Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-22T16:23:10.411Z Has data issue: false hasContentIssue false

Part I - Physical Tools

Published online by Cambridge University Press:  12 December 2024

Thomas Andrew Waigh
Affiliation:
University of Manchester
Get access
Type
Chapter
Information
The Physics of Bacteria
From Cells to Biofilms
, pp. 1 - 142
Publisher: Cambridge University Press
Print publication year: 2024

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Suggested Reading

Höfling, F.; Franosch, T., Anomalous transport in the crowded world of biological cells. Reports on Progress in Physics 2013, 76, 046602. Good overview of the experimental evidence for anomalous transport inside cells.CrossRefGoogle ScholarPubMed
Ibe, O. C. Elements of Random Walks and Diffusion Processes. Wiley: 2013. Introduces anomalous transport (e.g. fractional Brownian motion) in an intelligible manner for non-mathematicians. Also acts as a good primer for stochastic processes.CrossRefGoogle Scholar
Klafter, J.; Sokolov, I. M., First Steps in Random Walks: From Tools to Applications. Oxford University Press: 2011. Short and fairly mathematical introduction to some modern models for anomalous transport.CrossRefGoogle Scholar
Waigh, T. A.; Korabel, N., Heterogeneous anomalous transport in molecular and cellular biology. Reports on Progress in Physics 2023, 86, 126601. Considers some challenges in the modelling of anomalous transport in cellular biology e.g. multi-fractal effects.CrossRefGoogle Scholar

References

Lane, N., The unseen world: Reflections on Leeuwenhoek (1677) ‘Concerning little animals’. Philosophical Transactions of the Royal Society B 2015, 370 (1666), 20140344.CrossRefGoogle ScholarPubMed
Mertz, J., Introduction to Optical Microscopy. Cambridge University Press: 2019.CrossRefGoogle Scholar
Perkins, H. T.; Allan, V. J.; Waigh, T. A., Network organisation and the dynamics of tubules in the endoplasmic reticulum. Scientific Reports 2021, 11 (1), 16230.CrossRefGoogle ScholarPubMed
Dubay, M. M.; Acres, J.; Riebeles, M.; Nadeau, J. L., Recent advances in experimental design and data analysis to characterise prokaryotes motility. Journal of Microbiological Methods 2023, 204, 106658.CrossRefGoogle ScholarPubMed
Chen, B. C.; et al., Lattice light-sheet microscopy-imaging molecules to embryos at high spatiotemporal resolution. Science 2014, 346 (6208), 1257998.CrossRefGoogle ScholarPubMed
Wolff, J. O.; Scheiderer, L.; Engelhardt, T.; Maththias, J.; Hell, S. W., MINIFLUX dissects the unimpeded walking of kinesin-1. Science 2023, 379 (6636), 10041010.CrossRefGoogle Scholar
Rogers, S. S.; Waigh, T. A.; Zhao, X.; Lu, J. R., Precise particle tracking against a complicated background: Polynomial fitting with Gaussian weight. Physical Biology 2007, 4 (3), 220227.CrossRefGoogle ScholarPubMed
Helgadottir, S.; Argua, A.; Volpe, G., Digital video microscopy enhanced by deep learning. Optica 2019, 6 (4), 506.CrossRefGoogle Scholar
Szeliski, R., Computer Vision: Algorithms and Applications, 2nd ed. Springer: 2022.CrossRefGoogle Scholar
Waigh, T. A., Advances in the microrheology of complex fluids. Reports on Progress in Physics 2016, 79 (7), 074601.CrossRefGoogle ScholarPubMed
Xu, C.; Zhang, L.; Huang, S.; Ma, T.; Liu, F.; Yonezawa, H.; Zhang, Y.; Xiao, M., Sensing and tracking enhanced by quantum squeezing. Photonics Research 2019, 7 (6), 14.CrossRefGoogle Scholar
Taylor, M. A.; Janousek, J.; Daria, V.; Knittel, J.; Hage, B.; Bachor, H. A.; Bowen, W. P., Biological measurement beyond the quantum limit. Nature Photonics 2013, 7 (3), 229233.CrossRefGoogle Scholar
Hart, J. W.; Waigh, T. A.; Lu, J. R.; Roberts, I. S., Microrheology and spatial heterogeneity of Staphylococcus aureus biofilms modulated by hydrodynamic shear and biofilm-degrading enzymes. Langmuir 2019, 35 (9), 35533561.CrossRefGoogle ScholarPubMed
Rogers, S. S.; van der Walle, C.; Waigh, T. A., Microrheology of bacterial biofilms in vitro: Staphylococcus aureus and Pseudomonas aeruginosa. Langmuir 2008, 24 (23), 1354913555.CrossRefGoogle ScholarPubMed
Moerner, W. E.; Kardor, L., Optical detection and spectroscopy of single molecules in a solid. PRL 1989, 62 (21), 25352538.CrossRefGoogle ScholarPubMed
Leake, M. C., Single-Molecular Cellular Biophysics. Cambridge University Press: 2013.CrossRefGoogle Scholar
Cox, H.; Xu, H.; Waigh, T. A.; Lu, J. R., Single-molecule study of peptide gel dynamics reveals states of prestress. Langmuir 2018, 34 (48), 1467814689.CrossRefGoogle ScholarPubMed
Cox, H.; Cao, M.; Xu, H.; Waigh, T. A.; Lu, J. R., Active modulation of states of prestress in self-assembled short peptide gels. Biomacromolecules 2019, 20 (4), 17191730.CrossRefGoogle ScholarPubMed
Newby, J. M.; Schaefer, A. M.; Lee, P. T.; Forest, M. G.; Lai, S. K., Convolutional neural networks automate detection for tracking of submicron-scale particles in 2D and 3D. Proceedings of the National Academy of Sciences 2018, 115 (36), 90269031.CrossRefGoogle ScholarPubMed
Chenouard, N.; et al., Objective comparison of particle tracking methods. Nature Methods 2014, 11 (3), 281289.CrossRefGoogle ScholarPubMed
Wu, P. H.; Agarwal, A.; Hess, H.; Khargonekar, P. P.; Tseng, Y., Analysis of video-based microscopic particle trajectories using Kalman filtering. Biophysical Journal 2010, 98 (12), 28222830.CrossRefGoogle ScholarPubMed
Murphy, K. P., Probabilistic Machine Learning: An Introduction. MIT: 2022.Google Scholar
Waigh, T. A.; Korabel, N., Heterogeneous anomalous transport in cellular and molecular biology. Reports on Progress in Physics 2023, 86 (12), 126601.CrossRefGoogle ScholarPubMed
Dacret, A.; Quardokus, E. M.; Brun, Y. V., MicrobeJ, a tool for high throughput bacterial cell detection and quantitative analysis. Nature Microbiology 2016, 1 (7), 1.Google Scholar
Hartmann, R.; et al., Quantitative image analysis of microbial communities with BiofilmQ. Nature Microbiology 2021, 6 (2), 151.CrossRefGoogle ScholarPubMed
Kopera, B. A. F.; Retsch, M., Computing the 3D radial distribution function from particle positions: An advanced analytic approach. Analytic Chemistry 2018, 90 (23), 1390913914.CrossRefGoogle ScholarPubMed
Holmes, S.; Huber, W., Modern Statistics for Modern Biology. Cambridge University Press: 2019.Google Scholar
Allen, M. P.; Tildesley, D. J., Computer Simulation of Liquids. Oxford University Press: 2017.CrossRefGoogle Scholar
Hansen, J. P.; McDonald, I. R., Theory of Simple Liquids: With Applications to Soft Matter. Academic Press: 2013.Google Scholar
Metzler, R.; Klafter, J., The restaurant at the end of the random walk. Journal of Physics A: General Physics 2004, 37 (31), R161–R208.CrossRefGoogle Scholar
Han, D.; Korabel, N.; Chen, R.; Johnston, M.; Gavrilova, A.; Allan, V. J.; Fedotov, S.; Waigh, T. A., Deciphering anomalous heterogeneous intracellular transport with neural networks. eLife 2020, 9, e52224.CrossRefGoogle ScholarPubMed
Nielsen, A., Practical Time Series Analysis: Prediction with Statistics and Machine Learning. O’Reilly: 2020.Google Scholar
Hofling, F.; Franosch, T., Anomalous transport in the crowded world of biological cells. Reports on Progress in Physics 2013, 76, 046602.CrossRefGoogle ScholarPubMed
Sornette, D., Critical Phenomena in Natural Sciences. Springer: 2003.Google Scholar
Ibe, O. C., Elements of Random Walks and Diffusion Processes. Wiley: 2013.CrossRefGoogle Scholar
Birkhoff, G. D., Proof of the ergodic theorem. Proceedings of the National Academy of Sciences 1931, 17 (12), 656660.CrossRefGoogle ScholarPubMed
Korabel, N.; Taloni, A.; Pagnini, G.; Allan, V. J.; Fedotov, S.; Waigh, T. A., Ensemble heterogeneity mimics ageing for endosomal dynamics within eukaryotic cells. Scientific Reports 2023, 13 (1), 8789.CrossRefGoogle ScholarPubMed
Berg, H. C., Random Walks in Biology. Princeton University Press: 1993.Google Scholar
Rogers, S. S.; Flores-Rodriguez, N.; Allan, V. J.; Woodman, P. G.; Waigh, T. A., The first passage probability of intracellular particle trafficking. PCCP 2010, 12 (15), 37533761.CrossRefGoogle ScholarPubMed
Aalen, O.; Borgan, O.; Gjessing, H., Survival and Event History Analysis: A Process Point of View. Springer: 2008.CrossRefGoogle Scholar
Blee, J. A.; Roberts, I. S.; Waigh, T. A., Membrane potentials, oxidative stress and the dispersal response of bacterial biofilms to 405 nm light. Physical Biology 2020, 17 (4), 036001.CrossRefGoogle ScholarPubMed
Flores-Rodriguez, N.; Rogers, S. S.; Kenwright, D. A.; Waigh, T. A.; Woodman, P. G.; Allan, V. J., Roles of dynein and dynactin in early endosome dynamics revealed using automated tracking and global analysis. PLOS One 2011, 6 (9), e24479.CrossRefGoogle ScholarPubMed
Redner, S., A Guide to First Passage Processes. Cambridge University Press: 2001.CrossRefGoogle Scholar
Harrison, A. W.; Kenwright, D. A.; Waigh, T. A.; Woodman, P. G.; Allan, V. J., Modes of correlated angular motion in live cells across three distinct time scales. Physical Biology 2013, 10 (3), 036002.CrossRefGoogle ScholarPubMed
Levine, A. J.; Lubensky, T. C., One- and two-particle microrheology. Physical Review Letters 2000, 85, 1774.CrossRefGoogle ScholarPubMed
Vicsek, T.; Czirok, A.; Ben-Jacob, E.; Cohen, I.; Shochet, O., Novel type of phase transition in a system of self-driven particles. Physical Review Letters 1995, 75 (6), 12261229.CrossRefGoogle Scholar
Cavagna, A.; Giardina, I.; Grigera, T. S., The physics of flocking: Correlation as a compass from experiments to theory. Physics Reports 2018, 728 (3), 162.CrossRefGoogle Scholar
Itto, Y.; Beck, C., Superstatistical modelling of protein diffusion dynamics in bacteria. Journal of the Royal Society – Interface 2021, 18 (176), 20200927.CrossRefGoogle ScholarPubMed
Gittes, F.; Mickey, B.; Nettleton, J.; Howard, J., Flexural rigidity of microtubules and actin filaments measured from thermal fluctuations in shape. Journal of Cellular Biology 1993, 120 (4), 923934.CrossRefGoogle ScholarPubMed
Monzel, C.; Sengupta, K., Measuring shape fluctuations in biological membranes. Journal of Physics D: Applied Physics 2016, 49 (24), 243002.CrossRefGoogle Scholar
Germain, D.; Leocmach, M.; Gibaud, T., Differential dynamic microscopy to characterize Brownian motion and bacteria motility. American Journal of Physics 2016, 84 (3), 202.CrossRefGoogle Scholar
Berne, B. J.; Percora, R., Dynamic Light Scattering: With Applications to Chemistry, Biology and Physics. Dover: 2003.Google Scholar
Cerbino, R.; Cicuta, P., Perspective: Differential dynamic microscopy extracts multiscale activity in complex fluids and biological systems. Journal of Chemical Physics 2017, 147 (11), 110901.CrossRefGoogle ScholarPubMed
Rigler, R.; Elson, E. S., Fluorescence Correlation Spectroscopy: Theory and Applications. Springer: 2001.CrossRefGoogle Scholar
Stolle, M. D.; Fradin, C., Anomalous diffusion in inverted variable-lengthscale fluorescence correlation spectroscopy. Biophysical Journal 2019, 116 (5), 791806.CrossRefGoogle ScholarPubMed

