Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-15T10:54:52.914Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  21 December 2017

Hans Christian Öttinger
Affiliation:
Swiss Federal Institute of Technology, Zürich
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] L., Boltzmann, Theoretical Physics and Philosophical Problems (Dordrecht: Reidel, 1974).Google Scholar
[2] P., Duhem, The Aim and Structure of Physical Theory (Princeton, NJ: Princeton University Press, 1991).Google Scholar
[3] W. V., Quine, Two dogmas of empiricism. Philosophical Review, 60 (1951), 20–43.
[4] L., Susskind & A., Friedman, Quantum Mechanics: The Theoretical Minimum (Basic Books: 2014, 2014).Google Scholar
[5] D. Z., Albert, Quantum Mechanics and Experience (Cambridge, MA: Harvard University Press, 1992).Google Scholar
[6] A., Whitaker, Einstein, Bohr and the Quantum Dilemma: From Quantum Theory to Quantum Information, 2nd ed. (Cambridge: Cambridge University Press, 2006).Google Scholar
[7] H., Margenau, The Nature of Physical Reality (Woodbridge, CT: Ox Bow Press, 1977).Google Scholar
[8] D., Hume, A Treatise of Human Nature, Penguin Classics (London: Penguin Books, 1985).Google Scholar
[9] S. L., Altmann, Is Nature Supernatural? (Amherst, NY: Prometheus Books, 2002).Google Scholar
[10] T. Y., Cao, From Current Algebra to Quantum Chromodynamics: A Case for Structural Realism (Cambridge: Cambridge University Press, 2010).Google Scholar
[11] L., Boltzmann, Populare Schriften (Leipzig: Barth, 1905).Google Scholar
[12] W., James, The Meaning of Truth, Great Books in Philosophy (Amherst, NY: Prometheus Books, 1997).Google Scholar
[13] P. K., Feyerabend, Problems of microphysics. In R. G., Colodny, ed., Frontiers of Science and Philosophy, University of Pittsburgh Series in the Philosophy of Science, Volume 1 (Pittsburg: University of Pittsburgh Press, 1962), pp. 189–283.Google Scholar
[14] T. S., Kuhn, The Structure of Scientific Revolutions, 3rd ed. (Chicago: University of Chicago Press, 1996).Google Scholar
[15] A. A. P., Videira, Atomisme epistémologique et pluralisme théorique dans la pensée de Boltzmann, PhD Thesis, University of Paris VII (1992).Google Scholar
[16] M. B., Ribeiro, A. A. P., Videira, Dogmatism and theoretical pluralism in modern cosmology. Apeiron, 5 (1998), 227–234.
[17] B. C. van, Fraassen, The Scientific Image (Oxford: Oxford University Press, 1980).Google Scholar
[18] C., Cercignani, Ludwig Boltzmann: The Man Who Trusted Atoms (Oxford: Oxford University Press, 1998).Google Scholar
[19] K. G., Wilson & J. B., Kogut, The renormalization group and the expansion. Physics Reports, 12 (1974), 75–200.
[20] P. A. M., Dirac, The inadequacies of quantum field theory. In B. N., Kursunoglu and E. P., Wigner, eds., Reminiscences about a Great Physicist: Paul Adrien Maurice Dirac (Cambridge: Cambridge University Press, 1987), pp. 194–198.Google Scholar
[21] P. A. M., Dirac, Directions in Physics (New York: Wiley, 1978).Google Scholar
[22] T. Y., Cao, Conceptual Developments of 20th Century Field Theories (Cambridge: Cambridge University Press, 1997).Google Scholar
[23] R., Dworkin, Religion without God (Cambridge, MA: Harvard University Press, 2013).Google Scholar
[24] S. Y., Auyang, How Is Quantum Field Theory Possible? (New York: Oxford University Press, 1995).Google Scholar
[25] B., Russell, On the notion of cause. Proceedings of the Aristotelian Society, 13 (1912), 1–26.
