Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-06T09:41:20.786Z Has data issue: false hasContentIssue false

1 - Introduction

Published online by Cambridge University Press:  13 October 2009

Dieter Suter
Affiliation:
Swiss Federal University (ETH), Zürich
Get access

Summary

The interaction between matter and radiation has fascinated physicists for a long time. On the material side, the most detailed investigations of these processes concentrate on atoms, the basic constituents of matter. The radiation that is involved in these processes is primarily light, i.e., radiation whose wavelength is in the range of a few tenths of a micron to a few microns. Under today's laboratory conditions, this radiation is generally produced by a laser. This introduction outlines our picture of these constituents and presents some of the concepts and models that we will use throughout this book.

Atoms

Historical

Early models: atoms as building blocks

The term “atom” was coined by the Greek philosopher Democritus of Abdera (460–370 B.C.), who tried to reconcile change with eternal existence. His solution to this dilemma was that matter was not indefinitely divisible, but consisted of structureless building blocks that he called atoms. According to Democritus and other proponents of this idea, the diverse aspects of matter, as we know it, are a result of different arrangements of the same building blocks in empty space (Melsen 1957; Simonyi 1990). The most important opponent of this theory was Aristotle (384–322 B.C.), and his great influence is probably the main reason that the atomic hypothesis was not widely accepted, but lay dormant for two thousand years. It reappeared only in the eighteenth century, when the emerging experimental science found convincing evidence that matter does indeed consist of elementary building blocks.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Introduction
  • Dieter Suter, Swiss Federal University (ETH), Zürich
  • Book: The Physics of Laser-Atom Interactions
  • Online publication: 13 October 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511524172.002
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Introduction
  • Dieter Suter, Swiss Federal University (ETH), Zürich
  • Book: The Physics of Laser-Atom Interactions
  • Online publication: 13 October 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511524172.002
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Introduction
  • Dieter Suter, Swiss Federal University (ETH), Zürich
  • Book: The Physics of Laser-Atom Interactions
  • Online publication: 13 October 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511524172.002
Available formats
×