Suggested Reading

Berg, H., Random Walks in Biology. Princeton: 1993. Classic elementary introduction to diffusive processes.Google Scholar
Ibe, O. C., Elements of Random Walk and Diffusion Processes. Wiley: 2013. Good introduction to the mathematics of stochastic processes for non-specialists.CrossRefGoogle Scholar
Waigh, T. A.; Korabel, N., Heterogeneous anomalous transport in molecular and cellular biology. Reports on Progress in Physics 2023, 86 (12), 126601. Considers the field of heterogeneous anomalous transport with molecules and cells.CrossRefGoogle Scholar

References

Einstein, A., Uber die von der molekularkinetschen Theorie der Warme geforderte Bewegung von in ruhenden Flussigkeiten suspendierten Teilchen. Annalen der Physik 1905, 322 (8), 549560.CrossRefGoogle Scholar
Chaikin, P. M.; Lubensky, T. C., Principles of Condensed Matter Physics. Cambridge University Press: 1995.CrossRefGoogle Scholar
Berne, B. J., Dynamic Light Scattering: With Applications to Chemistry, Biology and Physics. Dover: 2003.Google Scholar
Hunter, G. L.; Edmond, K. V.; Elsesser, M. T.; Weeks, E. R., Tracking rotational diffusion of colloidal clusters. Optics Press 2011, 19 (18), 1718917202.Google ScholarPubMed
Zhang, Z. T.; Zhao, X.; Cao, B. Y., Diffusion tensors of arbitrary-shaped nanoparticles in fluid by molecular dynamics simulations. Scientific Reports 2019, 9 (1), 18943.CrossRefGoogle Scholar
Goldstein, H., Classical Mechanics, 3rd ed. Pearson: 2013.Google Scholar
Lovely, P. S.; Dahlquist, F. W., Statistical measures of bacterial motility and chemotaxis. Journal of Theoretical Biology 1975, 50 (2), 477496.CrossRefGoogle ScholarPubMed
Berg, H. C., Random Walks in Biology. Princeton University Press: 1993.Google Scholar
Lauga, E., The Fluid Dynamics of Cell Motility. Cambridge University Press: 2020.CrossRefGoogle Scholar
Zonia, L.; Bray, D., Swimming patterns and dynamics of simulated Escherichia coli bacteria. Journal of the Royal Society – Interface 2009, 6 (40), 0397.CrossRefGoogle ScholarPubMed
Ibe, O. C., Elements of Random Walks and Diffusion Processes. Wiley: 2013.CrossRefGoogle Scholar
Waigh, T. A.; Korabel, N., Heterogeneous anomalous transport in cellular and molecular biology. Reports on Progress in Physics 2023, 86 (12), 126601.CrossRefGoogle ScholarPubMed
Klafter, J.; Sokolov, I. M., First Steps in Random Walks: From Tools to Applications. Oxford University Press: 2011.CrossRefGoogle Scholar
Huo, H.; He, R.; Zhang, R.; Yuan, J., Swimming Escherichia coli cells explore the environment by Levy walk. Applied and Environmental Microbiology 2021, 87 (6), e02429-20.CrossRefGoogle ScholarPubMed
Matthaus, F.; Jagodic, M.; Donikar, J., E. coli superdiffusion and chemotaxis – search strategy, precision and motility. Biophysical Journal 2009, 97 (4), 946957.CrossRefGoogle ScholarPubMed
Zaburdaev, V.; Denisov, S.; Klafter, J., Levy walks. Review of Modern Physics 2015, 87, 483.CrossRefGoogle Scholar
Berg, H. C., E. coli in Motion. Springer: 2004.CrossRefGoogle Scholar
Ariel, G.; Be’er, A.; Reynolds, A., Chaotic model for Levy walks in swarming bacteria. Physical Review Letters 2017, 118 (22), 228102.CrossRefGoogle ScholarPubMed
Ariel, G.; Rabani, A.; Benisty, S.; Partridge, J. D.; Harshey, R. M.; Be’er, A., Swarming bacteria migrate by Levy walk. Nature Communications 2015, 6 (1), 8396.CrossRefGoogle ScholarPubMed
Korobkova, E.; Emonet, T.; Vilar, J. M. G.; Shimizu, T. S.; Cluzel, P., From molecular noise to behavioural variability in a single bacterium. Nature 2004, 428 (6982), 574578.CrossRefGoogle Scholar
Figueroa-Morales, N.; Rivera, A.; Soto, R.; Lindner, A.; Altshuler, E.; Clement, E., E. coli ‘super-contaminates’ narrow ducts fostered by broad run-time distribution. Science Advances 2020, 6 (11), eoay0155.CrossRefGoogle ScholarPubMed
Figueroa-Morales, N.; Soto, R.; Junat, G.; Darnige, T.; Douarche, C.; Martinez, V. A.; Lindner, A.; Clement, E., 3D spatial exploration by E. coli echoes motor temporal variability. Physical Review X 2020, 10 (2), 021004.CrossRefGoogle Scholar
Metzler, R.; Klafter, J., The restaurant at the end of the random walk. Journal of Physics A: General Physics 2004, 37 (31), R161–R208.CrossRefGoogle Scholar
Phan, T. V.; Morris, R.; Black, M. E.; Do, T. K.; Lin, K.; Nagy, K.; Sturm, J. C.; Bos, J., Bacterial route finding and collective escapes in mazes and fractals. Physical Review X 2020, 10 (3), 0310107.CrossRefGoogle Scholar
Tabei, S. M. A.; Burov, S.; Kim, H. Y.; Kuznetsov, A.; Huynh, T.; Jureller, J.; Philipson, L. H.; Dinner, A. R.; Scherer, N. F., Intracellular transport of insulin granules is a subordinated random walk. PNAS 2013, 110 (13), 49114916.CrossRefGoogle ScholarPubMed
Murphy, K. P., Probabilistic Machine Learning: An Introduction. MIT Press: 2022.Google Scholar

Suggested Reading

Benarroch, J. M.; Asally, M. The microbiologists guide to membrane potential dynamics. Trends in Microbiology, 2020, 28 (4), 304. A very simple introduction to electrophysiological phenomena in bacteria.CrossRefGoogle ScholarPubMed
Gerstner, W. Neuronal Dynamics: From Single Neurons to Networks and Models of Cognition. Cambridge University Press: 2014. Very clear theoretical development of models for neuronal dynamics. Many of the models could be applied to bacteria.CrossRefGoogle Scholar
Keener, J.; Sneyd, J. Mathematical Physiology. Springer: 2009. Classic book on mathematical modelling of electrophysiology.CrossRefGoogle Scholar
Smith, G. C. Cellular Biophysics and Modelling: A Primer on the Computational Biology of Excitable Cells. Cambridge University Press: 2019. Reasonably straightforward account of cellular excitability.CrossRefGoogle Scholar

References

Keener, J.; Sneyd, J., Mathematical Physiology. Springer: 2009.CrossRefGoogle Scholar
Waigh, T. A., The Physics of Living Processes. Wiley: 2014.CrossRefGoogle Scholar
Gerstner, W., Neuronal Dynamics: From Single Neurons to Networks and Models of Cognition. Cambridge University Press: 2014.CrossRefGoogle Scholar
Adamatzky, A., On spiking behaviour of oyster fungi Pleurotus djamor. Scientific Reports 2018, 8 (1), 7873.CrossRefGoogle ScholarPubMed
Greenspan, R. J., An Introduction to Nervous Systems. Cold Spring Harbor: 2007.Google Scholar
Ensembl. Database, G. bacteria.ensembl.org.Google Scholar
Prindle, A.; Liu, J.; Asally, M.; Ly, S.; Garcia-Ojalvo, J.; Sudel, G. M., Ion channels enable electrical communication in bacterial communities. Nature 2015, 527 (7576), 5963.CrossRefGoogle ScholarPubMed
Smith, G. C., Cellular Biophysics and Modelling: A Primer on the Computational Biology of Excitable Cells. Cambridge University Press: 2019.CrossRefGoogle Scholar
Blee, J. A.; Roberts, I. S.; Waigh, T. A., Membrane potentials, oxidative stress and the dispersal response of bacterial biofilms to 405 nm light. Physical Biology 2020, 17 (3), 036001.CrossRefGoogle ScholarPubMed
Izhikevich, E. M., Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting. MIT Press: 2010.Google Scholar
Hobbie, R. K.; Roth, B. J., Intermediate Physics for Medicine and Biology, 4th ed. Springer: 2007.Google Scholar
Benarroch, J. M.; Asally, M., The microbiologists guide to membrane potential dynamics. Trends in Microbiology 2020, 28 (4), 304.CrossRefGoogle ScholarPubMed
Mancini, L.; Tian, T.; Guillaume, T.; Pu, Y.; Li, Y.; Lo, C. J.; Bai, F.; Pilizota, T., A general workflow for characterization of Nernstian dyes and their effects on bacterial physiology. Biophysical Journal 2020, 118 (1), 414.CrossRefGoogle ScholarPubMed
Blair, K. M.; Turner, L.; Winkelman, J. T.; Berg, H. C.; Kearns, D. B., A molecular clutch disables flagella in the Bacillus subtilis biofilm. Science 2008, 320 (5883), 16361638.CrossRefGoogle ScholarPubMed
Martinac, B.; Rohde, P. R.; Cranfield, C. G.; Nomura, T., Patch clamp electrophysiology for the study of bacterial ion channels in giant spheroplasts of E. coli. Methods in Molecular Biology 2013, 966, 367380.CrossRefGoogle Scholar
Masi, E.; Ciszak, M.; Santopolo, L.; Frascella, A.; Giovannetti, L.; Marchi, E.; Viti, C.; Mancuso, S., Electrical spiking in bacterial biofilms. Journal of the Royal Society – Interface 2015, 12 (102), 1036.CrossRefGoogle ScholarPubMed
Liu, J.; Martinez-Corral, R.; Prindle, A.; Lee, D. Y. D.; Larkin, J.; Gabalda-Sagarra, M.; Garcia-Ojalvo, J.; Süel, G. M., Coupling between distant biofilms and emergence of nutrient time-sharing. Science 2017, 356 (6338), 628642.CrossRefGoogle ScholarPubMed
Bruni, G. N.; Weekley, R. A.; Dodd, B. J. T.; Kralj, J. M., Voltage-gated calcium flux mediates Escherichia coli mechanosensation. PNAS 2017, 114 (35), 94459450.CrossRefGoogle ScholarPubMed

Suggested Reading

Israelachvili, J. Intermolecular and surface forces, 3rd ed. Academic Press: 2011. Classic textbook on surface forces in soft matter physics with many biological examples.Google Scholar
Smith, A. M. et al., Forces between solid surfaces in aqueous electrolyte solutions. Advances in Colloid and Interface Science 2020, 275, 102078. Modern approaches to DLVO forces are discussed from an experimental physical chemistry perspective.CrossRefGoogle ScholarPubMed

