Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-09T19:53:16.888Z Has data issue: false hasContentIssue false

9 - Optimizing encounter rates

from Part III - Theory of foraging

Published online by Cambridge University Press:  05 August 2012

Gandhimohan. M. Viswanathan
Affiliation:
Universidade Federal do Rio Grande do Norte, Brazil
Marcos G. E. da Luz
Affiliation:
Universidade Federal do Paraná, Brazil
Ernesto P. Raposo
Affiliation:
Universidade Federal de Pernambuco, Brazil
H. Eugene Stanley
Affiliation:
Boston University
Get access

Summary

The central idea underlying theoretical studies of the movement of organisms is that they need to encounter their targets. The targets can be other organisms of the same species (e.g., mates) or of a different species (e.g., prey) or, more generally, anything else sought (e.g., nesting sites). In the context of reactiondiffusion processes, the reactions (e.g., eating and mating) only take place when the relevant organisms successfully diffuse toward each other and meet. We next discuss a general theoretical approach to the study of encounter rates.

A general theory of searchers and targets

We classify the two interacting reactive-diffusive species (i.e., organisms) as either searcher (e.g., predator, forager, parasite, pollinator, male) or target (e.g., prey, food, female). Both searchers and targets move stochastically. We can now include most of the interactions in real ecosystems in this general framework [19], including the classical predator-prey interactions where an organism eats (usually smaller) organisms. It also includes diverse other interactions, such as osmotrophs looking for substrates and nutrients; parasites (including viruses) infecting organisms much larger than themselves (classical host-parasite interactions); organisms looking for aggregates (mixtures of amorphous organic matter, micro-organisms and/or inorganic particles), swarms, wakes, etc., also larger than themselves; and even mating encounters in which both male and female may have similar sizes (although sexual dimorphism is common) [19].

According to the theory of optimal foraging [128, 364], evolution through natural selection has led over time to highly efficient – even optimal – strategies.

Type
Chapter
Information
The Physics of Foraging
An Introduction to Random Searches and Biological Encounters
, pp. 77 - 84
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×