[26] I., Kant, Critik der reinen Vernunft (Riga: Hartknoch, 1781).Google Scholar
[27] M. von, Laue, Erkenntnistheorie und Relativitatstheorie. In Gesammelte Schriften und Vortrage, Band III (Braunschweig: Vieweg, 1961), pp. 159–167.Google Scholar
[28] A., Lasenby, C., Doran, & S., Gull, Gravity, gauge theories and geometric algebra. Philosophical Transactions of the Royal Society of London A, 356 (1998), 487–582.
[29] E., Wigner, On unitary representations of the inhomogeneous Lorentz group. Annals of Mathematics, 40 (1939), 149–204.
[30] A., Duncan, The Conceptual Framework of Quantum Field Theory (Oxford: Oxford University Press, 2012).Google Scholar
[31] A., Kolmogoroff, Grundbegriffe der Wahrscheinlichkeitsrechnung (Berlin: Springer, 1933).Google Scholar
[32] H., Bauer, Probability Theory and Elements of Measure Theory, 2nd ed. (London: Academic Press, 1981).Google Scholar
[33] A. L., Fetter & J. D., Walecka, Quantum Theory of Many-Particle Systems, International Series in Pure and Applied Physics (New York: McGraw-Hill, 1971).Google Scholar
[34] J. D., Bjorken & S. D., Drell, Relativistic Quantum Fields, International Series in Pure and Applied Physics (New York: McGraw-Hill, 1965).Google Scholar
[35] M. E., Fisher & M. N., Barber, Scaling theory for finite-size effects in the critical region. Physical Review Letters, 28 (1972), 1516–1519.
[36] V., Privman (Ed.), Finite Size Scaling and Numerical Simulations of Statistical Systems (Singapore: World Scientific, 1990).Google Scholar
[37] L., Ruetsche, Interpreting Quantum Theories (Oxford: Oxford University Press, 2011).Google Scholar
[38] J. S., Briggs, A derivation of the time-energy uncertainty relation. Journal of Physics: Conference Series, Journal of Physics: Conference Series (99), 2008.
[39] H. C., Öttinger, Beyond Equilibrium Thermodynamics (Hoboken, NJ: Wiley, 2005).Google Scholar
[40] H., Price, Time's arrow and Eddington's challenge. In B., Duplantier, ed., Time: Poincaré Seminar 2010, Progress in Mathematical Physics, Volume 63 (Basel: Birkhauser, 2013), pp. 187–215.Google Scholar
[41] H., Price, Time's Arrow and Archimedes' Point (New York: Oxford University Press, 1996).Google Scholar
[42] M., Kuhlmann, The Ultimate Constituents of the Material World: In Search of an Ontology for Fundamental Physics, Philosophical Analysis, Volume 37 (Frankfurt: Ontos Verlag, 2010).Google Scholar
[43] A. N., Gorban, N., Kazantzis, I. G., Kevrekidis, H. C., Öttinger, & C., Theodoropoulos, eds., Model Reduction and Coarse-Graining Approaches for Multiscale Phenomena (Berlin: Springer, 2006).Google Scholar
[44] W. G., Hoover, Time Reversibility, Computer Simulation, and Chaos, Advanced Series in Nonlinear Dynamics, Volume 13 (Singapore: World Scientific, 1999).Google Scholar
[45] D. Z., Albert, Time and Chance (Cambridge, MA: Harvard University Press, 2000).Google Scholar
[46] T., Petrosky & I., Prigogine, Poincaré resonances and the extension of classical dynamics. Chaos, Solitons & Fractals, 7(1996), 441–497.Google Scholar
[47] T., Petrosky & I., Prigogine, The Liouville space extension of quantum mechanics. Advances in Chemical Physics, 99 (1997), 1–120.
[48] T. Y., Petrosky & I., Prigogine, Poincaré's theorem and unitary transformations for classical and quantum systems. Physica A, 147 (1988), 439–460.