References

Israelachvili, J. N., Intermolecular and Surface Forces. Academic Press: 2011.Google Scholar
Smith, A. M.; Borkovec, M.; Trefalt, G., Forces between solid surfaces in aqueous electrolyte solutions. Advances in Colloid and Interface Science 2020, 275, 102078.CrossRefGoogle ScholarPubMed
Parsegian, V. A., Van der Waals Forces: A Handbook for Biologists, Chemists, Engineers and Physicists. Cambridge University Press: 2005.CrossRefGoogle Scholar
Muthukumar, M., Physics of Charged Macromolecules: Synthetic and Biological Systems. Cambridge University Press: 2023.CrossRefGoogle Scholar
Duan, J. M.; Gregory, J., Coagulation by hydrolysing metal salts. Advances in Colloid and Interface Science 2003, 100, 475502.CrossRefGoogle Scholar
Phanphak, S.; Georgiades, P.; Li, R.; King, J.; Roberts, I. S.; Waigh, T. A., Super-resolution fluorescence microscopy study of the production of K1 capsules by Escherichia coli: Evidence for the differential distribution of the capsule at the poles and the equator of the cell. Langmuir 2019, 35 (16), 56355646.CrossRefGoogle ScholarPubMed
Wang, H.; Wilksch, J. J.; Lithgow, T.; Strugnell, R. A.; Gee, M. L., Nanomechanics measurements of live bacteria reveal a mechanism for bacterial cell protection. Soft Matter 2013, 9 (31), 7560.CrossRefGoogle Scholar
Dobrynin, A. V.; Rubinstein, M., Theory of polyelectrolytes in solutions and interfaces. Progress in Polymer Science 2005, 30 (11), 10491118.CrossRefGoogle Scholar
Zhulina, E. B.; Borisov, O. V., Polyelectrolytes grafted to curved surfaces. Macromolecules 1996, 29 (7), 26182626.CrossRefGoogle Scholar
Pincus, P., Colloid stabilization with grafted polyelectrolytes. Macromolecules 1991, 24 (10), 29122919.CrossRefGoogle Scholar
Zhulina, E. B.; Birshtein, T. M.; Borisov, O. V., Curved polymer and polyelectrolyte brushes beyond the Daoud-Cotton model. European Physical Journal 2006, 20 (3), 243.CrossRefGoogle ScholarPubMed
Telford, J. L.; Barocchi, M. A.; Margarit, I.; Rappuoli, R.; Grandi, G., Pili in Gram-positive pathogens. Nature Reviews Microbiology 2006, 4 (7), 509519.CrossRefGoogle ScholarPubMed
Jana, S.; Charlton, S. G. V.; Eland, L. E.; Burgess, J. G.; Wipat, A.; Curtis, T. P.; Chen, J., Nonlinear rheological characterisation of single species bacterial biofilms. npj Biofilms and Microbiomes 2020, 6 (1), 19.CrossRefGoogle Scholar
Borkovec, M.; Papastavrou, G., Interactions between solid surfaces with adsorbed polyelectrolytes of opposite charge. Current Opinion in Colloid and Interface Science 2008, 13 (6), 429437.CrossRefGoogle Scholar
Dorken, G.; Ferguson, G. P.; French, C. E.; Poon, W. C. K., Aggregation by depletion attractions in cultures of bacteria producing exopolysaccharides. Journal of the Royal Society – Interface 2012, 9 (77), 34903502.CrossRefGoogle Scholar
Foffi, G.; et al., Phase equilibria and glass transition in colloidal systems with short-ranged attractive interactions: Application to protein crystallization. Physical Review E 2002, 65 (3), 031407.CrossRefGoogle ScholarPubMed
El-Kirat-Chatel, S.; Beaussart, A.; Mathelie-Guinlet, M.; Dufrene, Y. F., The importance of force in microbial cell adhesion. Current Opinion in Colloid and Interface Science 2020, 47, 111117.CrossRefGoogle Scholar
Pizarro-Cerda, J.; Cossart, P., Bacterial adhesion and entry into host cells. Cell 2006, 124 (4), 715727.CrossRefGoogle ScholarPubMed
Ofek, I.; Bayer, E. A.; Abraham, S. N., Bacterial adhesion. In The Prokaryotes: Human Microbiology, DeLong, E. F., Lory, S., Stackebrandt, E., Thompson, F., Eds.; Springer: 2013; pp. 107123.CrossRefGoogle Scholar
Bullitt, E.; Makowski, L., Bacterial adhesion pili are heterologous assemblies of similar subunits. Biophysical Journal 1998, 74 (1), 623632.CrossRefGoogle ScholarPubMed
Thomas, W.; Forero, M.; Yakovenko, O.; Nilsson, L.; Vicini, P.; Sokurenko, E., Catch-bond model derived from allostery explains force-activated bacterial adhesion. Biophysical Journal 2006, 90 (3), 753764.CrossRefGoogle ScholarPubMed
Nyarko, A.; Barton, H.; Dhinojwala, A., Scaling down for a broader understanding of underwater adhesion – a case for the Caulobacter crescentus holdfast. Soft Matter 2016, 12 (45), 91329141.CrossRefGoogle ScholarPubMed
Secchi, E.; Vitale, A.; Mino, G. L.; Kanstler, V.; Eberl, L.; Rusconi, R.; Stocker, R., The effect of flow on swimming bacteria controls the initial colonization of curved surfaces. Nature Communications 2020, 11 (1), 2851.CrossRefGoogle ScholarPubMed
Lecuyer, S.; Rusconi, R.; Shen, Y.; Forsyth, A.; Vlamakis, H.; Kolter, R.; Stone, H. A., Shear stress increases the residence time of adhesion of Pseudomonas aeruginosa. Biophysical Journal 2011, 100 (2), 341350.CrossRefGoogle ScholarPubMed
Gu, J.; Valdevit, A.; Chou, T. M.; Libera, M., Substrate effects on cell-envelop deformation during early stage Staphylococcus aureus biofilm formation Soft Matter 2017, 13 (16), 29672976.CrossRefGoogle Scholar
Dolev, M. B.; Bernheim, R.; Guo, S.; Davies, P. L.; Braslavsky, I., Putting life on ice: Bacteria that bind to frozen water. Journal of the Royal Society – Interface 2016, 13 (121), 20160210.CrossRefGoogle ScholarPubMed
Feng, G.; Cheng, Y.; Wang, S. Y.; Borca-Tasciuc, D. A.; Worobo, R. W.; Moraru, C. I., Bacterial attachment and biofilm formation on surfaces are reduced by small-diameter nanoscale pores: How small is small enough?. npj Biofilms and Microbiomes 2015, 1, 15022.CrossRefGoogle Scholar
Chew, S. C.; Kundukad, B.; Teh, W. K.; Doyle, P. S.; Yang, L.; Rice, S. A.; Kjelleberg, S., Mechanical signatures of microbial biofilms in micropillar-embedded growth chambers. Soft Matter 2016, 12 (23), 5224.CrossRefGoogle ScholarPubMed

Suggested Reading

Edelstein-Keshet, L., Mathematical Models in Biology. SIAM Classics: 2005. Excellent pedagogic account of reaction-diffusion equations.CrossRefGoogle Scholar
Hillen, T.; Leonard, I. E.; van Rossel, H., Partial Differential Equations: Theory and Completely Solved Problems. FriesenPress: 2009. A good place to learn some of the mathematics relevant to reaction-diffusion equations.Google Scholar
Mendez, V.; Fedotov, S., Reaction-transport Systems: Mesoscopic Foundations, Fronts and Spatial Instabilities. Springer: 2010. A challenging mathematical book that considers how to generalize reaction-diffusion equations to include the anomalous transport kinetics that are common in biology.CrossRefGoogle Scholar
Pismen, L., Active Matter Within and Around Us. Springer: 2021. Contains an interesting account of reaction-diffusion equations relevant to biophysics.CrossRefGoogle Scholar

References

Fall, C. P.; Marland, E. S.; Wagner, J. M.; Tyson, J. T., Computational Cell Biology. Springer: 2003.Google Scholar
Hillen, T.; Leonard, I. E.; van Rossel, H., Partial Differential Equations: Theory and Completely Solved Problems. Friesen Press: 2019.Google Scholar
Ben-Jacob, E.; Cohen, I.; Levine, H., Cooperative self-organization of microorganisms. Advances in Physics 2010, 49 (4), 395554.CrossRefGoogle Scholar
Keener, J.; Sneyd, J., Mathematical Physiology. Springer: 2009.CrossRefGoogle Scholar
Dieterle, P. B.; Amir, A., Diffusive wave dynamics beyond the continuum limit. Physical Review E 2021, 104 (1), 014406.CrossRefGoogle ScholarPubMed
Blee, J. A.; Roberts, I. S.; Waigh, T. A., Spatial propagation of electrical signals in circular biofilms. Physical Review E 2019, 100 (5-1), 052401.CrossRefGoogle ScholarPubMed
Akabuogu, E. U.; Martorelli, V.; Krasovec, R.; Roberts, I. S.; Waigh, T. A., Emergence of ion-channel mediated electrical oscillations in E. coli biofilms. eLife 2023, to appear.Google Scholar
Hennes, M.; Bender, N.; Cronenberg, T.; Welker, A.; Maier, B., Collective polarization dynamics in bacterial colonies signify the occurrence of distinct subpopulations. PLOS Biology 2023, 21 (1), e3001960.CrossRefGoogle ScholarPubMed
Cross, M.; Greenside, H., Pattern Formation Dynamics in Nonequilibrium Systems. Cambridge University Press: 2009.CrossRefGoogle Scholar
Palsson, E.; Lee, K. J.; Goldstein, R. E.; Franke, J.; Kessin, R. H.; Cox, E. C., Selection for spiral waves in the social amoebae Dictyostelium. Proceedings of the National Academy of Sciences of the United States of America 1997, 94 (25), 1371913723.CrossRefGoogle ScholarPubMed
Duran-Nebreda, S.; Pla, J.; Vidiella, B.; Pinero, J.; Conde-Pueyo, N.; Sole, R., Synthetic lateral inhibition in periodic pattern forming microbial colonies. ACS Synthetic Biology 2021, 10 (2), 277285.CrossRefGoogle ScholarPubMed
Karig, D.; Martini, M.; Weiss, R., Stochastic Turing patterns in a synthetic bacterial population. Proceedings of the National Academy of Sciences of the United States of America 2018, 115 (26), 65726577.CrossRefGoogle Scholar
Alon, U., An Introduction to Systems Biology: Design Principles of Biological Circuits. 2nd ed. CRC Press: 2020.Google Scholar
Pismen, L., Active Matter Within and Around Us: From Self-propelled Particles to Flocks and Living Forms. Springer: 2021.CrossRefGoogle Scholar
Asally, M.; Kittisopikul, M.; Rue, P.; Du, Y.; Hu, Z.; Cagatay, T.; Robinson, A. B.; Lu, H.; Garcia-Ojalvo, J.; Suel, G. M., Localised cell death focuses mechanical forces during 3D patterning in a biofilm. Proceedings of the National Academy of Sciences of the United States of America 2012, 109 (46), 1889118896.CrossRefGoogle Scholar
Erban, R.; Chapman, S. J., Stochastic Modelling of Reaction-diffuion Processes. Cambridge University Press: 2020.Google Scholar
Mendez, V.; Fedotov, S.; Horsthemke, W., Reaction-transport Systems: Mesoscopic Foundations, Fronts and Spatial Instabilities. Springer: 2012.Google Scholar
Waigh, T. A.; Korabel, N., Heterogeneous anomalous transport in cellular and molecular biology. Reports on Progress in Physics 2023, 86 (12), 126601.CrossRefGoogle ScholarPubMed

