Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-21T04:28:31.326Z Has data issue: false hasContentIssue false

6 - Polymer Structure and Dynamics

from Part I - Physical Tools

Published online by Cambridge University Press:  12 December 2024

Thomas Andrew Waigh
Affiliation:
University of Manchester
Get access

Summary

Considers the structure of polymers, their dynamics, gels and bacterial polymers including EPS.

Type
Chapter
Information
The Physics of Bacteria
From Cells to Biofilms
, pp. 58 - 68
Publisher: Cambridge University Press
Print publication year: 2024

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Suggested Reading

Broedersz, C. P.; MacKintosh, F. C., Modelling semi-flexible polymer networks. Reviews of Modern Physics 2014, 86 (3), 995. Overview of theoretical models for semi-flexible polymers that typically describe biopolymer gels reasonable well.CrossRefGoogle Scholar
Djabourov, M.; Nishinari, K.; Ross-Murphy, S., Physical Gels from Biological and Synthetic Polymers. Cambridge University Press: 2013. Slightly old-fashioned approach to the polymer theory, but lots of interesting examples of gel systems are included.CrossRefGoogle Scholar
Gong, J. P., Why are double network hydrogels so tough? Soft Matter 2010, 6 (12), 25832590. Explores some unusual phenomena found in composite polymeric hydrogels. There are many others.CrossRefGoogle Scholar
Muthukumar, M., Physics of Charged Macromolecules: Synthetic and Biological Systems. Cambridge University Press: 2023. Describes some modern developments in the physics of charged polymers.CrossRefGoogle Scholar
Rubinstein, M.; Colby, R. H., Polymer Physics. Oxford University Press: 2003. Simple overview of polymer physics applied to synthetic polymers including theories of gelation.CrossRefGoogle Scholar

References

Rubinstein, M.; Colby, R. H., Polymer Physics. Oxford University Press: 2003.CrossRefGoogle Scholar
de Gennes, P. G., Scaling Concepts in Polymer Physics. Cornell: 1979.Google Scholar
Waigh, T. A., The Physics of Living Processes. Wiley: 2014.CrossRefGoogle Scholar
Dobrynin, A. V.; Rubinstein, M., Theory of polyelectrolytes in solutions and interfaces. Progress in Polymer Science 2005, 30 (11), 10491118.CrossRefGoogle Scholar
Philips, R.; Kondev, J.; Theriot, J.; Garcia, H.; Kondev, J., Physical Biology of the Cell. Garland Science: 2012.CrossRefGoogle Scholar
Ramos-Leon, F.; Ramamurthi, K. S., Cytoskeletal proteins: Lessons from bacteria. Physical Biology 2022, 19, 021005.CrossRefGoogle ScholarPubMed
Cox, H.; Cao, M.; Xu, H.; Waigh, T. A.; Lu, J. R., Active modulation of states of prestress in self-assembled short peptide gels. Biomacromolecules 2019, 20 (4), 17191730.CrossRefGoogle ScholarPubMed
Cox, H.; Georgiades, P.; Xu, H.; Waigh, T. A.; Lu, J. R., Self-assembly of mesoscopic peptide surfactant fibrils investigated by STORM super-resolution fluorescence microscopy. Biomacromolecules 2017, 18 (11), 34813491.CrossRefGoogle ScholarPubMed
Cox, H.; Xu, H.; Waigh, T. A.; Lu, J. R., Single-molecule study of peptide gel dynamics reveals states of prestress. Langmuir 2018, 34 (48), 1467814689.CrossRefGoogle ScholarPubMed
Bensimon, D.; Croquette, V.; Allemand, J. F., Single-molecular Studies of Nucleic Acids and Their Proteins. Oxford University Press: 2019.Google Scholar
Pusey, P. N.; Van Megen, W., Dynamic light scattering by non-ergodic media. Physica A: Statistical Mechanics and Its Applications 1989, 157 (2), 705741.CrossRefGoogle Scholar
Winter, H. H.; Chambon, F., Analysis of the linear viscoelasticity of a cross-linking polymer at the gel point. Journal of Rheology 1986, 30 (2), 367382.CrossRefGoogle Scholar
Larsen, T. H.; Furst, E. M., Microrheology of the liquid-solid transition during gelation. Physical Review Letters 2008, 100 (14), 146001.CrossRefGoogle ScholarPubMed
van Oosten, A. S. G.; Chen, X.; Chin, L.; Cruz, K.; Patteson, A. E.; Pogoda, K.; Shenoy, V. B.; Janmey, P. A., Emergence of tissue-like mechanics from fibrous networks confined by close-packed cells. Nature 2019, 573 (7772), 96101.CrossRefGoogle ScholarPubMed
Gersappe, D., Molecular mechanisms of failure in polymer nanocomposites. Physical Review Letters 2002, 89 (5), 058301.CrossRefGoogle ScholarPubMed
Dannert, C.; Stokke, B. T.; Dias, R. S., Nanoparticle-hydrogel composites. Polymer 2019, 11 (2), 275.CrossRefGoogle ScholarPubMed
Even, C.; Marliere, C.; Ghigo, J. M.; Allain, J. M.; Marcellan, A.; Raspaud, E., Recent advances in studying single bacteria and biofilm mechanics. Advances in Colloid and Interface Science 2017, 247, 573588.CrossRefGoogle ScholarPubMed
Jana, S.; Charlton, S. G. V.; Eland, L. E.; Burgess, J. G.; Wipat, A.; Curtis, T. P.; Chen, J., Nonlinear rheological characterisation of single species bacterial biofilms. npj Biofilms and Microbiomes 2020, 6 (1), 19.CrossRefGoogle Scholar
Lieleg, O.; Caldara, M.; Baumgartel, R.; Ribbeck, K., Mechanical robustness of Pseudomonas aeruginosa biofilms. Soft Matter 2011, 7 (7), 33073314.CrossRefGoogle ScholarPubMed
Horvat, M.; Pannuri, A.; Romero, T.; Dogsa, I.; Stopar, D., Viscoelastic response of E. coli biofilms to genetically altered expression of extracellular matrix components. Soft Matter 2019, 15 (25), 5042.CrossRefGoogle ScholarPubMed
Broedersz, C. P.; MacKintosh, F. C., Modelling semiflexible polymer networks. Review of Modern Physics 2014, 88, 039903.CrossRefGoogle Scholar
Wilking, J. N.; Angelini, T. E.; Seminara, A.; Brenner, M. P.; Weitz, D. A., Biofilms as complex fluids. MRS Bulletin 2011, 36 (5), 385.CrossRefGoogle Scholar
Wen, Q.; Basu, A.; Janmey, P. A.; Yodh, A. G., Non-affine deformations in polymer hydrogels. Soft Matter 2012, 8, 80398049.CrossRefGoogle ScholarPubMed
Muthukumar, M., Physics of Charged Macromolecules: Synthetic and Biological Systems. Cambridge University Press: 2023.CrossRefGoogle Scholar
Rubinstein, M.; Colby, R. H.; Dobrynin, A. V.; Joanny, J. F., Elastic modulus and equilibrium swelling of polyelectrolyte gels. Macromolecules 1996, 29 (1), 398406.CrossRefGoogle Scholar
Ethier, C. R.; Simmons, C. A., Introductory Biomechanics: From Cells to Organisms. Cambridge University Press: 2008.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×