[49] R. de la, Madrid, The role of the rigged Hilbert space in quantum mechanics. European Journal of Physics, 26 (2005), 287–312.
[50] S. A., Rice, Obituary for Ilya Prigogine. Physics Today, 57/4 (2004), 102–103.Google Scholar
[51] G. C., Ghirardi, A., Rimini & T., Weber, Unified dynamics for microscopic and macroscopic systems. Physics Review D, 34 (1986), 470–491.
[52] V., Allori, S., Goldstein, R., Tumulka, & N., Zanghı, On the common structure of Bohmian mechanics and the Ghirardi-Rimini-Weber theory. British Journal for the Philosophy of Science, 59 (2008), 353–389.
[53] T., Maudlin, Three measurement problems. Topoi, 14 (1995), 7–15.
[54] R. P., Feynman, Simulating physics with computers. International Journal of Theoretical Physics, 21 (1982), 467–488.
[55] M., Gell-Mann, What are the building blocks of matter? In D., Huff and O., Prewett, eds., The Nature of the Physical Universe: Nobel Conference, 1976 (New York: Wiley, 1979), pp. 27–45.Google Scholar
[56] J. A., Barrett, Entanglement and disentanglement in relativistic quantum mechanics. Studies in History and Philosophy of Modern Physics, 48 (2014), 168–174.
[57] B., Schroer, Modular localization and the holistic structure of causal quantum theory, a historical perspective. Studies in History and Philosophy of Modern Physics, 49 (2015), 109–147.
[58] P., Teller, An Interpretive Introduction to Quantum Field Theory (Princeton, NJ: Princeton University Press, 1995).Google Scholar
[59] D., Malament, In defense of dogma: Why there cannot be a relativistic quantum mechanics of (localizable) particles. In R., Clifton, ed., Perspectives on Quantum Reality (Dordrecht: Kluwer, 1996), pp. 1–10.Google Scholar
[60] G. C., Hegerfeldt, Instantaneous spreading and Einstein causality in quantum theory. Annalen der Physik (Leipzig), 7 (1998), 716–725.Google Scholar
[61] G. C., Hegerfeldt, Particle localization and positivity of the energy in quantum theory. In A., Bohm, H.-D., Doebner, and P., Kielanowski, eds., Irreversibility and Causality: Semigroups and Rigged Hilbert Spaces, Lecture Notes in Physics, Volume 504 (Berlin: Springer, 1998), pp. 238–245.Google Scholar
[62] J. W., Gibbs, Elementary Principles in Statistical Mechanics (New York: Charles Scribner's Sons, 1902).Google Scholar
[63] D., Fraser, The fate of ‘particles’ in quantum field theories with interactions. Studies in History and Philosophy of Modern Physics, 39 (2008), 841–859.
[64] P. A. M., Dirac, The Principles of Quantum Mechanics (Oxford: Clarendon Press, 1930).Google Scholar
[65] M. E., Peskin & D. V., Schroeder, An Introduction to Quantum Field Theory (Reading, MA: Perseus Books, 1995).Google Scholar
[66] A., Zee, Quantum Field Theory in a Nutshell, 2nd ed. (Princeton, NJ: Princeton University Press, 2010).Google Scholar
[67] R. P., Feynman, Space-time approach to non-relativistic quantum mechanics. Review of Modern Physics, 20 (1948), 367–387.
[68] S., Weinberg, Foundations, Vol. 1 of The Quantum Theory of Fields (Cambridge: Cambridge University Press, 2005).Google Scholar
[69] H., Goldstein, Classical Mechanics, 2nd ed. (Reading, MA: Addison-Wesley, 1980).Google Scholar
[70] R. M., Santilli, The Inverse Problem in Newtonian Mechanics, Vol. I of Foundations of Theoretical Mechanics (Berlin: Springer, 1978).Google Scholar
[71] D., Wallace, In defence of naiveté: The conceptual status of Lagrangian quantum field theory. Synthese, 151 (2006), 33–80.
