from Part V - Methodological and Philosophical Issues
Published online by Cambridge University Press: 18 April 2017
Cosmological Model Inference with Finite Data
In physical cosmology we are faced with an empirical context of gradually diminishing returns from new observations. This is true in a fundamental sense, since the amount of information we can expect to collect through astronomical observations is finite, owing to the fact that we occupy a particular vantage point in the history and spatial extent of the Universe. Arguably, we may approach the observational limit in the foreseeable future, at least in relation to some scientific hypotheses (Ellis, 2014). There is no guarantee that the amount and types of information we are able to collect will be sufficient to statistically test all reasonable hypotheses that may be posed. There is under-determination both in principle and in practice (Butterfield, 2014; Ellis, 2014; Zinkernagel, 2011). These circumstances are not new, indeed cosmology has had to contend with this problem throughout history. For example, Whitrow (1949) relates the same concerns, and points back to remarks by Blaise Pascal in the seventeenth century: ‘But if our view be arrested there let our imagination pass beyond; … We may enlarge our conceptions beyond all imaginable space; we only produce atoms in comparison with the reality of things’. Already with Thales, epistemological principles of uniformity and consistency have been used to structure the locally imaginable into something considered globally plausible. The primary example in contemporary cosmology is the Cosmological Principle of large-scale isotropy and homogeneity. In the following, the aim will be to apply such epistemological principles to the procedure of cosmological model inference itself.
The state of affairs described above naturally leads to a view of model inference as inference to the best explanation/model (e.g. Lipton, 2004; Maher, 1993), since some degree of explanatory ambiguity appears unavoidable in principle. This is consistent with a Bayesian interpretation of probability which includes a priori assumptions explicitly. As in science generally, inference in cosmology is based on statistical testing of models in light of empirical data. A large body of literature has built up in recent years discussing various aspects of these methods, with Bayesian statistics becoming a standard framework (Hobson, 2010; Jaynes, 2003; von Toussaint, 2011). The necessary foundations of Bayesian inference will be presented in the next section.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.