Published online by Cambridge University Press: 26 January 2010
This chapter is intended as an introduction to the fundamental physics of resonant tunnelling diodes (RTDs). The idea of global coherent tunnelling is introduced in order to provide an intuitive and clear picture of resonant tunnelling. The theoretical basis of the global coherent tunnelling model is presented in Section 2.2. The Tsu–Esaki formula, based on linear response theory, is adopted and combined with the transfer matrix method to calculate the tunnelling current through double-barrier resonant tunnelling structures (Section 2.2.1). The global coherent tunnelling model is improved by taking Hartree's selfconsistent field (Section 2.2.2) into account. A more analytical transfer Hamiltonian formula is also presented (Section 2.2.3). Section 2.3 introduces the electron dwell time, which is one of the important quantities required to describe the high-frequency performance of RTDs. The effects of quantised electronic states in the emitter are then studied in Section 2.4. Section 2.5 describes resonant tunnelling through double-well structures. Finally, Section 2.6 discusses the idea of incoherent resonant tunnelling induced by phase-coherence breaking scattering. The problem of collision-induced broadening is then discussed in terms of the peak-to-valley (P/V) current ratio of RTDs by using a phenomenological Breit–Wigner formula.
Resonant tunnelling in double-barrier heterostructures
Let us start with a simple discussion of resonant tunnelling through the double-barrier heterostructure depicted in Fig. 2.1 (a). A resonant tunnelling diode (RTD) typically consists of an undoped quantum well layer sandwiched between undoped barrier layers and heavily doped emitter and collector contact regions.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.