[72] R., Haag, D., Kastler, An algebraic approach to quantum field theory. Journal of Mathematical Physics, 5 (1964), 848–861.
[73] R., Haag, Local Quantum Physics: Fields, Particles, Algebras, 2nd ed., Texts and Monographs in Physics (Berlin: Springer, 1996).Google Scholar
[74] A. S., Wightman, Quantum field theory in terms of vacuum expectation values. Physical Review, 101 (1956), 860–866.
[75] H. C., Öttinger, Kinetic theory and stochastic simulation of field quanta. Physical Review D, Physical Review D (90), 2014.
[76] C., Becchi, A., Rouet, R., Stora, Renormalization of gauge theories. Annals of Physics (N.Y.), 98 (1976), 287–321.Google Scholar
[77] I. V., Tyutin, Gauge invariance in field theory and statistical physics in operator formalism, preprint of P. N. Lebedev Physical Institute, No. 39, 1975, arXiv:0812.0580 (1975).Google Scholar
[78] J. D., Bjorken, S. D., Drell, Relativistic Quantum Mechanics, International Series in Pure and Applied Physics (New York: McGraw-Hill, 1964).Google Scholar
[79] C., Itzykson, J. B., Zuber, Quantum Field Theory, International Series in Pure and Applied Physics (New York: McGraw-Hill, 1980).Google Scholar
[80] S., Weinberg, Modern Applications, Vol. 2 of The Quantum Theory of Fields (Cambridge: Cambridge University Press, 2005).Google Scholar
[81] S., Weinberg, Supersymmetry, Vol. 3 of The Quantum Theory of Fields (Cambridge: Cambridge University Press, 2005).Google Scholar
[82] E., Abdalla, M. C. B., Abdalla, K. D., Rothe, Non-Perturbative Methods in 2 Dimensional Quantum Field Theory (Singapore: World Scientific, 1991).Google Scholar
[83] H.-P., Breuer, F., Petruccione, The Theory of Open Quantum Systems (Oxford: Oxford University Press, 2002).Google Scholar
[84] H. C., Öttinger, The geometry and thermodynamics of dissipative quantum systems. Europhysics Letters 94 (2011), 10006.Google Scholar
[85] D., Taj, H. C., Öttinger, Natural approach to quantum dissipation. Physical Review A, 92 (2015), 062128.Google Scholar
[86] R., Kubo, Statistical-mechanical theory of irreversible processes. I. General theory and simple applications to magnetic and conduction problems. Journal of the Physical Society of Japan, 12 (1957), 570–586.
[87] P. C., Martin, J., Schwinger, Theory of many-particle systems. I. Physical Review, 115 (1959), 1342–1373.
[88] G., Lindblad, On the generators of quantum dynamical semigroups. Communications in Mathematical Physics, 48 (1976), 119–130.
[89] H. C., Öttinger, Dynamic coarse-graining approach to quantum field theory. Physical Review, D 84 (2011), 065007.Google Scholar
[90] H. C., Öttinger, Nonlinear thermodynamic quantum master equation: Properties and examples. Physical Review A, 82 (2010), 052119.
[91] E. B., Davies, Markovian master equations. Communication in Mathematical Physics, 39 (1974), 91–110.
[92] C. W., Gardiner, P., Zoller, Quantum Noise: A Handbook of Markovian and Non- Markovian Quantum Stochastic Methods with Applications to Quantum Optics, 3rd ed., Springer Series in Synergetics, Volume 56 (Berlin: Springer, 2004).Google Scholar
[93] P. G. de, Gennes, Scaling Concepts in Polymer Physics (Ithaca, NY: Cornell University Press, 1979).Google Scholar
[94] J. des, Cloizeaux, G., Jannink, Polymers in Solution: Their Modelling and Structure (Oxford: Clarendon Press, 1990).Google Scholar
[95] K. F., Freed, Renormalization Group Theory of Macromolecules, (New York: Wiley, 1987).Google Scholar
[96] Y., Oono, Statistical physics of polymer solutions: Conformation-space renormalization-group approach. Advances in Chemical Physics, 61 (1985), 301–437.