Suggested Reading

Broedersz, C. P.; MacKintosh, F. C., Modelling semi-flexible polymer networks. Reviews of Modern Physics 2014, 86 (3), 995. Overview of theoretical models for semi-flexible polymers that typically describe biopolymer gels reasonable well.CrossRefGoogle Scholar
Djabourov, M.; Nishinari, K.; Ross-Murphy, S., Physical Gels from Biological and Synthetic Polymers. Cambridge University Press: 2013. Slightly old-fashioned approach to the polymer theory, but lots of interesting examples of gel systems are included.CrossRefGoogle Scholar
Gong, J. P., Why are double network hydrogels so tough? Soft Matter 2010, 6 (12), 25832590. Explores some unusual phenomena found in composite polymeric hydrogels. There are many others.CrossRefGoogle Scholar
Muthukumar, M., Physics of Charged Macromolecules: Synthetic and Biological Systems. Cambridge University Press: 2023. Describes some modern developments in the physics of charged polymers.CrossRefGoogle Scholar
Rubinstein, M.; Colby, R. H., Polymer Physics. Oxford University Press: 2003. Simple overview of polymer physics applied to synthetic polymers including theories of gelation.CrossRefGoogle Scholar

References

Rubinstein, M.; Colby, R. H., Polymer Physics. Oxford University Press: 2003.CrossRefGoogle Scholar
de Gennes, P. G., Scaling Concepts in Polymer Physics. Cornell: 1979.Google Scholar
Waigh, T. A., The Physics of Living Processes. Wiley: 2014.CrossRefGoogle Scholar
Dobrynin, A. V.; Rubinstein, M., Theory of polyelectrolytes in solutions and interfaces. Progress in Polymer Science 2005, 30 (11), 10491118.CrossRefGoogle Scholar
Philips, R.; Kondev, J.; Theriot, J.; Garcia, H.; Kondev, J., Physical Biology of the Cell. Garland Science: 2012.CrossRefGoogle Scholar
Ramos-Leon, F.; Ramamurthi, K. S., Cytoskeletal proteins: Lessons from bacteria. Physical Biology 2022, 19, 021005.CrossRefGoogle ScholarPubMed
Cox, H.; Cao, M.; Xu, H.; Waigh, T. A.; Lu, J. R., Active modulation of states of prestress in self-assembled short peptide gels. Biomacromolecules 2019, 20 (4), 17191730.CrossRefGoogle ScholarPubMed
Cox, H.; Georgiades, P.; Xu, H.; Waigh, T. A.; Lu, J. R., Self-assembly of mesoscopic peptide surfactant fibrils investigated by STORM super-resolution fluorescence microscopy. Biomacromolecules 2017, 18 (11), 34813491.CrossRefGoogle ScholarPubMed
Cox, H.; Xu, H.; Waigh, T. A.; Lu, J. R., Single-molecule study of peptide gel dynamics reveals states of prestress. Langmuir 2018, 34 (48), 1467814689.CrossRefGoogle ScholarPubMed
Bensimon, D.; Croquette, V.; Allemand, J. F., Single-molecular Studies of Nucleic Acids and Their Proteins. Oxford University Press: 2019.Google Scholar
Pusey, P. N.; Van Megen, W., Dynamic light scattering by non-ergodic media. Physica A: Statistical Mechanics and Its Applications 1989, 157 (2), 705741.CrossRefGoogle Scholar
Winter, H. H.; Chambon, F., Analysis of the linear viscoelasticity of a cross-linking polymer at the gel point. Journal of Rheology 1986, 30 (2), 367382.CrossRefGoogle Scholar
Larsen, T. H.; Furst, E. M., Microrheology of the liquid-solid transition during gelation. Physical Review Letters 2008, 100 (14), 146001.CrossRefGoogle ScholarPubMed
van Oosten, A. S. G.; Chen, X.; Chin, L.; Cruz, K.; Patteson, A. E.; Pogoda, K.; Shenoy, V. B.; Janmey, P. A., Emergence of tissue-like mechanics from fibrous networks confined by close-packed cells. Nature 2019, 573 (7772), 96101.CrossRefGoogle ScholarPubMed
Gersappe, D., Molecular mechanisms of failure in polymer nanocomposites. Physical Review Letters 2002, 89 (5), 058301.CrossRefGoogle ScholarPubMed
Dannert, C.; Stokke, B. T.; Dias, R. S., Nanoparticle-hydrogel composites. Polymer 2019, 11 (2), 275.CrossRefGoogle ScholarPubMed
Even, C.; Marliere, C.; Ghigo, J. M.; Allain, J. M.; Marcellan, A.; Raspaud, E., Recent advances in studying single bacteria and biofilm mechanics. Advances in Colloid and Interface Science 2017, 247, 573588.CrossRefGoogle ScholarPubMed
Jana, S.; Charlton, S. G. V.; Eland, L. E.; Burgess, J. G.; Wipat, A.; Curtis, T. P.; Chen, J., Nonlinear rheological characterisation of single species bacterial biofilms. npj Biofilms and Microbiomes 2020, 6 (1), 19.CrossRefGoogle Scholar
Lieleg, O.; Caldara, M.; Baumgartel, R.; Ribbeck, K., Mechanical robustness of Pseudomonas aeruginosa biofilms. Soft Matter 2011, 7 (7), 33073314.CrossRefGoogle ScholarPubMed
Horvat, M.; Pannuri, A.; Romero, T.; Dogsa, I.; Stopar, D., Viscoelastic response of E. coli biofilms to genetically altered expression of extracellular matrix components. Soft Matter 2019, 15 (25), 5042.CrossRefGoogle ScholarPubMed
Broedersz, C. P.; MacKintosh, F. C., Modelling semiflexible polymer networks. Review of Modern Physics 2014, 88, 039903.CrossRefGoogle Scholar
Wilking, J. N.; Angelini, T. E.; Seminara, A.; Brenner, M. P.; Weitz, D. A., Biofilms as complex fluids. MRS Bulletin 2011, 36 (5), 385.CrossRefGoogle Scholar
Wen, Q.; Basu, A.; Janmey, P. A.; Yodh, A. G., Non-affine deformations in polymer hydrogels. Soft Matter 2012, 8, 80398049.CrossRefGoogle ScholarPubMed
Muthukumar, M., Physics of Charged Macromolecules: Synthetic and Biological Systems. Cambridge University Press: 2023.CrossRefGoogle Scholar
Rubinstein, M.; Colby, R. H.; Dobrynin, A. V.; Joanny, J. F., Elastic modulus and equilibrium swelling of polyelectrolyte gels. Macromolecules 1996, 29 (1), 398406.CrossRefGoogle Scholar
Ethier, C. R.; Simmons, C. A., Introductory Biomechanics: From Cells to Organisms. Cambridge University Press: 2008.Google Scholar

Suggested Reading

Berg, J. C., An Introduction to Interfaces and Colloids: The Bridge to Nanoscience. World Scientific: 2009. Well-explained pragmatic account of colloidal science.CrossRefGoogle Scholar
Gazezelli, E., A Physical Introduction to Suspension Dynamics. Cambridge University Press: 2011. The majority of bacteria sediment as their default mode of transport (e.g. S. aureus) due to their relatively large colloidal size and their density compared with water (specifically they are non-Brownian colloids). Thus, active motility is required for a stable liquid colloidal phase of bacteria to be achieved and sedimentation is common.CrossRefGoogle Scholar
Israelachvili, J. N., Intermolecular Surfaces and Forces, 3rd ed. Academic Press: 2011. Classic account of mesoscopic forces.Google Scholar
Mewis, J.; Wagner, N., Colloidal Suspension Rheology. Cambridge University Press: 2012. Excellent discussion of synthetic colloidal rheology.Google Scholar

References

Royall, C. P.; Williams, S. R.; Tanaka, H., Vitrification and gelation in sticky spheres. The Journal of Chemical Physics 2018, 148, 044501.CrossRefGoogle ScholarPubMed
Berg, J. C., An Introduction to Interface and Colloids: The Bridge to Nanoscience. World Scientific: 2010.Google Scholar
Mewis, J.; Wagner, N. J., Colloidal Suspension Rheology. Cambridge University Press: 2011.CrossRefGoogle Scholar
Goodwin, J. W.; Hughes, R. W., Rheology for Chemists: An Introduction. Royal Society of Chemistry: 2008.Google Scholar
Cates, M. E.; Fuchs, M.; Kroy, K.; Poon, W. C. K.; Puertas, A. M., Theory and simulation of gelation, arrest and yielding in attracting colloids. Journal of Physics: Condensed Matter 2004, 16 (42), S4861.Google Scholar
Carrier, V.; Petekidis, G., Nonlinear rheology of colloidal glasses of soft thermosensitive microgel particles. Journal of Rheology 2009, 53 (2), 245.CrossRefGoogle Scholar
Schlomann, B. H.; Parthasarathy, R., Gut bacterial aggregates as living gels. eLife 2021, 10, 71105.CrossRefGoogle ScholarPubMed
Vlassopoulos, D.; Cloitre, M., Tunable rheology of dense soft deformable colloids. Current Opinion in Colloid and Interface Science 2014, 19 (6), 561574.CrossRefGoogle Scholar
Jana, S.; Charlton, S. G. V.; Eland, L. E.; Burgess, J. G.; Wipat, A.; Curtis, T. P.; Chen, J., Nonlinear rheological characterisation of single species bacterial biofilms. npj Biofilms and Microbiomes 2020, 6, 19.CrossRefGoogle Scholar
Cipelletti, L.; Ramos, L., Slow dynamics in glasses, gels and foams. Current Opinion in Colloid and Interface Science 2002, 7 (3–4), 228234.CrossRefGoogle Scholar
Ahuja, A.; Potanin, A.; Joshi, Y. M., 2 step yielding in soft materials. Advances in Colloid and Interface Science 2020, 282, 102179.CrossRefGoogle Scholar
Kim, J.; Merger, D.; Wilhelm, M.; Helgeson, M. E., Microstructure and nonlinear signatures of yielding in a heterogeneous colloidal gel under large amplitude oscillatory shear. Journal of Rheology 2014, 58 (5), 1359.CrossRefGoogle Scholar
Koumakis, N.; Petekidis, G., Two step yielding in attractive colloids: Transition from gels to attractive glasses. Soft Matter 2011, 7 (6), 24562470.CrossRefGoogle Scholar
Laurati, M.; Petekidis, G.; Koumakis, N.; Cardinaux, F.; Schofield, A. B.; Brader, J. M.; Fuchs, M.; Egelhaaf, S. U., Structure, dynamics and rheology of colloid-polymer mixtures: From liquids to gels. Journal of Chemical Physics 2009, 130 (13), 134907.CrossRefGoogle ScholarPubMed
Ballesta, P., Wall slip and flow of concentrated hard-sphere colloidal suspensions. Journal of Rheology 2012, 56 (5), 1005.CrossRefGoogle Scholar
Solomon, M. J.; Spicer, P. T., Microstructural regimes of colloidal rod suspensions, gels and glasses. Soft Matter 2010, 6 (7), 13911400.CrossRefGoogle Scholar
Collings, P. J.; Goodby, J. W., Introduction to Liquid Crystals: Chemistry and Physics. CRC Press: 2019.CrossRefGoogle Scholar
Pusey, P. N.; Van Megen, W., Phase behaviour of concentrated suspensions of nearly hard colloidal spheres. Nature 1986, 320 (6060), 340342.CrossRefGoogle Scholar
Witten, T. A.; Sander, L. M., Diffusion-limited aggregates, a kinetic critical phenomenon. Physical Review Letters 1981, 47 (19), 1400.CrossRefGoogle Scholar
Lin, M. Y.; Lindsay, H. M.; Weitz, D. A.; Ball, R. C.; Klein, R.; Meakin, P., Universality in colloid aggregation. Nature 1989, 339, 360362.CrossRefGoogle Scholar
Vassallo, L.; Hansmann, D.; Braunstein, L. A., On the growth of non-motile bacteria colonies. The European Physical Journal B 2019, 92, 216.CrossRefGoogle Scholar
Chen, D. T. N.; Lau, A. W. C.; Hough, L. A.; Islam, M. F.; Goulian, M.; Lubensky, T. C.; Yodh, A. G., Fluctuations and rheology in active bacterial suspensions. Physical Review Letters 2007, 99 (14), 148302.CrossRefGoogle ScholarPubMed
Solon, A. P.; Fily, Y.; Baskaran, A.; Cates, M. E.; Kafri, Y.; Kardar, M.; Tailleur, J., Pressure is not a state function of generic active fluids. Nature Physics 2015, 11 (8), 673678.CrossRefGoogle Scholar
Vissers, T.; Brown, A. T.; Koumakis, N.; Dawson, A.; Hermes, M.; Schwarz-Linek, J.; Schofield, A. B.; French, J. M.; Koustos, V.; Arlt, J.; Martinez, V. A.; Poon, W. C. K., Bacteria as living patchy colloids: Phenotypic heterogeneity in surface adhesion. Science Advances 2018, 4 (4), eaao1170.CrossRefGoogle ScholarPubMed

