Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2025-01-03T13:20:54.488Z Has data issue: false hasContentIssue false

8 - Refrigeration

Published online by Cambridge University Press:  03 February 2020

Get access

Summary

Polarized targets need continuous cooling of large heat load during DNP at temperatures around or below 1 K. This can be achieved by continuous-flow refrigerators based on the evaporation of liquid 4He or 3He, or on the dilution of 3He by 4He. The refrigerator components have unusual requirements due to the large helium mass flow rates and to the demand of long uninterrupted runs of operation. We describe first the heat transfer mechanisms from the solid target material to the coolant fluid, and then evaluate the various cooling cycles in detail. The heat loads, ranging from some W/cm3 to some tens of μW/cm3, and the choice of the cooling method, are evaluated, before discussing the design of other cryogenic parts of the apparatus, including the precooling heat exchangers, thermometry and other instrumentation, and the pump and gas purification systems.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Khalatnikov, I. M., Theoretical model of Kapitza resistance, Zh. Eksp. Teor. Fiz. 22 (1952) 687.Google Scholar
Pollack, G. L., Kapitza resistance, Rev. Mod. Phys. 41 (1969) 4881.Google Scholar
Challis, L. J., Experimental evidence for a dependence of the Kapitza conductance on the Debye temperature of a solid, Phys. Lett. 26 A (1968) 105106.Google Scholar
Snyder, N. S., Thermal Conductance at the Interface of a Solid and Helium II (Kapitza Conductance), National Bureau of Standards 385, 1969.Google Scholar
Glättli, H., Kapitza resistance of cerium ethylsulphate, Can. J. Phys. 46 (1968).CrossRefGoogle Scholar
Vilches, O. E., Wheatley, J. C., Measurements of the specific heats of three magnetic salts at low temperatures, Phys. Rev. 148 (1966) 509.Google Scholar
Black, W. C., Mota, A. C., Wheatley, J. C., Bishop, J. H., Brewster, P. M., Thermal resistance between powdered cerium magnesium nitrate and liquid helium at very low temperatures, J. Low Temp. Phys. 4 (1971) 391400.Google Scholar
Boyes, E., Court, G. R., Craven, B., Gamet, R., Hayman, P. J., Measurements of the effect of absorbed power on the polarization attainable in a Butanol target, in: Shapiro, G. (ed.) Proc. 2nd Int. Conf. on Polarized Targets, LBL, University of California, Berkeley, Berkeley, 1971, pp. 403406.Google Scholar
de Boer, W., Niinikoski, T. O., Dynamic proton polarization in propanediol below 0.5 K, Nucl. Instrum. and Meth. 114 (1974) 495498.Google Scholar
Anderson, A. C., Connolly, J. I., Wheatley, J. C., Thermal boundary resistance between solids and helium below 1°K, Phys. Rev. 135 (1964) A910A921.Google Scholar
Lounasmaa, O. V., Experimental Principles and Methods below 1 K, Academic Press, New York, 1974.Google Scholar
Spin Muon Collaboration (SMC), Adams, D., Adeva, B., et al., The polarized double-cell target of the SMC, Nucl. Instr. and Meth. in Phys. Res. A 437 (1999) 2367.Google Scholar
de Boer, W., High proton polarization in 1,2-propanediol at 3He temperatures, Nucl. Instr. and Meth. 107 (1973) 99104.Google Scholar
Niinikoski, T. O., A horizontal dilution refrigerator with very high cooling power, Nucl. Instrum. and Meth. 97 (1971) 95101.Google Scholar
Niinikoski, T. O., Udo, F., ‘Frozen spin’ polarized target, Nucl. Instr. and Meth. 134 (1976) 219233.Google Scholar
Hildebrandt, G., Heat transfer to boiling helium-1 under forced flow in a vertical tube, ICEC4, IPC Business Press, Guildford, UK, 1972, pp. 295300.Google Scholar
Radebaugh, R., Thermodynamic Properties of 3He-4He Solutions with Applications to the 3He-4He Dilution Refrigerator, National Bureau of Standards Technical Note 362, 1967.Google Scholar
Stuhrmann, H. B., Burkhardt, N., Dietrich, G., et al., Proton and deuteron targets in biological structure research, in: Dutz, H., Meyer, W. (eds.) 7th Int. Workshop on Polarized Target Materials and Techniques, Elsevier, Amsterdam, 1994, pp. 124132.Google Scholar
