossRefGoogle Scholar
Salo, H. 1992a. Gravitational wakes in Saturn's rings. Nature, 359, 619-621.CrossRefGoogle Scholar
Salo, H. 1992b. Numerical simulations of dense collisional systems. II —Extended distribution of particle sizes. Icarus, 96, 85—106.CrossRefGoogle Scholar
Salo, H. 1995. Simulations of dense planetary rings. III. Self-gravitating identical particles. Icarus, 111, 287-312.Google Scholar
Salo, H., and Schmidt, J. 2010. N-body simulations of viscous instability of planetary rings. Icarus, 206, 390-09.CrossRefGoogle Scholar
Salo, H., Schmidt, J., and Spahn, F. 2001. Viscous overstability in Saturn's Bring. I. Direct simulations and measurement of transport coefficients. Icarus, 153, 295-315.CrossRefGoogle Scholar
Schmidt, J., and Salo, H. 2003. Weakly nonlinear model for oscillatory instability in Saturn's dense rings. Phys. Rev. Lett, 90, 061102.CrossRefGoogle ScholarPubMed
Schmidt, J., Salo, H., Petzschmann, O., and Spahn, F. 1999. Vertical distribution of temperature and density in a planetary ring. A&A, 345, 646-652.Google Scholar
Schmidt, J., Salo, H., Spahn, E., and Petzschmann, O. 2001. Viscous overstability in Saturn's B-ring. II. Hydrodynamic theory and comparison to simulations. Icarus, 153, 316-331.CrossRefGoogle Scholar
Schmidt, J., Ohtsuki, K., Rappaport, N., Salo, H., and Spahn, F. 2009. Dynamics of Saturn's dense rings. Pages 413—458 of: Dougherty, M. K., Esposito, L. W., and Krimigis, S. M. (eds.), Saturn from Cassini-Huygens. Springer.Google Scholar
Seiler, M., Sremčević, M., SeiB, M., Hoffmann, H., and Spahn, F. 2017. A librational model for the propellor Bleriot in the Saturnian ring system. Astrophys. J. Lett., 840, L16.Google Scholar
SeiB, M., and Spahn, F. 2011. Hydrodynamics of Saturn's dense rings. Mathematical Modelling of Natural Phenomena, 6(04), 191-218.
SeiB, M., Spahn, E., Sremčević, M., and Salo, H. 2005. Structures induced by small moonlets in Saturn's rings: Implications for the Cassini Mission. Geophy. Research Letters, 32, 11205.Google Scholar
SeiB, M., Spahn, E., and Schmidt, J. 2010. Moonlet induced wakes in planetary rings: Analytical model including eccentric orbits of moon and ring particles. Icarus, 210, 298-317.Google Scholar
Showalter, M. R. 1991. Visual detection of 1981S13, Saturn's eighteenth satellite, and its role in the Encke gap. Nature, 351, 709-713.CrossRefGoogle Scholar
Showalter, M. R., Cuzzi, J. N., Marouf, E. A., and Esposito, L. W. 1986. Satellite ‘wakes’ and the orbit of the Encke Gap moonlet. Icarus, 66, 297-323.CrossRefGoogle Scholar
Shu, F. H., Cuzzi, J. N., and Lissauer, J. J. 1983. Bending waves in Saturn's rings. Icarus, 53, 185—206.CrossRefGoogle Scholar
Shu, F. H., Yuan, C., and Lissauer, J. J. 1985a. Nonlinear spiral density waves -an inviscid theory. ApJ, 291, 356-376.CrossRefGoogle Scholar
Shu, F. H., Dones, L., Lissauer, J. J., Yuan, C., and Cuzzi, J. N. 1985b. Nonlinear spiral density waves —Viscous damping. ApJ, 299, 542-573.CrossRefGoogle Scholar
Simon, V., and Jenkins, J. T. 1994. On the vertical structure of dilute planetary rings. Icarus, 110, 109-116.CrossRefGoogle Scholar