Suggested Reading

Collings, P. J.; Goodby, J. W. Introduction to Liquid Crystals: Chemistry and Physics, 2nd ed. CRC Press: 2019. Simple introduction to liquid crystalline materials.CrossRefGoogle Scholar
Pismen, L., Active Matter Within and Around Us. Springer: 2021. Excellent pedagogic introduction to active matter.CrossRefGoogle Scholar

References

Chaikin, P. M.; Lubensky, T. C., Principles of Condensed Matter Physics. Cambridge University Press: 1995.CrossRefGoogle Scholar
Collings, P. J.; Goodby, J. W., Introduction to Liquid Crystals: Chemistry and Physics. CRC Press: 2019.CrossRefGoogle Scholar
Neville, A. C., Biology of Fibrous Composites. Cambridge University Press: 1993.CrossRefGoogle Scholar
Aranson, I. S., Bacterial active matter. Reports on Progress in Physics 2022, 85 (7), 076601.CrossRefGoogle ScholarPubMed
de Gennes, P. G.; Prost, J., The Physics of Liquid Crystals. Oxford University Press: 1995.Google Scholar
Lakey, C. C.; Turner, M. S., Emergent ordering of microswimmers in smectic liquid crystals. Artificial Life and Robotics 2022, 27 (4), 218225.CrossRefGoogle Scholar
Dierking, I., Textures of Liquid Crystals. Wiley: 2003.CrossRefGoogle Scholar
Vroege, G. J.; Lekkerkerker, H. N. W., Phase transitions in lyotropic colloidal and polymeric liquid crystals. Reports on Progress in Physics 1992, 55 (8), 12411309.CrossRefGoogle Scholar
Marchetti, M. C.; Joanny, J. F.; Ramaswamy, S.; Liverpool, T. B.; Prost, J.; Rao, M.; Simha, R. A., Hydrodynamics of soft active matter. Review of Modern Physics 2013, 85 (3), 1143.CrossRefGoogle Scholar
Tayar, A. M.; Hagan, M. F.; Dogic, Z., Active liquid crystals powered by force-sensing DNA-motor clusters. PNAS 2021, 118 (30), 110.CrossRefGoogle ScholarPubMed
Andreotti, B.; Forterre, Y.; Pouliquen, O., Granular Media: Between Fluid and Solid. Cambridge University Press: 2013.CrossRefGoogle Scholar
Pismen, L., Active Matter Within and Around Us: From Self-propelled Particles to Flocks and Living Forms. Springer: 2021.CrossRefGoogle Scholar
Hartmann, R.; Singh, P. K.; Pearce, P.; Mok, R.; Song, B.; Diaz-Pascual, F.; Dunkel, J.; Drescher, K., Emergence of three-dimensional order and structure in growing biofilms. Nature Physics 2019, 15 (3), 251256.CrossRefGoogle ScholarPubMed
Beroz, F.; Yan, J.; Meir, Y.; Sabass, B.; Stone, H. A.; Bassler, B. L.; Wingreen, N. S., Verticalization of bacterial biofilms. Nature Physics 2018, 14 (9), 954960.CrossRefGoogle ScholarPubMed
Qin, B.; Fei, C.; Bridges, A. A.; Mashruwala, A. A.; Stone, H. A.; Wingreen, N. S.; Bassler, B. L., Cell position fates and collective fountain flow in bacterial biofilms revealed by light-sheet microscopy. Science 2020, 369 (6499), 7177.CrossRefGoogle ScholarPubMed
Pearce, P.; Song, B.; Skinner, D. J.; Mok, R.; Hartmann, R.; Singh, P. K.; Jeckel, H.; Oishi, J. S.; Drescher, K.; Dunkel, J., Flow-induced symmetry breaking in growing bacterial biofilms. Physical Review Letters 2019, 123 (25), 258101.CrossRefGoogle ScholarPubMed
Yan, J.; Nadell, C. D.; Stone, H. A.; Wingreen, N. S.; Bassler, B. L., Extracellular-matrix-mediated osmotic pressure drives Vibrio cholerae biofilm expansion and cheater exclusion. Nature Communications 2017, 8 (1), 327.CrossRefGoogle ScholarPubMed
Volfson, D.; Cookson, S.; Hasty, J.; Tsimring, L. S., Biomechanical ordering of dense cell populations. PNAS 2008, 105 (40), 1534615351.CrossRefGoogle ScholarPubMed
van Houdt, R.; Michiels, C. W., Role of bacterial cell surface structures in Escherichia coli biofilm formation. Research in Microbiology 2005, 156 (5–6), 626633.CrossRefGoogle ScholarPubMed
Li, H.; Shi, X. Q.; Huang, M.; Chen, X.; Xiao, M.; Liu, C.; Chate, H.; Zhang, H. P., Data-driven quantitative modeling of bacterial active nematics. PNAS 2019, 116 (3), 777785.CrossRefGoogle ScholarPubMed
Meacock, O. J.; Doostmohammadi, A.; Foster, K. R.; Yeomans, J. M.; Durham, W. M., Bacteria solve the problem of crowding by moving slowly. Nature Physics 2020, 17 (2), 205210.CrossRefGoogle Scholar
Copenhagen, K.; Alert, R.; Wingreen, N. S.; Shaevitz, J. W., Topological defects promote layer formation in Myxococcus xanthus colonies. Nature Physics 2020, 17 (2), 211215.CrossRefGoogle Scholar
Dogsa, I.; Kriechbaum, M.; Stopar, D.; Laggner, P., Structure of bacterial extracellular polymeric substances at different pH values as determined by SAXS. Biophysical Journal 2005, 89 (4), 27112720.CrossRefGoogle ScholarPubMed
Morris, E. R.; Nishinari, K.; Rinaudo, M., Gelation of gellan – a review. Food Hydrocolloids 2012, 28 (2), 373411.CrossRefGoogle Scholar
Cox, H.; Xu, H.; Waigh, T. A.; Lu, J. R., Single-molecule study of peptide gel dynamics reveals states of prestress. Langmuir 2018, 34 (48), 1467814689.CrossRefGoogle ScholarPubMed
Cox, H.; Cao, M.; Xu, H.; Waigh, T. A.; Lu, J. R., Active modulation of states of prestress in self-assembled short peptide gels. Biomacromolecules 2019, 20 (4), 17191730.CrossRefGoogle ScholarPubMed
Mizuno, D.; Head, D. A.; MacKintosh, F. C.; Schmidt, C. F., Active and passive microrheology in equilibrium and nonequilibrium systems. Macromolecules 2008, 41 (19), 71947202.CrossRefGoogle Scholar

Suggested Reading

Lauga, E., The Fluid Dynamics of Cell Motility. Cambridge University Press: 2020. Excellent pedagogic account of the hydrodynamics of microorganisms.CrossRefGoogle Scholar

References

Guyon, E.; Hulin, J. P.; Petit, L.; Mitescu, C. D., Physical Hydrodynamics, 2nd ed. Oxford University Press: 2015.CrossRefGoogle Scholar
Israelachvili, J. N., Intermolecular and Surface Forces. Academic Press: 2011.Google Scholar
Purcell, E. M., Life at low Reynolds number. American Journal of Physics 1977, 45 (1), 311.CrossRefGoogle Scholar
Davidson, P., Turbulence: An Introduction for Scientists and Engineers. Oxford University Press: 2015.CrossRefGoogle Scholar
Pismen, L., Active Matter Within and Around Us: From Self-propelled Particles to Flocks and Living Forms. Springer: 2021.CrossRefGoogle Scholar
Raissi, M.; Yazdani, A.; Karniadakis, G. E., Hidden fluid mechanics: Learning velocity and pressure fields from flow visualizations. Science 2020, 367 (6481), 10261030.CrossRefGoogle ScholarPubMed
Baydin, A. G.; Pearlmutter, B. A.; Radul, A. A.; Siskind, J. M., Automatic differentiation in machine learning: A survey. Journal of Machine Learning Research 2018, 18 (1), 143.Google Scholar
Pozrikidis, C., Introduction to Theoretical and Computation Fluid Dynamics. Oxford University Press: 2011.Google Scholar
Lauga, E., The Fluid Dynamics of Cell Motility. Cambridge University Press: 2020.CrossRefGoogle Scholar
Aranson, I. S., Bacterial active matter. Reports on Progress in Physics 2022, 85 (7), 076601.CrossRefGoogle ScholarPubMed
Greenspan, R. J., An Introduction to Nervous Systems. Cold Harbor Spring: 2007.Google Scholar

Suggested Reading

Coussot, P., Rheophysics: Matter in All its States. Springer: 2016. A useful introduction to the field of rheology.Google Scholar
Goodwin, J. W.; Hughes, R. W., Rheology for Chemists: An Introduction, Royal Society of Chemistry: 2008. Excellent introduction to rheological phenomena with simple physical models. Since viscoelasticity is a generalized form of fluid mechanics, the literature can be formidably mathematical, but this is an approachable introduction.Google Scholar
Mewis, J.; Wagner, N. J. Colloidal Suspension Rheology. Cambridge University Press: 2011. Bacterial cells are examples of colloids. The book provides inspiration from studies of analogous synthetic colloidal materials.CrossRefGoogle Scholar

References

Goodwin, J. W.; Hughes, R. W., Rheology for Chemists: An Introduction. Royal Society of Chemistry: 2008.Google Scholar
Larson, R. G., The Structure and Rheology of Complex Fluids. Oxford University Press: 1999.Google Scholar
de Gennes, P. G.; Prost, J., The Physics of Liquid Crystals. Oxford University Press: 1995.Google Scholar
Waigh, T. A., Microrheology of complex fluids. Reports on Progress in Physics 2005, 68 (3), 685.CrossRefGoogle Scholar
Waigh, T. A., Advances in the microrheology of complex fluids. Reports on Progress in Physics 2016, 79 (7), 074601.CrossRefGoogle ScholarPubMed
Toda, K.; Furuse, H.; Amari, T.; Wei, X., Cell concentration dependence of dynamic viscoelasticity of Escherichia coli culture suspensions. Journal of Fermentation and Bioengineering 1997, 85 (4), 410415.CrossRefGoogle Scholar
Dunkel, J.; Heidenreich, S.; Drescher, K.; Wensick, H. H.; Bar, M.; Goldstein, R. E., Fluid mechanics of bacterial turbulence. Physical Review Letters 2013, 110 (22), 228102.CrossRefGoogle Scholar
Malm, A. V.; Waigh, T. A., Elastic turbulence in entangled semi-dilute DNA solutions measured with optical coherence tomography velocimetry. Scientific Reports 2017, 7 (1), 1186.CrossRefGoogle ScholarPubMed
Beckwith, J. K.; Ganesan, M.; VanEpps, J. S.; Kumar, A.; Solomon, M. J., Rheology of Candida albicans fungal biofilms. Journal of Rheology 2022, 66 (4), 683697.CrossRefGoogle Scholar

