Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-22T21:22:34.465Z Has data issue: false hasContentIssue false

25 - Bacterial Diseases

from Part III - Interacting Bacteria and Biofilms

Published online by Cambridge University Press:  12 December 2024

Thomas Andrew Waigh
Affiliation:
University of Manchester
Get access

Summary

Provides a brief introduction to bacterial disease highlighting capsules and biofilms.

Keywords

Type
Chapter
Information
The Physics of Bacteria
From Cells to Biofilms
, pp. 301 - 309
Publisher: Cambridge University Press
Print publication year: 2024

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Suggested Reading

Gladwin, M.; Trattler, B., Clinical Microbiology Made Ridiculously Simple. Medmaster: 2011.Google Scholar
Goering, R. et al., MIMS Microbiology, 6th ed. Elsevier: 2018.Google Scholar
Moran, E.; Cooke, F.; Torok, E., Oxford Handbook of Infectious Diseases and Microbiology. Oxford University Press: 2017.Google Scholar
Murphy, K.; Weaver, C., Janeway’s Immunobiology, 9th ed. Garland Science: 2016.CrossRefGoogle Scholar
Parham, P., The Immune System. Garland Science: 2014.CrossRefGoogle Scholar
Smith, P. D.; Blumberg, R. S.; MacDonald, T.T., Principles of Mucosal Immunology. Garland Science: 2020.CrossRefGoogle Scholar
Strelkauvkas, A.; Edwards, A.; Fahnert, B.; Pryor, G.; Strelkauskas, J., Microbiology: A Clinical Approach, 2nd ed. Garland Science: 2016.Google Scholar
Wilson, B. A.; Salyers, A. A.; Whitt, D. D.; Winkler, M. E., Bacterial Pathogens: A Molecular Approach, 4th ed. ASM Press: 2019.Google Scholar
Wilson, M., Bacterial Disease Mechanisms: An Introduction to Cellular Microbiology. Cambridge University Press: 2010.Google Scholar