Zhao, J., Meerwinck, W., Niinikoski, T. O., et al., The polarized target station at GKSS, in: Dutz, H., Meyer, W. (eds.) Proc. 7th Int. Workshop on Polarized Target Materials and Techniques, Elsevier, Amsterdam, 1995, pp. 133137.Google Scholar
Cameron, P. R., Crabb, D. G., Construction and preliminary tests of a subcooled 4He polarized proton target in: Jaccard, S., Mango, S. (eds.) International Workshop on Polarized Sources and Targets, Birkhäuser, Montana, Switzerland, 1986, pp. 781785.Google Scholar
Peaslee, D. C., O’Fallon, J. R., Simonius, M., et al., Large-Pperp spin effects in p+p->p+p, Phys. Rev. Lett. 51 (1983) 23592361.Google Scholar
Cameron, P. R., A simple model of bead cooling, in: Meyer, W. (ed.) Proc. 4th Int. Workshop on Polarized Target Materials and Techniques, Physikalisches Institut, Universität Bonn, Bonn, 1984, pp. 136142.Google Scholar
Crabb, D. G., Cameron, P. R., Lin, A. M. T., Raymond, R. S., Operational characteristics of radiation doped ammonia in a high intensity proton beam, in: Meyer, W. (ed.) Proc. 4th Int. Workshop on Polarized Target Materials and Techniques, Physikalisches Institut, Universität Bonn, Bonn, 1984, pp. 712.Google Scholar
Althoff, K. H., Boden, B., Burkert, V., et al., First experience with a 3He/4He mixture in a 3He- refrigerator in high intensity electron beams, in: Meyer, W. (ed.) Proc. 4th Int. Workshop on Polarized Target Materials and Techniques, Physikalisches Institut, Universität Bonn, Bonn, 1984, pp. 149154.Google Scholar
de Waele, A. T. A. M., Keltjens, J. C. M., Castelijns, C. A. M., Gijsma, H. M., Flow properties of 3He moving through 4He-II at temperatures below 150 mK, Phys. Rev. B28 (1983) 5350.Google Scholar
Niinikoski, T. O., Cooling power of dilution refrigerator, in: Krusius, M., Vuorio, M. (eds.) Proc. 14th Int. Conf. on Low Temperature Physics (LT 14), North Holland, Amsterdam, 1975, pp. 2930.Google Scholar
Niinikoski, T. O., Dilution refrigeration: New concepts, in: Mendelssohn, K. (ed.) 6th Int. Cryogenic Engineering Conf., IPC Science and Technology Press, Guilford, 1976, pp. 102111.Google Scholar
Niinikoski, T. O., Rieubland, J.-M., Large dilution refrigerators, in: Yasukochi, K., Nagano, H. (eds.) 9th Int. Cryogenic Engineering Conference, Butterworth, Guilford, 1982, pp. 580585.Google Scholar
Niinikoski, T. O., Dilution refrigerator for a two-litre polarized target, Nucl. Instr. and Meth. 192 (1982) 151156.Google Scholar
Niinikoski, T. O., Polarized targets at CERN, in: Marshak, M.L. (ed.) Int. Symp. on High Energy Physics with Polarized Beams and Targets, American Institute of Physics, Argonne, 1976, pp. 458484.Google Scholar
Niinikoski, T. O., Recent developments in polarized targets at CERN, in: Thomas, G. H. (ed.) High Energy Physics with Polarized Beams and Polarized Targets, American Institute of Physics, New York, 1979, pp. 6269.Google Scholar
Berglund, P., Kyynäräinen, J., Niinikoski, T. O., A large dilution refrigerator for polarized target experiments, Cryogenics 34 (1994) 235238.CrossRefGoogle Scholar
Kyynäräinen, J., The SMC polarized target, in: Dutz, H., Meyer, W. (eds.) Proc. 7th Int. Workshop on Polarized Target Materials and Techniques, Elsevier, Amsterdam, 1995, pp. 4752.Google Scholar
Wheatley, J. C., Rapp, R. E., Johnson, R. T., Principles and methods of dilution refrigeration. II, J. Low Temp. Phys. 4 (1971) 139.Google Scholar
Abel, W. R., Wheatley, J. C., Experimental thermal conductivity of two dilute solutions of He3 in superfluid He4, Phys. Rev. Lett. 21 (1968) 12311234.Google Scholar
Coops, G. M., de Waele, A. T. A. M., Gijsma, H. M., Experimental evidence for mutual friction between 3He and superfluid 4He, Phys. Rev. B25 (1982) 4879.Google Scholar
Castelijns, C. A. M., Kuerten, J. G.M., de Waele, A. T. A. M., Gijsma, H. M., 3He flow in dilute 3He-4He mixtures at temperatures between 10 and 150 mK, Phys. Rev. B 32 (1985) 28702886.Google Scholar