Suggested Reading

Alon, U.; Introduction to Systems Biology. CRC Press: 2020. Classic introduction to some of the phenomena observed in systems biology.Google Scholar
Ingalls, B. P. Mathematical Modelling in Systems Biology: An Introduction. MIT Press: 2013. A more mathematical introduction than Alon’s, but the explanations are still clear.Google Scholar

References

Alon, U., An Introduction to Systems Biology: Design Principles of Biological Circuits, 2nd ed. CRC Press: 2020.Google Scholar
Ingalls, B. P., Mathematical Modeling in Systems Biology: An Introduction. MIT Press: 2013.Google Scholar
Chen, A. Y.; Deng, Z.; Billings, A. N.; Seker, U. O. S.; Lu, M. Y.; Citorik, R. J.; Zakeri, B.; Lu, T. K., Synthesis and patterning of tunable multiscale materials with engineered cells. Nature Materials 2014, 13 (5), 515523.CrossRefGoogle ScholarPubMed
Fang, K.; Park, O. J.; Hong, S. H., Controlling biofilms using synthetic biology approaches. Biotechnology Advances 2020, 40, 107518.CrossRefGoogle ScholarPubMed
Antony, C.; Liljeruhm, J.; Forster, E., Synthetic Biology: A Lab Manual. World Scientific: 2014.Google Scholar
Gardner, T. S.; Cantor, C. R.; Collins, J., Construction of a genetic toggle switch in Escherichia coli. Nature 2000, 403 (6767), 339342.CrossRefGoogle ScholarPubMed
Elowitz, M. B.; Leibler, S., A synthetic oscillatory network of transcriptional regulators. Nature 2000, 403 (6767), 335338.CrossRefGoogle ScholarPubMed
Storz, G.; Vogel, J.; Wassarman, K. M., Regulation by small RNAs in bacteria: Expanding frontiers. Molecular Cell 2011, 43 (6), 880891.CrossRefGoogle ScholarPubMed

Suggested Reading

Nelson, P. Physical Models of Living Systems. Freeman: 2015. Pedagogic account of modelling techniques with an extensive discussion of the toggle switch.Google Scholar
Strogatz, S. Non-linear Dynamics and Chaos, 2nd ed. Westview Press: 2015. Classic overview of non-linear mathematics applied to some fascinating physical phenomena. The problem sets are extremely valuable.Google Scholar

References

Strogatz, S. H., Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry and Engineering, 2nd ed.; Westview Press: 2014.Google Scholar
Ingalls, B. P., Mathematical Modeling in Systems Biology: An Introduction. MIT Press: 2013.Google Scholar
Nelson, P., Physical Models of Living Systems. W.H. Freeman: 2015.Google Scholar
Gardner, T. S.; Cantor, C. R.; Collins, J., Construction of a genetic toggle switch in Escherichia coli. Nature 2000, 403 (6767), 339342.CrossRefGoogle ScholarPubMed

Suggested Reading

Gunning, P. A.; Kirby, A. R.; Morris, V. J., Atomic Force Microscopy for Biologists. Imperial College Press: 1999. Lots of useful tips for sample preparation during AFM experiments.Google Scholar
Mersk, J., An Introduction to Optical Microscopy, 2nd ed. Cambridge University Press: 2019. Optical microscopes are primary tools to study the behaviour of bacteria and confocal microscopy is the standard method used with biofilms. The optical physics of such microscopes is covered in detail.Google Scholar
Waigh, T. A., Advances in the microrheology of complex fluids. Reports on Progress in Physics 2016, 79 (7), 074601. Reviews some applications of microrheology in complex fluids which include biofilms.CrossRefGoogle ScholarPubMed
Waigh, T. A., The Physics of Living Processes. Wiley: 2014. Contains a review of some standard experimental techniques important in biological physics.CrossRefGoogle Scholar
Zaccai, N. R.; Serdyuk, I. N.; Zaccai, J., Methods in Molecular Biophysics: Structure, Dynamics, Function for Biology and Medicine, 2nd ed. Cambridge University Press: 2017. Broad review of physical techniques used in molecular biology experiments.CrossRefGoogle Scholar