References

Torok, E.; Moran, E.; Cooke, F., Oxford Handbook of Infectious Diseases and Microbiology. Oxford University Press: 2016.CrossRefGoogle Scholar
Gladwin, M. T.; Trattler, W.; Mahan, C. S., Clinical Microbiology Made Ridiculously Simple. 7th ed. MedMaster: 2019.Google Scholar
Parham, P., The Immune System. Garland Science: 2014.CrossRefGoogle Scholar
Hooper, L. V.; Littman, D. R.; MacPherson, A. J., Interactions between the microbiota and the immune system. Science 2012, 336 (6086), 12681273.CrossRefGoogle ScholarPubMed
Brinkmann, V.; Reichard, U.; Goosmann, C.; Fauler, B.; Uhlemann, Y.; Weiss, D. S.; Weinrauch, Y.; Zychlinky, A., Neutrophil extracellular traps kill bacteria. Science 2004, 303 (5663), 15321535.CrossRefGoogle ScholarPubMed
Finlay, B. B.; Cossart, P., Exploitation of mammalian host cell functions by bacterial pathogens. Science 1997, 276 (5313), 718725.CrossRefGoogle ScholarPubMed
Hetrick, E. M.; Schoenfisch, M. H., Reducing implant-related infections: Active release strategies. Chemical Society Reviews 2006, 35 (9), 780789.CrossRefGoogle ScholarPubMed
Faustino, C. M. C.; Lemor, S. M. C.; Monge, N.; Ribeiro, I. A. C., A scope at antifouling strategies to prevent catheter-associated infection. Advances in Colloid and Interface Science 2020, 284, 102230.CrossRefGoogle Scholar
Filipovic, U.; Dahmane, R. G.; Ghannouchi, S.; Zore, A.; Bohinc, K., Bacterial adhesion on orthopedic implants. Advances in Colloid and Interface Science 2020, 2020 (283), 10228.Google Scholar
Cossart, P.; Sansonetti, P. J., Bacterial invasion: The paradigms of enteroinvasive pathogens. Science 2004, 304 (5668), 242248.CrossRefGoogle ScholarPubMed
Ogawa, M.; Yoshimori, T.; Suzuki, T.; Sagara, H.; Mizushima, N.; Sasakawa, C., Escape of intracellular Shigella from autophagy. Science 2005, 307 (5710), 727731.CrossRefGoogle ScholarPubMed
Costerton, J. W.; Stewart, P. S.; Greenberg, E. P., Bacterial biofilms: A common cause of persistent infections. Science 1999, 284 (5418), 13181322.CrossRefGoogle ScholarPubMed
Marcy, Y.; et al., Dissecting biological ‘dark matter’ with single-cell genetic analysis of rare and uncultivated TM7 microbes from the human mouth. PNAS 2007, 104 (29), 1188911894.CrossRefGoogle ScholarPubMed
Cugini, C.; Shanmugam, M.; Landge, N.; Ramasubbu, N., The role of exopolysaccharides in oral biofilms. Journal of Dental Research 2019, 98 (7), 739.CrossRefGoogle ScholarPubMed
Mah, T. F.; O’Toole, G. A., Mechanisms of biofilm resistance to antimicrobial agents. Trends in Microbiology 2001, 9 (1), 3439.CrossRefGoogle ScholarPubMed
Kim, D.; et al., Spatial mapping of polymicrobial communities reveals a precise biogeography associated with human dental caries. PNAS 2020, 117 (22), 1237512386.CrossRefGoogle ScholarPubMed
Li, Z. R.; et al., Mutanofactin promotes adhesion and biofilm formation of cariogenic Streptococcus mutans. Nature Chemical Biology 2021, 17 (5), 576584.CrossRefGoogle ScholarPubMed
Smith, E. E.; et al., Genetic adaptation by Pseudomonas aeruginosa to the airways of cystic fibrosis patients. PNAS 2006, 103 (22), 84878492.CrossRefGoogle Scholar
Kovach, K.; et al., Evolutionary adaptations of biofilms infecting cystic fibrosis lungs promote mechanical toughness by adjusting polysaccharide production. npj Biofilms and Microbiomes 2017, 3, 1.CrossRefGoogle ScholarPubMed
Singh, P. K.; Schaefer, A. L.; Parsek, M. R.; Moninger, T. O.; Welsh, M. J.; Greenberg, E. P., Quorum-sensing signals indicate that cystic fibrosis lungs are infected with bacterial biofilms. Nature 2000, 407 (6805), 762764.CrossRefGoogle ScholarPubMed
Gog, J. R.; et al., Dynamics of Salmonella infection of macrophages at the single cell level. Journal of Royal Society Interface 2012, 9 (75), 26962707.CrossRefGoogle ScholarPubMed
Mock, M.; Fouet, A., Anthrax. Annual Review of Microbiology 2001, 55, 647671.CrossRefGoogle ScholarPubMed
Flores-Mireles, A. L.; Walker, J. N.; Caparon, M.; Hultgren, S. J., Urinary tract infections: Epidemiology, mechanism of infection and treatment options. Nature Reviews Microbiology 2015, 13 (5), 269284.CrossRefGoogle ScholarPubMed
Johnson, J. R., Virulence factors in Escherichia coli urinary tract infection. Clinical Microbiology Reviews 1991, 4 (1), 80128.CrossRefGoogle ScholarPubMed
Mulvey, M. A.; Lopez-Boado, Y. S.; Wilson, C. L.; Roth, R.; Parks, W. C.; Heuser, J.; Hultgren, S. J., Induction and evasion of host defenses by type 1-piliated uropathogenic Escherichia coli. Science 1998, 282 (5393), 1494.CrossRefGoogle ScholarPubMed
Connell, I.; Agace, W.; Klemm, P.; Schembri, M.; Marild, S.; Svanborg, C., Type 1 fimbrial expression enhances Escherichia coli virulence for the urinary tract. PNAS 1996, 93 (18), 98279832.CrossRefGoogle ScholarPubMed
Anderson, G. G.; Palermo, J. J.; Schilling, J. D.; Roth, R.; Heuser, J.; Hultgren, S. J., Intracellular bacterial biofilm-like pods in urinary tract infections. Science 2003, 301 (5629), 105107.CrossRefGoogle ScholarPubMed
King, J. E.; Roberts, I. S., Bacterial surfaces: Front lines in host-pathogen cell-surface interactions. In Biophysics of Infection, Leake, M. C., Ed. Springer: 2016; pp. 129156.CrossRefGoogle Scholar
Wu, C.; Lim, J. Y.; Fuller, G. G.; Cegelski, L., Quantitative analysis of amyloid-integrated biofilms formed by uropathogenic Escherichia coli at the air-liquid interface. Biophysical Journal 2012, 103 (3), 464471.CrossRefGoogle ScholarPubMed
Voyich, J. M.; et al., Insights into mechanisms used by Staphylococcus aureus to avoid destruction by human neutrophils. Journal of Immunology 2005, 175 (6), 39073919.CrossRefGoogle ScholarPubMed
Otto, M., Staphylococcal infections: Mechanisms of biofilm maturation and detachment as critical determinants of pathogenicity. Annual Review of Medicine 2013, 64 (1), 175188.CrossRefGoogle ScholarPubMed
Segovia-Juarez, J. L.; Ganguli, S.; Kirschner, D., Identifying control mechanisms of granuloma formation during M. tuberculosis infection using an agent-based model. Journal of Theoretical Biology 2004, 231 (3), 357376.CrossRefGoogle Scholar
Stenger, S.; et al., An antimicrobial activity of cytolytic T cells mediated by granulysin. Science 1998, 282 (5386), 121.CrossRefGoogle ScholarPubMed
Cohen, I., The immunogenesis of sepsis. Nature 2002, 420 (6917), 885891.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Bacterial Diseases
  • Thomas Andrew Waigh, University of Manchester
  • Book: The Physics of Bacteria
  • Online publication: 12 December 2024
  • Chapter DOI: https://doi.org/10.1017/9781009313506.029
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Bacterial Diseases
  • Thomas Andrew Waigh, University of Manchester
  • Book: The Physics of Bacteria
  • Online publication: 12 December 2024
  • Chapter DOI: https://doi.org/10.1017/9781009313506.029
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Bacterial Diseases
  • Thomas Andrew Waigh, University of Manchester
  • Book: The Physics of Bacteria
  • Online publication: 12 December 2024
  • Chapter DOI: https://doi.org/10.1017/9781009313506.029
Available formats
×