Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-22T13:01:36.147Z Has data issue: false hasContentIssue false

8 - Liquid Crystals

from Part I - Physical Tools

Published online by Cambridge University Press:  12 December 2024

Thomas Andrew Waigh
Affiliation:
University of Manchester
Get access

Summary

Describes passive and active liquid crystals including defect textures and order parameters.

Type
Chapter
Information
The Physics of Bacteria
From Cells to Biofilms
, pp. 77 - 83
Publisher: Cambridge University Press
Print publication year: 2024

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Suggested Reading

Collings, P. J.; Goodby, J. W. Introduction to Liquid Crystals: Chemistry and Physics, 2nd ed. CRC Press: 2019. Simple introduction to liquid crystalline materials.CrossRefGoogle Scholar
Pismen, L., Active Matter Within and Around Us. Springer: 2021. Excellent pedagogic introduction to active matter.CrossRefGoogle Scholar

References

Chaikin, P. M.; Lubensky, T. C., Principles of Condensed Matter Physics. Cambridge University Press: 1995.CrossRefGoogle Scholar
Collings, P. J.; Goodby, J. W., Introduction to Liquid Crystals: Chemistry and Physics. CRC Press: 2019.CrossRefGoogle Scholar
Neville, A. C., Biology of Fibrous Composites. Cambridge University Press: 1993.CrossRefGoogle Scholar
Aranson, I. S., Bacterial active matter. Reports on Progress in Physics 2022, 85 (7), 076601.CrossRefGoogle ScholarPubMed
de Gennes, P. G.; Prost, J., The Physics of Liquid Crystals. Oxford University Press: 1995.Google Scholar
Lakey, C. C.; Turner, M. S., Emergent ordering of microswimmers in smectic liquid crystals. Artificial Life and Robotics 2022, 27 (4), 218225.CrossRefGoogle Scholar
Dierking, I., Textures of Liquid Crystals. Wiley: 2003.CrossRefGoogle Scholar
Vroege, G. J.; Lekkerkerker, H. N. W., Phase transitions in lyotropic colloidal and polymeric liquid crystals. Reports on Progress in Physics 1992, 55 (8), 12411309.CrossRefGoogle Scholar
Marchetti, M. C.; Joanny, J. F.; Ramaswamy, S.; Liverpool, T. B.; Prost, J.; Rao, M.; Simha, R. A., Hydrodynamics of soft active matter. Review of Modern Physics 2013, 85 (3), 1143.CrossRefGoogle Scholar
Tayar, A. M.; Hagan, M. F.; Dogic, Z., Active liquid crystals powered by force-sensing DNA-motor clusters. PNAS 2021, 118 (30), 110.CrossRefGoogle ScholarPubMed
Andreotti, B.; Forterre, Y.; Pouliquen, O., Granular Media: Between Fluid and Solid. Cambridge University Press: 2013.CrossRefGoogle Scholar
Pismen, L., Active Matter Within and Around Us: From Self-propelled Particles to Flocks and Living Forms. Springer: 2021.CrossRefGoogle Scholar
Hartmann, R.; Singh, P. K.; Pearce, P.; Mok, R.; Song, B.; Diaz-Pascual, F.; Dunkel, J.; Drescher, K., Emergence of three-dimensional order and structure in growing biofilms. Nature Physics 2019, 15 (3), 251256.CrossRefGoogle ScholarPubMed
Beroz, F.; Yan, J.; Meir, Y.; Sabass, B.; Stone, H. A.; Bassler, B. L.; Wingreen, N. S., Verticalization of bacterial biofilms. Nature Physics 2018, 14 (9), 954960.CrossRefGoogle ScholarPubMed
Qin, B.; Fei, C.; Bridges, A. A.; Mashruwala, A. A.; Stone, H. A.; Wingreen, N. S.; Bassler, B. L., Cell position fates and collective fountain flow in bacterial biofilms revealed by light-sheet microscopy. Science 2020, 369 (6499), 7177.CrossRefGoogle ScholarPubMed