References

Jensen, H. J., Complexity Science: The Study of Emergence. Cambridge University Press: 2023.Google Scholar
Waigh, T. A., The Physics of Living Processes. Wiley: 2014.CrossRefGoogle Scholar
Leake, M. C., Single-Molecular Cellular Biophysics. Cambridge University Press: 2013.CrossRefGoogle Scholar
Zaccai, N. R.; Serdyuk, I. N.; Zaccai, J., Methods in Molecular Biophysics. Cambridge University Press: 2017.CrossRefGoogle Scholar
Locke, A.; Fitzgerald, S.; Mahadevan-Jansen, A., Advances in optical detection of human associated pathogenic bacteria. Molecules 2020, 25 (22), 5256.CrossRefGoogle ScholarPubMed
Xu, Y.; Dhaouadi, Y.; Stoodley, P.; Ren, D., Sensing the unreachable: Challenges and opportunities in biofilm detection. Current Opinion in Biotechnology 2020, 64, 7984.CrossRefGoogle ScholarPubMed
Hart, J. W.; Waigh, T. A.; Lu, J. R.; Roberts, I. S., Microrheology and spatial heterogeneity of Staphylococcus aureus biofilms modulated by hydrodynamic shear and biofilm-degrading enzymes. Langmuir 2019, 35 (9), 35533561.CrossRefGoogle ScholarPubMed
Rogers, S. S.; van der Walle, C.; Waigh, T. A., Microrheology of bacterial biofilms in vitro: Staphylococcus aureus and Pseudomonas aeruginosa. Langmuir 2008, 24 (23), 1354913555.CrossRefGoogle ScholarPubMed
Novick, A.; Szilard, L., Experiments with the chemostat on spontaneous mutations of bacteria. Proceedings of the National Academy of Sciences of the United States of America 1950, 36 (12), 708719.CrossRefGoogle ScholarPubMed
McBain, A. J., In vitro biofilm models. In Advances in Applied Microbiology, Laskin, A. I., Ed. Elsevier: 2009; Vol. 69, pp. 100126.Google Scholar
Capuccino, J. G.; Welsh, C., Microbiology: A Laboratory Manual. Pearson: 2018.Google Scholar
Torok, E.; Moran, E.; Cooke, F., Oxford Handbook of Infectious Diseases and Microbiology. Oxford University Press: 2016.CrossRefGoogle Scholar
Woyke, T.; Doud, D. F. R.; Schulz, F., The trajectory of microbial single-cell sequencing. Nature Methods 2017, 14 (11), 10451054.CrossRefGoogle ScholarPubMed
Balagadde, F. K.; You, L.; Hansen, C. L.; Arnold, F. H.; Quake, S. R., Long-term monitoring of bacteria undergoing programmed population control in a microchemostat. Science 2005, 309 (5731), 137140.CrossRefGoogle Scholar
Connell, J. L.; Ritschdorff, E. T.; Whiteley, M.; Shear, J. B., 3D printing of microscopic bacterial communities. Proceedings of the National Academy of Sciences of the United States of America 2013, 110 (46), 1838018385.CrossRefGoogle ScholarPubMed
Waigh, T. A.; Rau, C., X-ray and neutron imaging with colloids. Current Opinion in Colloid and Interface Science 2012, 17 (1), 1322.CrossRefGoogle Scholar
deBoer, J. F.; Milner, T. E.; vanGemert, M. J. C.; Nelson, J. S., Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography. Optics Letters 1997, 22 (12), 934936.CrossRefGoogle Scholar
Pasquina-Lemonche, L.; et al., The architecture of the Gram positive bacterial cell wall. Nature 2020, 582 (7811), 294297.CrossRefGoogle ScholarPubMed
Phanphak, S.; Georgiades, P.; Li, R.; King, J.; Roberts, I. S.; Waigh, T. A., Super-resolution fluorescence microscopy study of the production of K1 capsules by Escherichia coli: Evidence for the differential distribution of the capsule at the poles and the equator of the cell. Langmuir 2019, 35 (16), 56355646.CrossRefGoogle ScholarPubMed
Morris, V. J.; Kirby, A. R.; Gunning, A. P., Atomic Force Microscopy for Biologists, 2nd ed. Imperial College Press: 2009.CrossRefGoogle Scholar
Lau, P. C. Y.; Dutcher, J. R.; Beveridge, T. J.; Lam, J. S., Absolute quantitation of bacterial biofilm adhesion and viscoelasticity by microbead force spectroscopy. Biophysical Journal 2009, 96 (7), 29352948.CrossRefGoogle ScholarPubMed
Esteban-Ferrer, D.; Edwards, M. A.; Fumagalli, L.; Juarez, A.; Gomila, G., Electric polarization properties of single bacteria measured with electrostatic force microscopy. ACS Nano 2014, 8 (10), 98439849.CrossRefGoogle ScholarPubMed
Mertz, J., Introduction to Optical Microscopy. Cambridge University Press: 2019.CrossRefGoogle Scholar
Drescher, K.; Dunkel, J.; Nadell, C. D.; Bassler, B. L., Architectural transitions in Vibrio cholerae biofilms at single-cell resolution. Proceedings of the National Academy of Sciences of the United States of America 2016, 113 (14), E2066–E2072.Google ScholarPubMed
Hauth, J.; Chodorski, J.; Wirsen, A.; Ulber, R., Improved FRAP measurements on biofilms. Biophysical Journal 2020, 118 (10), 23542365.CrossRefGoogle ScholarPubMed
Golding, I.; Paulsson, J.; Zawilski, S. M.; Cox, E. C., Real-time kinetics of gene activity in individual bacterial cells. Cell 2005, 123 (6), 10251036.CrossRefGoogle Scholar
Zhao, X.; Hilliard, L. R.; Mechery, S. J.; Wang, Y.; Bagwe, R. P.; Jin, S.; Tan, W., A rapid bioassay for single bacterial cell quantitation using bioconjugated nanoparticles. Proceedings of the National Academy of Sciences of the United States of America 2004, 101 (42), 1502715032.CrossRefGoogle ScholarPubMed
Aglott, J. W.; Hardie, K. R., Fluorescent nanosensors reveal dynamics in pH gradients during biofilm formation. npj Biofilms and Microbiomes 2021, 7, 50.Google Scholar
Li, R.; Georgiades, P.; Cox, H.; Phanphak, S.; Roberts, I. S.; Waigh, T. A.; Lu, J. R., Quenched stochastic optical reconstruction microscopy (qSTORM) with graphene oxide. Scientific Reports 2018, 8 (1), 16928.CrossRefGoogle ScholarPubMed
Shi, H.; Shi, Q.; Grodner, B.; Lenz, J. S.; Zipfel, W. R.; Brito, I. L.; de Vlaminck, I., Highly multiplexed spatial mapping of microbial communities. Nature 2020, 588 (7839), 676681.CrossRefGoogle ScholarPubMed
Celli, J. P.; et al., Helicobacter pylori moves through mucus by reducing mucin viscoelasticity. Proceedings of the National Academy of Sciences of the United States of America 2009, 106 (34), 1432114326.CrossRefGoogle ScholarPubMed
Cox, H.; Georgiades, P.; Xu, H.; Waigh, T. A.; Lu, J. R., Self-assembly of mesoscopic peptide surfactant fibrils investigated by STORM super-resolution fluorescence microscopy. Biomacromolecules 2017, 18 (11), 34813491.CrossRefGoogle ScholarPubMed
Berk, V.; Fong, J. C. N.; Dempsey, G. T.; Develioglu, O. N.; Zhuang, X.; Liphardt, J.; Yildiz, F. H.; Chu, S., Molecular architecture and assembly principles of Vibrio cholerae biofilms. Science 2012, 337 (6091), 236239.CrossRefGoogle ScholarPubMed
Wagner, M.; Horn, H., OCT in biofilm research: A comprehensive review. Biotechnology and Bioengineering 2017, 114 (7), 1386.CrossRefGoogle ScholarPubMed
Gierl, L.; Stoy, K.; Faina, A.; Hora, H.; Wagner, M., An open-source robotic platform that enables automated monitoring of replicate biofilm cultivation using OCT. npj Biofilms and Microbiomes 2020, 6 (1), 18.CrossRefGoogle Scholar
White, B. R.; et al., In vivo dynamic human retinal blood flow imaging using ultra-high-speed spectral domain optical Doppler tomography. Optics Express 2003, 11 (25), 34903497.CrossRefGoogle Scholar
Murphy, D. B.; Davidson, M. W., Fundamentals of Light Microscopy and Electronic Imaging, 2nd ed. Wiley: 2012.CrossRefGoogle Scholar
Martinez, V. A.; et al., Differential dynamic microscopy: A high-throughput method for characterizing the motility of microorganisms. Biophysical Journal 2012, 103 (8), 16371647.CrossRefGoogle ScholarPubMed
Popescu, G., Quantitative Phase Imaging of Cells and Tissues. McGraw-Hill: 2011.Google Scholar
Miller, S. D.; Haddock, S. H. D.; Elvidge, C. D.; Lee, T. F., Detection of a bioluminescent milky sea from space. Proceedings of the National Academy of Sciences of the United States of America 2005, 102 (40), 1418114184.CrossRefGoogle ScholarPubMed
Hill, S. C.; et al., Real-time measurement of fluorescence spectra from single airborne biological particles. Field Analytical Chemistry and Technology 1999, 3 (4–5), 221239.3.0.CO;2-7>CrossRefGoogle Scholar
Giovannetti, V.; Lloyd, S.; Maccone, L., Advances in quantum metrology. Nature Photonics 2011, 5 (4), 222229.CrossRefGoogle Scholar
Chao, J. L.; Perevedentseva, E.; CHung, P. H.; Liu, K. K.; Cheng, C. Y.; Chang, C. C.; Cheng, C. L., Nanometer-sized diamond particle as a probe for biolabelling. Biophysical Journal 2007, 93 (6), 21992208.CrossRefGoogle Scholar
Le Sage, D.; et al., Optical magnetic imaging of living cells. Nature 2013, 496 (7446), 486.CrossRefGoogle ScholarPubMed
Taylor, M. A.; Janousek, J.; Daria, V.; Knittel, J.; Hage, B.; Bachor, H. A.; Bowen, W. P., Biological measurement beyond the quantum limit. Nature Photonics 2013, 7 (3), 229233.CrossRefGoogle Scholar
Taylor, M. A.; Bowen, W. P., Quantum metrology and its application in biology. Physics Reports 2016, 615 (5700), 159.CrossRefGoogle Scholar
Lubin, G.; Oron, D.; Rossman, U.; Tenne, R.; Yallapragada, V. J., Photon correlations in spectroscopy and microscopy. ACS Photonics 2022, 9, 28912904.CrossRefGoogle Scholar
Parson, W. W., Modern Optical Spectroscopy, 2nd ed. Springer: 2015.CrossRefGoogle Scholar
Lee, K. S.; et al., An automated Raman-based platform for the sorting of live cells by functional properties. Nature Microbiology 2019, 4 (6), 10351048.CrossRefGoogle ScholarPubMed
Hill, E. H.; Marzan, L. M., Toward plasmonic monitoring of surface effects on bacterial quorum sensing. Current Opinion in Colloid and Interface Science 2017, 32, 110.CrossRefGoogle Scholar
Bodelon, G.; et al., Detection and imaging of quorum sensing in P. aeruginosa biofilm communities by surface-enhanced resonance Raman scattering. Nature Materials 2016, 15 (11), 12031211.CrossRefGoogle Scholar
McNeil-Watson, F.; Tscharnuter, W.; Miller, J., A new instrument for the measurement of very small electrophoretic mobilities using phase analysis light scattering (PALS). Colloids and Surfaces A 1998, 140 (1–3), 5357.CrossRefGoogle Scholar
Waz, N. T.; et al., Influence of the polysaccharide capsule on the bactericidal activity of indolicidin on Streptococcus pneumoniae. Frontiers in Microbiology 2022, 13, 898815.CrossRefGoogle ScholarPubMed
Ashkin, A.; Dziedzic, J. M., Optical trapping and manipulation of viruses and bacteria. Science 1987, 235 (4795), 15171520.CrossRefGoogle ScholarPubMed
Uthe, B.; Sader, J. E.; Pelton, M., Optical measurement of the picosecond fluid mechanics in simple liquids generated by vibrating nanoparticles: A review. Reports on Progress in Physics 2022, 85 (10), 103001.CrossRefGoogle ScholarPubMed
Galy, O.; Latour-Lambert, P.; Zrelli, K.; Ghigo, J. M.; Beloin, C.; Henry, N., Mapping of bacterial biofilm local mechanics by magnetic microparticle actuation. Biophysical Journal 2012, 103 (6), 14001408.CrossRefGoogle ScholarPubMed
Haward, S. J., Microfluidic extensional rheometry using stagnation point flow. Biomicrofluidics 2016, 10 (4), 043401.CrossRefGoogle ScholarPubMed
Waigh, T. A., Advances in the microrheology of complex fluids. Reports on Progress in Physics 2016, 79 (7), 074601.CrossRefGoogle ScholarPubMed
Geisel, S.; Secchi, E.; Vermant, J., Experimental challenges in determining the rheological properties of bacterial biofilms. Interface Focus 2022, 12 (6), 20220032.CrossRefGoogle ScholarPubMed
Pavlovsky, L.; Younger, J. G.; Solomon, M. J., In situ rheology of Staphylococcus epidermidis bacterial biofilms. Soft Matter 2013, 9 (1), 122131.CrossRefGoogle ScholarPubMed
Sabass, B.; Koch, M. D.; Liu, G.; Shaevitz, J. W., Force generation by groups of migrating bacteria. Proceedings of the National Academy of Sciences of the United States of America 2017, 114 (28), 72667271.CrossRefGoogle ScholarPubMed
Separovic, F.; Hofferek, V.; Duff, A. P.; McConville, M. J.; Sani, M. A., In-cell DNP NMR reveals multiple targeting effect of antimicrobial peptide. Journal of Structural Biology: X 2022, 6 (12), 100074.Google ScholarPubMed
Seymour, J. D.; Gage, J. P.; Codd, S. L.; Gerlach, R., Anomalous fluid transport in porous media induced by biofilm growth. Physical Review Letters 2004, 93 (19), 198103.CrossRefGoogle ScholarPubMed
Van de Vyver, H.; et al., A novel mouse model of Staphylococcus aureus vascular graft infection: Noninvasive imaging of biofilm development in vivo. The American Journal of Pathology 2017, 187 (2), 268.CrossRefGoogle ScholarPubMed
Dunham, S. J. B.; Ellis, J. F.; Sweedler, J. V., Mass spectrometry imaging of complex microbial communities. Accounts of Chemical Research 2017, 50 (1), 96104.CrossRefGoogle ScholarPubMed
Etayash, H.; Khan, M. F.; Kaur, K.; Thundat, T., Microfluidic cantilever detects bacteria and measures their susceptibility to antibiotics in small confined volumes. Nature Communications 2016, 7, 12947.CrossRefGoogle ScholarPubMed
Azulay, D. N.; et al., Multiscale X-ray study of Bacillus subtilis biofilms reveals interlinked structural hierarchy and elemental heterogeneity. Proceedings of the National Academy of Sciences of the United States of America 2022, 119 (4), e2118107119.Google ScholarPubMed
Gong, H.; et al., Aggregated amphiphilic antimicrobial peptides embedded in bacterial membranes. ACS Applied Materials and Interfaces 2020, 12 (40), 4442044432.CrossRefGoogle ScholarPubMed
Dogsa, I.; Kriechbaum, M.; Stopar, D.; Laggner, P., Structure of bacterial extracellular polymeric substances at different pH values as determined by SAXS. Biophysical Journal 2005, 89 (4), 27112720.CrossRefGoogle ScholarPubMed
Chemla, Y., A new study of bacterial motion: Superconducting quantum interference device microscopy of magnetotactic bacteria. Biophysical Journal 1999, 76 (6), 33233330.CrossRefGoogle ScholarPubMed
Hsiao, W. W. W.; Hui, Y. Y.; Tsai, P. C.; Chang, H. C., Fluorescent nanodiamond: A versatile tool for long-term cell tracking, super-resolution imaging, and nanoscale temperature sensing. Accounts of Chemical Research 2016, 49 (3), 400407.CrossRefGoogle ScholarPubMed
Rosenblatt, C.; Torres de Araujo, F. F.; Frankel, R. B., Birefringence determination of magnetic moments of magnetotactic bacteria. Biophysical Journal 1982, 40 (1), 8385.CrossRefGoogle ScholarPubMed
Faivre, D.; Fischer, A.; Garcia-Rubio, I.; Mastrogiacomo, G.; Gehring, A. U., Development of cellular magnetic dipoles in magnetotactic bacteria. Biophysical Journal 2010, 99 (4), 12681273.CrossRefGoogle ScholarPubMed
Zvelebil, M. J.; Baum, J. O., Understanding Bioinformatics. Garland Science: 2007.CrossRefGoogle Scholar
Ceri, H.; Olson, M. E.; Stremick, C.; Read, R. R.; Morck, D.; Buret, A., The calgary biofilm device: New technology for rapid determination of antibiotic susceptibilities of bacterial biofilms. Journal of Clinical Microbiology 1999, 37 (6), 17711776.CrossRefGoogle ScholarPubMed
Evanko, D., Measuring a bacteria’s sweet tooth. Nature Methods 2005, 2 (2), 8889.CrossRefGoogle Scholar
Whiteley, M.; Bungera, G.; Bumgarner, R. E.; Passek, M. R.; Teltzel, G. M.; Lory, S.; Greenberg, E. P., Gene expression in P. aeruginosa biofilms. Nature 2001, 413 (6858), 860.CrossRefGoogle Scholar
Edgar, R.; et al., High-sensitivity bacterial detection using biotin-tagged phage and quantum-dot nanocomplexes. Proceedings of the National Academy of Sciences of the United States of America 2006, 103 (13), 48414845.CrossRefGoogle ScholarPubMed
Viovy, J. L., Electrophoresis of DNA and other polyelectrolytes: Physical mechanisms. Reviews of Modern Physics 2000, 72 (3), 813872.CrossRefGoogle Scholar
Castellarnau, M.; Errachid, A.; Madrid, C.; Juarez, A.; Samitier, J., Dielectrophoresis as a tool to characterize and differentiate isogenic mutants of Escherichia coli. Biophysical Journal 2006, 91 (10), 39373945.CrossRefGoogle ScholarPubMed
Dague, E.; Duval, J.; Jorand, F.; Thomas, F.; Gaboriaud, F., Probing surface structures of Shewanella spp. by microelectrophoresis. Biophysical Journal 2006, 90 (7), 26122621.CrossRefGoogle ScholarPubMed
Berg, H. C.; Turner, L., Torque generated by the flagellar motor of Escherichia coli. Biophysical Journal 1993, 65 (5), 22012216.CrossRefGoogle ScholarPubMed
Lewandowki, Z.; Beyenal, H., Fundamentals of Biofilm Research. CRC Press: 2013.CrossRefGoogle Scholar
Chen, C.; Smye, S. W.; Robinson, M. P.; Evans, J. A., Membrane electroporation theories: A review. Medical and Biological Engineering and Computing 2006, 44 (1–2), 514.CrossRefGoogle ScholarPubMed