[97] H. C., Öttinger, Dynamic renormalization in the framework of nonequilibrium thermodynamics, Physical Review E, 79 (2009), 021124.
[98] H. C., Öttinger, Y., Rabin, Renormalization-group calculation of viscometric functions based on conventional polymer kinetic theory, Journal of Non-Newtonian Fluid Mechanics, 33 (1989), 53–93.
[99] H., Kleinert, V., Schulte-Frohlinde, Critical Properties of ϕ4-Theories (Singapore: World Scientific, 2001).Google Scholar
[100] L., Pietronero, The fractal structure of the universe: Correlations of galaxies and clusters and the average mass density. Physica A, 144 (1987), 257–284.
[101] E., Brézin, J. C. L., Guillon, J., Zinn-Justin, Field theoretical approach to critical phenomena. In: C., Domb, M. S., Green, eds., The Renormalization Group and Its Applications, Vol. 6 of Phase Transitions and Critical Phenomena (London: Academic Press, 1976), pp. 125–247.Google Scholar
[102] S., Weinberg, Critical phenomena for field theorists. In: A., Zichichi, ed., Understanding the Fundamental Constituents of Matter, Proceedings of the 1976 International School of Subnuclear Physics, The Subnuclear Series, Volume 14 (New York: Plenum Press, 1978), pp. 1–52.Google Scholar
[103] C. N., Yang, R. L., Mills, Conservation of isotopic spin and isotopic gauge invariance, Physical Review, 96 (1954), 191–195.
[104] J., Flakowski, M., Schweizer, H. C., Öttinger, Stochastic process behind nonlinear thermodynamic quantum master equation. II. Simulation. Physical Review A, 86 (2012), 032102.
[105] H. C., Öttinger, Stochastic process behind nonlinear thermodynamic quantum master equation. I. Mean-field construction, Physical Review A, 86 (2012), 032101.
[106] F. M., Kronz, Quantum entanglement and nonideal measurements: A critique of Margenau's objections to the projection postulate. Synthese, 89 (1991), 229–251.
[107] S., Friederich, Interpreting Quantum Theory: A Therapeutic Approach (Basingstoke, UK: Palgrave Macmillan, 2015).Google Scholar
[108] A., Einstein, B., Podolsky, N., Rosen, Can quantum-mechanical description of physical reality be considered complete? Physical Review, 47 (1935), 777–780.
[109] J. S., Bell, On the Einstein-Podolsky-Rosen paradox. Physics, 1 (1964), 195–200.
[110] J. S., Bell, On the problem of hidden variables in quantum mechanics. Reviews of Modern Physics, 38 (1966), 447–452.
[111] M., Born, W., Heisenberg, P., Jordan, Zur Quantenmechanik II. Zeitschrift für Physik, 35 (1926), 557–615.
[112] P. A. M., Dirac, The quantum theory of the emission and absorption of radiation. Proc. Roy. Soc. Proceedings of the Royal Society of London A, 114 (1927), 243–265.
[113] P., Jordan, O., Klein, Zum Mehrkorperproblem in der Quantentheorie, Zeitschrift für Physik, 45 (1927), 751–765.
[114] P., Jordan, E., Wigner, Über das Paulische Aquivalenzverbot. Zeitschrift fur Physik 47 (1928), 631–651.Google Scholar
[115] W., Heisenberg, W., Pauli, Zur Quantendynamik der Wellenfelder, Zeitschrift für Physik, 56 (1929), 1–61.