Niinikoski, T. O., Construction of sintered copper heat exchangers, Cryogenics 11 (1971) 232233.Google Scholar
Burghart, G., Baseline Design of the Cryogenic System for Eureca, Dr. Techn. Thesis, 2010, Atominstitut (E141), Technical University of ViennaGoogle Scholar
Wikus, P., Niinikoski, T. O., Theoretical models for the cooling power and base temperature of dilution refrigerators, J. Low Temp. Phys. 158 (2010) 901921.Google Scholar
Crabb, D. G., Day, D. B., The Virginia/Basel/SLAC polarized target: operation and performance during E143 experiment at SLAC, Nucl. Instrum. and Meth. in Phys. Res. A 356 (1995) 919.Google Scholar
Taler, D., Taler, J., Simple heat transfer correlations for turbulent tube flow, E3S Web of Conferences, EDP Sciences, 2017, pp. 02008.Google Scholar
Roubeau, P., Horizontal cryostat for polarized proton targets, Cryogenics 6 (1966) 207212.Google Scholar
Borghini, M., Roubeau, P., Ryter, C., Une Cible de Protons Polarises pour la Physique des Hautes Energies I. Cible, Nucl. Instr. and Meth. 49 (1967) 248.Google Scholar
Roubeau, P., Ezratty, J., Glättli, H., Vermeulen, J., Borghini, M., Organic polarized proton target, using a continuous flow 3He cryostat, Nucl. Instrum. and Methods 82 (1970) 323324.Google Scholar
Roubeau, P., Progress in polarized target cryogenics, in: Shapiro, G. (ed.) Proc. 2nd Int. Conf. on Polarized Targets, LBL, University of California, Berkeley, Berkeley, 1971, pp. 4755.Google Scholar
Vermeulen, J., 3He-cooled polarized targets, in: Shapiro, G. (ed.) Proc. 2nd Int. Conf. on Polarized Targets, LBL, University of California, Berkeley, Berkeley, 1971, pp. 6972.Google Scholar
Crabb, D. G., Higley, C. B., Krisch, A. D., et al., Observation of a 96% proton polarization in irradiated ammonia, Phys. Rev. Letters 64 (1990) 26272629.Google Scholar
Thomas, A., Bradtke, C., Dutz, H., et al., Behaviour of polarized ammonia in an intense electron beam, in: Dutz, H., Meyer, W. (eds.) 7th Int. Workshop on Polarized Target Materials and Techniques, Elsevier, Amsterdam, 1995, pp. 58.Google Scholar
Pierce, J., Maxwell, J., Badman, T., et al., Dynamically polarized target for the gp2 and GpE experiments at Jefferson Lab, Nucl. Instr and Meth. A 738 (2014) 5460.Google Scholar
Preston-Thomas, H., The international temperature scale of 1990 (ITS-90), Metrologia 27 (1990) 310.Google Scholar
Engert, J., Fellmuth, B., Jousten, K., A new 3He vapor-pressure based temperature scale from 0.65 K to 3.2 K consistent with the PLTS-2000, Metrologia 44 (2007) 4053.Google Scholar
Rubin, L. G., Brandt, B. L., Sample, H. H., Cryogenic thermometry: a review of recent progress, II, Cryogenics 22 (1982) 491503.Google Scholar
Sample, H. H., Brandt, B. L., Rubin, L. G., Low-temperature thermometry in high magnetic fields above 2 K, Rev. Sci. Instrum. 53 (1982) 1129.Google Scholar
Brandt, B. L., Rubin, L. G., Sample, H. H., Low-temperature thermometry in high magnetic fields. VI. Industrial grade resistors above 66 K; Rh-Fe and Au-Mn resistors above 40 K, Rev. Sci. Instrum. 59 (1988) 642645.Google Scholar
Anderson, A. C., Instrumentation at temperatures below 1 K, Rev. Sci. Instrum. 51 (1980) 1603.Google Scholar
Ylöstalo, J., Berglund, P., Niinikoski, T. O., Voutilainen, R., Cryogenic temperature measurement for large applications, Cryogenics 36 (1996) 10331038.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Refrigeration
  • Tapio O. Niinikoski
  • Book: The Physics of Polarized Targets
  • Online publication: 03 February 2020
  • Chapter DOI: https://doi.org/10.1017/9781108567435.009
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Refrigeration
  • Tapio O. Niinikoski
  • Book: The Physics of Polarized Targets
  • Online publication: 03 February 2020
  • Chapter DOI: https://doi.org/10.1017/9781108567435.009
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Refrigeration
  • Tapio O. Niinikoski
  • Book: The Physics of Polarized Targets
  • Online publication: 03 February 2020
  • Chapter DOI: https://doi.org/10.1017/9781108567435.009
Available formats
×