Book contents
- Frontmatter
- Dedication
- Contents
- Preface
- List of Acronyms
- 1 Introduction
- 2 Wave Propagation
- 3 Focusing and Self-Imaging
- 4 Dispersive Effects
- 5 Nonlinear Optical Phenomena
- 6 Effects of Loss or Gain
- 7 Nonuniform GRIN Media
- 8 Vortex Beams
- 9 Photonic Spin-Orbit Coupling
- 10 Photonic Crystals and Metamaterials
- 11 Impact of Partial Coherence
- Appendix A Quantum Harmonic Oscillator
- Appendix B Fractional Fourier Transform
- Index
6 - Effects of Loss or Gain
Published online by Cambridge University Press: 27 July 2023
- Frontmatter
- Dedication
- Contents
- Preface
- List of Acronyms
- 1 Introduction
- 2 Wave Propagation
- 3 Focusing and Self-Imaging
- 4 Dispersive Effects
- 5 Nonlinear Optical Phenomena
- 6 Effects of Loss or Gain
- 7 Nonuniform GRIN Media
- 8 Vortex Beams
- 9 Photonic Spin-Orbit Coupling
- 10 Photonic Crystals and Metamaterials
- 11 Impact of Partial Coherence
- Appendix A Quantum Harmonic Oscillator
- Appendix B Fractional Fourier Transform
- Index
Summary
This chapter focuses on the effects of loss or gain in a graded-index (GRIN) medium. In Section 6.1, we discuss the impact of losses on the modes of such a medium. Section 6.2 considers the mechanisms used for providing optical gain inside a GRIN medium. Section 6.3 is devoted to Raman amplifiers and Raman lasers, built with GRIN fibers and pumped suitably to provide optical gain. Parametric amplifiers are discussed in Section 6.4, together with the phase matching required for four-wave mixing to occur. The focus of Section 6.5 is on amplifiers and lasers made by doping a GRIN fiber with rare-earth ions. Section 6.6 includes the nonlinear effects and describes the formation of spatial solitons and similaritons inside an active GRIN medium.
Keywords
- Type
- Chapter
- Information
- Physics and Engineering of Graded-Index Media , pp. 163 - 213Publisher: Cambridge University PressPrint publication year: 2023