[116] V., Fock, Konfigurationsraum und zweite Quantelung. Zeitschrift für Physik, 75 (1932), 622–647.
[117] J., Glimm, A., Jaffe, Constructive Quantum Field Theory, Vol. 2 of Collected Papers (Boston: Birkhauser, 1985).Google Scholar
[118] D. C., Brydges, J., Frohlich, A. D., Sokal, A new proof of the existence and nontriviality of the continuum ϕ 4 and ϕ 4 quantum field theories. Communication in Mathematical Physics, 91 (1983), 141–186.
[119] J., Zinn-Justin, Quantum Field Theory and Critical Phenomena, 4th ed., International Series of Monographs on Physics, Volume 113 (Oxford: Oxford University Press, 2002).Google Scholar
[120] F. J., Dyson, Divergence of perturbation theory in quantum electrodynamics. Physical Review, 85 (1952), 631–632.
[121] S. N., Gupta, Theory of longitudinal photons in quantum electrodynamics. Proceedings of the Physical Society A, 63 (1950), 681–691.
[122] K., Bleuler, Eine neue Methode zur Behandlung der longitudinalen und skalaren Photonen. Helvetica Physica Acta, 23 (1950), 567–586.
[123] O. M., Boyarkin, Particles, Fields, and Quantum Electrodynamics, Vol. I of Advanced Particle Physics (Boca Raton, FL: Taylor & Francis, 2011).Google Scholar
[124] C., Cohen-Tannoudji, J., Dupont-Roc, G., Grynberg, Photons and Atoms: Introduction to Quantum Electrodynamics (New York: Wiley, 1989).Google Scholar
[125] J., Schwinger, Field theory commutators. Physical Review Letters, 3 (1959), 296–297.
[126] K., Nishijima, R., Sasaki, Nature of the Schwinger term in spinor electrodynamics. Progress of Theoretical Physics, 53 (1975), 1809–1812.
[127] J., Kubo, An analysis on the convergence of equal-time commutators and the closure of the BRST algebra in Yang-Mills theories. Nuclear Physics B, 427 (1994), 398–424.
[128] T., Kinoshita (Ed.), Quantum Electrodynamics, Advanced Series on Directions in High Energy Physics, Volume 7 (Singapore: World Scientific, 1990).Google Scholar
[129] D., Nemeschansky, C., Preitschopf, M., Weinstein, A BRST primer. Annals of Physics (N.Y.), 183 (1988), 226–268.Google Scholar
[130] C. S., Gardner, J. M., Greene, M. D., Kruskal, R. M., Miura, Method for solving the Korteweg-deVries equation. Physical Review Letters, 19 (1967), 1095–1097.
[131] H. B., Thacker, Polynomial conservation laws in (1 + 1)-dimensional classical and quantum field theory. Physical Review, D 17 (1978), 1031–1040.Google Scholar
[132] J., Honerkamp, P., Weber, A., Wiesler, On the connection between the inverse transform method and the exact quantum eigenstates. Nuclear Physics B, 152 (1979), 266–272.
[133] L. D., Faddeev, Quantum completely integral models of field theory. Soviet Scientific Reviews C, 1 (1980), 107–155.Google Scholar
[134] H. C., Öttinger, Correlation functions for n species of one-dimensional impenetrable bosons. Physica A, 107 (1981), 423–430.
[135] L., Faddeev, Instructive history of the quantum inverse scattering method. Acta Applicandae Mathematicae, 39 (1995), 69–84.
[136] C. N., Yang, Some exact results for the many-body problem in one dimension with repulsive delta-function interaction. Physical Review Letters, 19 (1967), 1312–1315.
[137] R. J., Baxter, Partition function of the eight-vertex lattice model. Annals of Physics, 70 (1972), 193–228.
[138] A. B., Zamolodchikov, Factorized S-matrices in two dimensions as the exact solutions of certain relativistic quantum field theory models, Annals of Physics, 120 (1979), 253–291.