Pearce, P.; Song, B.; Skinner, D. J.; Mok, R.; Hartmann, R.; Singh, P. K.; Jeckel, H.; Oishi, J. S.; Drescher, K.; Dunkel, J., Flow-induced symmetry breaking in growing bacterial biofilms. Physical Review Letters 2019, 123 (25), 258101.CrossRefGoogle ScholarPubMed
Yan, J.; Nadell, C. D.; Stone, H. A.; Wingreen, N. S.; Bassler, B. L., Extracellular-matrix-mediated osmotic pressure drives Vibrio cholerae biofilm expansion and cheater exclusion. Nature Communications 2017, 8 (1), 327.CrossRefGoogle ScholarPubMed
Volfson, D.; Cookson, S.; Hasty, J.; Tsimring, L. S., Biomechanical ordering of dense cell populations. PNAS 2008, 105 (40), 1534615351.CrossRefGoogle ScholarPubMed
van Houdt, R.; Michiels, C. W., Role of bacterial cell surface structures in Escherichia coli biofilm formation. Research in Microbiology 2005, 156 (5–6), 626633.CrossRefGoogle ScholarPubMed
Li, H.; Shi, X. Q.; Huang, M.; Chen, X.; Xiao, M.; Liu, C.; Chate, H.; Zhang, H. P., Data-driven quantitative modeling of bacterial active nematics. PNAS 2019, 116 (3), 777785.CrossRefGoogle ScholarPubMed
Meacock, O. J.; Doostmohammadi, A.; Foster, K. R.; Yeomans, J. M.; Durham, W. M., Bacteria solve the problem of crowding by moving slowly. Nature Physics 2020, 17 (2), 205210.CrossRefGoogle Scholar
Copenhagen, K.; Alert, R.; Wingreen, N. S.; Shaevitz, J. W., Topological defects promote layer formation in Myxococcus xanthus colonies. Nature Physics 2020, 17 (2), 211215.CrossRefGoogle Scholar
Dogsa, I.; Kriechbaum, M.; Stopar, D.; Laggner, P., Structure of bacterial extracellular polymeric substances at different pH values as determined by SAXS. Biophysical Journal 2005, 89 (4), 27112720.CrossRefGoogle ScholarPubMed
Morris, E. R.; Nishinari, K.; Rinaudo, M., Gelation of gellan – a review. Food Hydrocolloids 2012, 28 (2), 373411.CrossRefGoogle Scholar
Cox, H.; Xu, H.; Waigh, T. A.; Lu, J. R., Single-molecule study of peptide gel dynamics reveals states of prestress. Langmuir 2018, 34 (48), 1467814689.CrossRefGoogle ScholarPubMed
Cox, H.; Cao, M.; Xu, H.; Waigh, T. A.; Lu, J. R., Active modulation of states of prestress in self-assembled short peptide gels. Biomacromolecules 2019, 20 (4), 17191730.CrossRefGoogle ScholarPubMed
Mizuno, D.; Head, D. A.; MacKintosh, F. C.; Schmidt, C. F., Active and passive microrheology in equilibrium and nonequilibrium systems. Macromolecules 2008, 41 (19), 71947202.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Liquid Crystals
  • Thomas Andrew Waigh, University of Manchester
  • Book: The Physics of Bacteria
  • Online publication: 12 December 2024
  • Chapter DOI: https://doi.org/10.1017/9781009313506.010
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Liquid Crystals
  • Thomas Andrew Waigh, University of Manchester
  • Book: The Physics of Bacteria
  • Online publication: 12 December 2024
  • Chapter DOI: https://doi.org/10.1017/9781009313506.010
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Liquid Crystals
  • Thomas Andrew Waigh, University of Manchester
  • Book: The Physics of Bacteria
  • Online publication: 12 December 2024
  • Chapter DOI: https://doi.org/10.1017/9781009313506.010
Available formats
×