Spahn, F. 1987. Scattering properties of a moonlet (satellite) embedded in a particle ring -Application to the rings of Saturn. Icarus, 71, 69-77.CrossRefGoogle Scholar
Spahn, R., and SeiB, M. 2015. Granular matter: Charges dropped. Nature Physics, 11, 709-710.CrossRefGoogle Scholar
Spahn, P., and Sponholz, H. 1989. Existence of moonlets in Saturn's rings inferred from the optical depth profile. Nature, 339, 607.CrossRefGoogle Scholar
Spahn, R., and Sremčević, M. 2000. Density patterns induced by small moonlets in Saturn's rings? A&A, 358, 368—372.Google Scholar
Spahn, R., and Wiebicke, H. -J. 1989. Long-term gravitational influence of moonlets in planetary rings. Icarus, 77, 124-134.CrossRefGoogle Scholar
Spahn, R., Petit, J. -M., and Bendjoya, P. 1993. The gravitational influence of satellite Pan on the radial distribution of ring-particles in the region of the Encke-division in Saturn's A ring. Celestial Mechanics and Dynamical Astronomy, 57, 391-402.CrossRefGoogle Scholar
Spahn, R., Scholl, H., and Hertzsch, J. 1994. Structures in planetary rings caused by embedded moonlets. Icarus, 111, 514—535.CrossRefGoogle Scholar
Spahn, R., Schmidt, J., Petzschmann, O., and Salo, H. 2000. Note: Stability analysis of a Keplerian disk of granular grains: Influence of thermal diffusion. Icarus, 145, 657-660.CrossRefGoogle Scholar
Spahn, R., Albers, N., Sremčević, M., and Thornton, C. 2004. Kinetic description of coagulation and fragmentation in dilute granular particle ensembles. EPL (Europhysics Letters), 67, 545—551.CrossRefGoogle Scholar
Spahn, R., Vieira Neto, E., Guimaraes, A. H. R., Gorban, A. N., and Brilliantov, N. V. 2014. A statistical model of aggregate fragmentation. New Journal of Physics, 16, 013031.CrossRefGoogle Scholar
Spitale, J. N., and Hahn, J. M. 2016. The shape of Saturn's Huygens ringlet viewed by Cassini ISS. Icarus, 279(Nov.), 141-154.CrossRefGoogle Scholar
Spitale, J. N., and Porco, C. C. 2010. Detection of free unstable modes and massive bodies in Saturn's outer Bring. AJ, 140, 1747-1757.CrossRefGoogle Scholar
Spitale, J. N., and Tiscareno, M. 2012. Cassini images a propeller in Saturn's B-ring. AAS Division on Dynamical Astronomy Meeting Abstracts, 44, 414. 04.Google Scholar
Spitale, J. N., Jacobson, R. A., Porco, C. C., and Owen, Jr., W. M. 2006. The orbits of Saturn's small satellites derived from combined historic and Cassini imaging observations. AJ, 132, 692—710.CrossRefGoogle Scholar
Sremčević, M., Spahn, R., and Duschl, W. J. 2002. Density structures in perturbed thin cold discs. MNRAS, 337, 1139-1152.CrossRefGoogle Scholar
Sremčević, M., Schmidt, J., et al. 2007. A belt of moonlets in Saturn's A ring. Nature, 449, 1019-1021.CrossRefGoogle ScholarPubMed
Sremčević, M., Esposito, L. W., Colwell, J. E., and Albers, N. 2011a. Bring gray ghosts in Cassini UVIS occultations. Page 1616 of: EPSC-DPS Joint Meeting 2011.
Sremčević, M., Stewart, G., Albers, N., and Esposito, L. W. 2011b. Discovery of Bring propellers in Cassini UVIS and ISS. AGU Fall Meeting Abstracts, B1677.
Sremčević, M., Stewart, G. R., Albers, N., and Esposito, L. W. 2014. Propellers in Saturn's rings. European Planetary Science Congress 2014, EPSC Abstracts, Vol. 9, id. EPSC2014-633.
