Book contents
- Frontmatter
- Contents
- Preface
- 1 Introduction
- 2 Light absorption and photodissociation
- 3 Time-independent methods
- 4 Time-dependent methods
- 5 Classical description of photodissociation
- 6 Direct photodissociation: The reflection principle
- 7 Indirect photodissociation: Resonances and recurrences
- 8 Diffuse structures and unstable periodic orbits
- 9 Vibrational excitation
- 10 Rotational excitation I
- 11 Rotational excitation II
- 12 Dissociation of van der Waals molecules
- 13 Photodissociation of vibrationally excited states
- 14 Emission spectroscopy of dissociating molecules
- 15 Nonadiabatic transitions in dissociating molecules
- 16 Real-time dynamics of photodissociation
- References
- Index
10 - Rotational excitation I
Published online by Cambridge University Press: 15 December 2009
- Frontmatter
- Contents
- Preface
- 1 Introduction
- 2 Light absorption and photodissociation
- 3 Time-independent methods
- 4 Time-dependent methods
- 5 Classical description of photodissociation
- 6 Direct photodissociation: The reflection principle
- 7 Indirect photodissociation: Resonances and recurrences
- 8 Diffuse structures and unstable periodic orbits
- 9 Vibrational excitation
- 10 Rotational excitation I
- 11 Rotational excitation II
- 12 Dissociation of van der Waals molecules
- 13 Photodissociation of vibrationally excited states
- 14 Emission spectroscopy of dissociating molecules
- 15 Nonadiabatic transitions in dissociating molecules
- 16 Real-time dynamics of photodissociation
- References
- Index
Summary
Rotational state distributions of the photofragments provide a wealth of information on the dissociation dynamics. The total available energy often exceeds 1 eV which suffices to make many rotational states energetically accessible. Since the torque imparted to the rotor is typically large, it is not unusual that 50 or even more rotational states become populated during dissociation. Modern detection methods, on the other hand, make it feasible to resolve even the most detailed aspects of rotational excitation: scalar properties, such as the final state distribution as well as vector properties, such as the orientation of the angular momentum vector of the fragment with respect to any axis of reference. In the same way as the vibrational distribution reflects the change of the bond length of the fragment molecule, the rotational distribution elucidates the change of the bond angle along the reaction path.
In this chapter we discuss only the scalar aspect of rotational excitation, i.e., the forces which promote rotational excitation and how they show up in the final state distributions. The simple model of a triatomic molecule with total angular momentum J = 0, outlined in Section 3.2, is adequate for this purpose without concealing the main dynamical effects with too many indices and angular momentum coupling elements. The vector properties and some more involved topics will be discussed in Chapter 11.
- Type
- Chapter
- Information
- Photodissociation DynamicsSpectroscopy and Fragmentation of Small Polyatomic Molecules, pp. 222 - 260Publisher: Cambridge University PressPrint publication year: 1993