Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-19T09:40:48.222Z Has data issue: false hasContentIssue false

Consciousness, philosophy, and mathematics

Published online by Cambridge University Press:  05 June 2012

Get access

Summary

The … point of view that there are no non-experienced truths and that logic is not an absolutely reliable instrument to discover truths has found acceptance with regard to mathematics much later than with regard to practical life and to science. Mathematics rigorously treated from this point of view, including deducing theorems exclusively by means of introspective construction, is called intuitionistic mathematics. In many respects it deviates from classical mathematics. In the first place because classical mathematics uses logic to generate theorems, believes in the existence of unknown truths, and in particular applies the principle of the excluded third expressing that every mathematical assertion (i.e. every assignment of a mathematical property to a mathematical entity) either is a truth or cannot be a truth. In the second place because classical mathematics confines itself to predeterminate infinite sequences for which from the beginning the nth element is fixed for each n. Owing to this confinement classical mathematics, to define real numbers, has only predeterminate convergent infinite sequences of rational numbers at its disposal. Out of real numbers defined in this way, only subspecies of “ever unfinished denumerable” species of real numbers can be composed by means of introspective construction. Such ever unfinished denumerable species all being of measure zero, classical mathematics, to create the continuum out of points, needs some logical process starting from one or more axioms.

Type
Chapter
Information
Philosophy of Mathematics
Selected Readings
, pp. 90 - 96
Publisher: Cambridge University Press
Print publication year: 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×