Stewart, G. R. 1991. Nonlinear satellite wakes in planetary rings. I -Phase-space kinematics. Icarus, 94, 436-450.CrossRefGoogle Scholar
Stewart, G. R., Lin, D. N. C., and Bodenheimer, P. 1984. Collision-induced transport processes in planetary rings. Pages 447—512 of: Greenberg, R., and Brahic, A. (eds.), Planetary Rings. Tucson Arizona: University of Arizona Press.Google Scholar
Tamayo, D., Triaud, A. H. M. J., Menou, K., and Rein, H. 2015. Dynamical stability of imaged planetary systems in formation: Application to HL Tau. ApJ, 805, 100.CrossRefGoogle Scholar
Tiscareno, M. S. 2013. A modified ‘Type I migration’ model for propeller moons in Saturn's rings. Planet. Space Sci., 11, 136-142.Google Scholar
Tiscareno, M. S. 2017. Propeller peregrinations: Ongoing observations of disk-embedded migration in Saturn's rings. Icarus, Submitted.
Tiscareno, M. S., Burns, J. A., Hedman, M. M., et al. 2006. 100-metre-diameter moonlets in Saturn's A ring from observations of ‘propeller’ structures. Nature, 440, 648-650.CrossRefGoogle ScholarPubMed
Tiscareno, M. S., Burns, J. A., Nicholson, P. D., Hedman, M. M., and Porco, C. C. 2007. Cassini imaging of Saturn's rings. II. A wavelet technique for analysis of density waves and other radial structure in the rings. Icarus, 189, 14-34.Google Scholar
Tiscareno, M. S., Burns, J. A., Hedman, M. M., and Porco, C. C. 2008. The population of propellers in Saturn's A ring. AJ, 135, 1083—1091.CrossRefGoogle Scholar
Tiscareno, M. S., Perrine, R. P., Richardson, D. C., et al. 2010a. An analytic parameterization of self-gravity wakes in Saturn's rings, with application to occultations and propellers. AJ, 139, 492-503.CrossRefGoogle Scholar
Tiscareno, M. S., Burns, J. A., Sremčević, M., et al. 2010b. Physical characteristics and non-Keplerian orbital motion of “propeller” moons embedded in Saturn's rings. ApJ, 718, L92-L96.CrossRefGoogle Scholar
Tiscareno, M. S., Hedman, M. M., Burns, J. A., and Castillo-Rogez, J. C. 2013a. Compositions and origins of outer planet systems: Insights from the Roche critical density. ApJ, 765, L28.CrossRefGoogle Scholar
Tiscareno, M. S., Hedman, M. M., Burns, J. A., Weiss, J. W., and Porco, C. C. 2013b. Probing the inner boundaries of Saturn's A ring with the Iapetus -1:0 nodal bending wave. Icarus, 224, 201-208.CrossRefGoogle Scholar
Ward, W. R. 1997. Protoplanet migration by nebula tides. Icarus, 126, 261-281.CrossRefGoogle Scholar
Weidenschilling, S. J., Chapman, C. R., Davis, D. R., and Greenberg, R. 1984. Ring particles -Collisional interactions and physical nature. Pages 367-415 of: Greenberg, R., and Brahic, A. (eds.), Planetary Rings. Tucson, Arizona: University of Arizona Press.Google Scholar
Weiss, J. W., Porco, C. C., and Tiscareno, M. S. 2009. Ring edge waves and the masses of nearby satellites. AJ, 138, 272—286.CrossRefGoogle Scholar
Wisdom, J., and Holman, M. 1991. Symplectic maps for the n-body problem. AJ, 102, 1528-1538.CrossRefGoogle Scholar
Wisdom, J., and Tremaine, S. 1988. Local simulations of planetary rings. AJ, 95, 925-940.CrossRefGoogle Scholar
Zebker, H. A., Marouf, E. A., and Tyler, G. L. 1985. Saturn's rings —Particle size distributions for thin layer model. Icarus, 64, 531—548.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×