Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-19T09:32:12.074Z Has data issue: false hasContentIssue false

On the infinite

Published online by Cambridge University Press:  05 June 2012

Get access

Summary

As a result of his penetrating critique, Weierstrass has provided a solid foundation for mathematical analysis. By elucidating many notions, in particular those of minimum, function, and differential quotient, he removed the defects which were still found in the infinitesimal calculus, rid it of all confused notions about the infinitesimal, and thereby completely resolved the difficulties which stem from that concept. If in analysis today there is complete agreement and certitude in employing the deductive methods which are based on the concepts of irrational number and limit, and if in even the most complex questions of the theory of differential and integral equations, notwithstanding the use of the most ingenious and varied combinations of the different kinds of limits, there nevertheless is unanimity with respect to the results obtained, then this happy state of affairs is due primarily to Weierstrass's scientific work.

And yet in spite of the foundation Weierstrass has provided for the infinitesimal calculus, disputes about the foundations of analysis still go on.

These disputes have not terminated because the meaning of the infinite, as that concept is used in mathematics, has never been completely clarified. Weierstrass's analysis did indeed eliminate the infinitely large and the infinitely small by reducing statements about them to [statements about] relations between finite magnitudes. Nevertheless the infinite still appears in the infinite numerical series which defines the real numbers and in the concept of the real number system which is thought of as a completed totality existing all at once.

Type
Chapter
Information
Philosophy of Mathematics
Selected Readings
, pp. 183 - 201
Publisher: Cambridge University Press
Print publication year: 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×