Suggest Reading

Bishop, C. M., Pattern Recognition and Machine Learning. Springer: 2008. Accessible introduction to classical machine learning.Google Scholar
Chollet, F., Deep Learning with Python. Manning: 2018. Another practical introduction to neural network coding, slightly simpler than the Geron approach.Google Scholar
Geron, A., Hands on Machine Learning with Scikit-learn, Kera and TensorFlow. O’Reilly: 2019. The go to manual for practical aspects for coding machine learning algorithms and neural networks.Google Scholar
Goodfellow, I.; Bengio, Y.; Courville, A., Deep Learning: Adaptive Computation and Machine Learning. MIT Press: 2017. Good theoretical overview of deep learning including generative adversarial networks.Google Scholar
Murphy, K. P., Probabilistic Machine Learning: An Introduction. MIT Press: 2023. Excellent introduction to ML with an emphasis on Bayesian techniques.Google Scholar
Nielsen, A., Practical Time Series Analysis: Prediction with Statistics and Machine Learning. O’Reilly: 2019. Considers modern techniques to interpret time series data sets.Google Scholar
Zvelebil, M.; Baum, J. O., Understanding Bioinformatics. Garland Science: 2007. Excellent introduction to classical computational techniques in molecular biology.CrossRefGoogle Scholar

References

Bishop, C. M., Pattern Recognition and Machine Learning. Springer: 2006.Google Scholar
Goodfellow, I.; Bengio, Y.; Courville, A., Deep Learning. MIT Press: 2016.Google Scholar
Murphy, K. P., Probabilistic Machine Learning: An Introduction. MIT Press: 2022.Google Scholar
Jaynes, E. T.; Bretthorst, G. L., Probability Theory: The Logic of Science. Cambridge University Press: 2003.CrossRefGoogle Scholar
Cox, H.; Xu, H.; Waigh, T. A.; Lu, J. R., Single-molecule study of peptide gel dynamics reveals states of prestress. Langmuir 2018, 34 (48), 1467814689.CrossRefGoogle ScholarPubMed
Cox, H.; Cao, M.; Xu, H.; Waigh, T. A.; Lu, J. R., Active modulation of states of prestress in self-assembled short peptide gels. Biomacromolecules 2019, 20 (4), 17191730.CrossRefGoogle ScholarPubMed
Bapst, V.; et al., Unveiling the predictive power of static structure in glassy systems. Nature Physics 2020, 16 (4), 448454.CrossRefGoogle Scholar
Jumper, J.; et al., Highly accurate protein structure prediction with Alphafold. Nature 2021, 596 (7873), 583589.CrossRefGoogle ScholarPubMed
Han, D.; Korabel, N.; Chen, R.; Johnston, M.; Gavrilova, A.; Allan, V. J.; Fedotov, S.; Waigh, T. A., Deciphering anomalous heterogeneous intracellular transport with neural networks. eLife 2020, 9, e52224.CrossRefGoogle ScholarPubMed
Drori, I., The Science of Deep Learning. Cambridge University Press: 2022.CrossRefGoogle Scholar
Geron, A., Hands-on Machine Learning with Scikit-learn, Keras and TensorFlow. O’Reilly: 2019.Google Scholar
Hartmann, R.; Singh, P. K.; Pearce, P.; Mok, R.; Song, B.; Diaz-Pascual, F.; Dunkel, J.; Drescher, K., Emergence of three-dimensional order and structure in growing biofilms. Nature Physics 2019, 15 (3), 251256.CrossRefGoogle ScholarPubMed
Jeckel, H.; et al., Learning the space-time phase diagram of bacterial swarm expansion. Proceedings of the National Academy of Sciences of the United States of America 2019, 116 (5), 14891494.CrossRefGoogle ScholarPubMed
Dowling, J. E., The Retina: An Approachable Part of the Brain. Belknap Harvard: 2012.CrossRefGoogle Scholar
Newby, J. M.; Schaefer, A. M.; Lee, P. T.; Forest, M. G.; Lai, S. K., Convolutional neural networks automate detection for tracking of submicron-scale particles in 2D and 3D. Proceedings of the National Academy of Sciences of the United States of America 2018, 115 (36), 90269031.CrossRefGoogle ScholarPubMed
Helgadottir, S.; Argua, A.; Volpe, G., Digital video microscopy enhanced by deep learning. Optica 2019, 6 (4), 506.CrossRefGoogle Scholar
Zhang, M.; Zhang, J.; Wang, Y.; Wang, J.; Achimovich, A. M.; Acton, S. T.; Gahlmann, A., Non-invasive single-cell morphometry in living bacterial biofilms. Nature Communications 2020, 11 (1), 6151.CrossRefGoogle ScholarPubMed
Korabel, N.; Waigh, T. A.; Fedotov, S.; Allan, V. J., Non-Markovian intracellular transport with sub-diffusion and run-length dependent detachment rate. PLOS One 2018, 13 (11), e0207436.CrossRefGoogle ScholarPubMed
Korabel, N.; Clemente, G. D.; Han, D.; Feldman, F.; Millard, T. H.; Waigh, T. A., Hemocytes in Drosophila melanogaster embryos move via heterogeneous anomalous diffusion. Communications Physics 2022, 5 (1), 269.CrossRefGoogle Scholar
Wang, H.; et al., Early detection and classification of live bacteria using time lapse coherent imaging and deep learning. Light: Science and Applications 2020, 9 (1), 118.CrossRefGoogle ScholarPubMed
Swinnen, I. A. M.; Bernaerts, K.; Dens, E. J. J.; Geeraerd, A. H.; van Impe, J. F., Predictive modelling of the microbial lag phase: A review. International Journal of Food Microbiology 2004, 94 (2), 137159.CrossRefGoogle ScholarPubMed
Maquelin, K.; et al., Prospective study of the performance of vibrational spectroscopies for rapid identification of bacterial and fungal pathogens recovered from blood cultures. Journal of Clinical Microbiology 2003, 41 (1), 324329.CrossRefGoogle ScholarPubMed
Tamiev, D.; Furman, P. E.; Reuel, N. F., Automated classification of bacterial cell sub-populations with CNNs. PLOS One 2020, 15 (10), e0241200.CrossRefGoogle Scholar
Sajedi, H.; Mohammadipanah, F.; Pashaei, A., Image-processing based taxonomy analysis of bacterial macromorphology using machine-learning model. Multimedia Tools and Applications 2020, 79 (43–44), 3271132730.CrossRefGoogle Scholar
Sajedi, H.; Mohammadipanah, F.; Pashaei, A., Automated identification of myxobacterial genera using CNN. PLOS One 2019, 9 (1), 18238.Google Scholar
Dimauro, G.; Deperte, F.; Maglietta, R.; Bove, M.; La Gioia, F.; Reno, V.; Simone, L.; Gelardi, M., A novel approach for biofilm detection based on CNN. Electronics 2020, 9 (6), 881.CrossRefGoogle Scholar
Zvelebil, M. J.; Baum, J. O., Understanding Bioinformatics. Garland Science: 2007.CrossRefGoogle Scholar
Rychel, K.; Sastry, A. V.; Palsson, B. O., Machine learning uncovers independently regulated modules in the Bacillus subtilis transcriptome. Nature Communications 2020, 11 (1), 6338.CrossRefGoogle ScholarPubMed
Yan, J.; Bhadra, P.; Li, A.; Sethiya, P.; Qin, L.; Tai, H. K.; Wong, K. H.; Siu, S. W. I., Deep-Am PEP30: Improve short antimicrobial peptide predictions with deep learning. Molecular Therapy: Nucleic Acids 2020, 20, 882894.Google ScholarPubMed
Stokes, J. M.; et al., A deep learning approach to antibiotic discovery. Cell 2020, 180 (4), 688702.CrossRefGoogle ScholarPubMed
Bendtsen, J. D.; Nielsen, H.; von Heijne, G.; Brunak, S., Improved prediction of signal peptides: Signal P 3.0. Journal of Molecular Biology 2004, 340 (4), 783795.CrossRefGoogle Scholar
Fang, J.; Swain, A.; Unni, R.; Zhang, Y., Decoding optical data with machine learning. Lasers and Photonics Reviews 2021, 15 (2), 2000422.CrossRefGoogle ScholarPubMed
Goodacre, R.; Timmins, E. M.; Burton, R.; Kaderbhai, N.; Woodward, A. M.; Kell, D. B.; Rooney, P. J., Rapid identification of urinary tract infection bacteria using hyperspectral whole-organism fingerprinting and artificial neural networks. Microbiology 1998, 144 (Pt 5), 11571170.CrossRefGoogle ScholarPubMed
Thrift, W. J.; et al., Deep learning analysis of vibrational spectra of bacterial lysate for rapid antimicrobial susceptibility testing. ACS Nano 2020, 14 (11), 1533615348.CrossRefGoogle ScholarPubMed
Weis, C. V.; Jutzeler, C. R.; Borgwardt, K., Machine learning for microbial identification and antimicrobial susceptibility testing on MALDI-TOF mass spectra: A systematic review. Clinical Microbiology and Infections 2020, 26 (10), 13101317.CrossRefGoogle ScholarPubMed
Mochalova, E. N.; Kotov, I. A.; Rozenberg, J. M.; Nikitin, M. P., Precise quantitative analysis of cell targeting by particle-based agents using imaging flow cytometry and convolutional neural network. Cytometry 2020, 97 (3), 279287.CrossRefGoogle ScholarPubMed
Riekeles, M.; Schirmak, J.; Schulze-Makuch, D., Machine learning algorithms applied to identify microbial species by their motility. Life 2021, 11 (1), 44.CrossRefGoogle ScholarPubMed
Yu, S.; Li, H.; Li, X.; Fu, Y. V.; Liu, F., Classification of pathogens by Raman spectroscopy combined with generative adversarial networks. Science of the Total Environment 2020, 726, 138477.CrossRefGoogle ScholarPubMed
Foster, D., Generative Deep Learning: Teaching Machines to Paint, Write, Compose and Play. O’Reilly: 2019.Google Scholar
alphafold, G. Alpha fold protein structure database. alphafold.ebi.ac.uk.Google Scholar
Cichos, F.; Gustavsson, K.; Mehlig, B.; Volpe, G., Machine learning for active matter. Nature Machine Intelligence 2020, 2, 94103.CrossRefGoogle Scholar
Hou, H.; Gan, T.; Yang, Y.; Zhu, X.; Liu, S.; Guo, W.; Hao, J., Using deep reinforcement learning to speed up collective cell migration. BMC Bioinformatics 2019, 20 (Suppl 18), 571.CrossRefGoogle ScholarPubMed
Baydin, A. G.; Pearlmutter, B. A.; Radul, A. A.; Siskind, J. M., Automatic differentiation in machine learning: A survey. Journal of Machine Learning Research 2018, 18 (153), 143.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Physical Tools
  • Thomas Andrew Waigh, University of Manchester
  • Book: The Physics of Bacteria
  • Online publication: 12 December 2024
  • Chapter DOI: https://doi.org/10.1017/9781009313506.002
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Physical Tools
  • Thomas Andrew Waigh, University of Manchester
  • Book: The Physics of Bacteria
  • Online publication: 12 December 2024
  • Chapter DOI: https://doi.org/10.1017/9781009313506.002
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Physical Tools
  • Thomas Andrew Waigh, University of Manchester
  • Book: The Physics of Bacteria
  • Online publication: 12 December 2024
  • Chapter DOI: https://doi.org/10.1017/9781009313506.002
Available formats
×