[139] H. C., Öttinger, J., Honerkamp, Note on the Yang-Baxter equations for generalized Baxter models. Physics Letters A, 88 (1982), 339–343.
[140] J., Schwinger, Gauge invariance and mass. II. Physical Review, 128 (1962), 2425–2429.
[141] J. H., Lowenstein, J. A., Swieca, Quantum electrodynamics in two dimensions. Annals of Physics, 68 (1971), 172–195.
[142] J. B., Kogut, L., Susskind, How quark confinement solves the η → 3π problem. Physical Review D, 11 (1975), 3594–3610.
[143] F., Englert, R., Brout, Broken symmetry and the mass of gauge vector mesons. Physical Review Letters, 13 (1964), 321–323.
[144] P. W., Higgs, Broken symmetries and the masses of gauge bosons. Physical Review Letters, 13 (1964), 508–509.
[145] G. S., Guralnik, C. R., Hagen, T.W. B., Kibble, Global conservation laws and massless particles. Physical Review Letters, 13 (1964), 585–587.
[146] M. B., Halpern, Equivalent-boson method and free currents in two-dimensional gauge theories. Physical Review D, 13 (1976), 337–342.
[147] D. C., Mattis, E. H., Lieb, Exact solution of a many-fermion system and its associated boson field. Journal of Mathematical Physics, 6 (1965), 304–312.
[148] S., Mandelstam, Soliton operators for the quantized sine-Gordon equation. Physical Review D, 11 (1975), 3026–3030.
[149] H., Lehmann, K., Symanzik, W., Zimmermann, Zur Formulierung quantisierter Feldtheorien. Nuovo Cimento, 1 (1955), 205–225.
[150] R., Haag, Quantum field theories with composite particles and asymptotic conditions. Physical Review, 112 (1958), 669–673.
[151] D., Ruelle, On the asymptotic condition in quantum field theory. Helvetica Physica Acta, 35 (1962), 147–163.
[152] HRS Collaboration, Experimental study of the reactions e+ e− → e+ e− and e+ e− → γ γ at 29 GeV. Physical Review D, 34 (1986) 3286–3303.
[153] DELPHI Collaboration, Determination of the e+ e → γ γ(γ) cross-section at LEP 2. The European Physical Journal C, 37 (2004), 405–419.
[154] I. S., Gradshteyn, I. M., Ryzhik, Table of Integrals, Series and Products, 4th ed. (San Diego, CA: Academic Press, 1980).Google Scholar
[155] J., Schwinger, On quantum-electrodynamics and the magnetic moment of the electron. Physical Review, 73 (1948), 416–417.
[156] K. G., Wilson, Confinement of quarks. Physical Review D, 10 (1974), 2445–2459.
[157] S., Duane, J. B., Kogut, The theory of hybrid stochastic algorithms. Nuclear Physics B, 275 (1986), 398–420.Google Scholar
[158] S., Gottlieb, W., Liu, D., Toussaint, R. L., Renken, R. L., Sugar, Hybrid-moleculardynamics algorithms for the numerical simulation of quantum chromodynamics. Physical Review D, 35 (1987), 2531–2542.
[159] J. B., Kogut, E., Dagotto, A., Kocic, New phase of quantum electrodynamics: A nonperturbative fixed point in four dimensions. Physical Review Letters, 60 (1988), 772–775.
[160] J. B., Kogut, E., Dagotto, A., Kocic, A supercomputer study of strongly coupled QED. Nuclear Physics B, 317 (1989), 271–301.
[161] S., Kim, J. B., Kogut, M.-P., Lombardo, Gauged Nambu–Jona-Lasinio studies of the triviality of quantum electrodynamics. Physical Review D, 65 (2002), 054015.
[162] M., Gockeler, R., Horsley, E., Laermann, P., Rakow, G., Schierholz, R., Sommer, U.-J., Wiese, QED – A lattice investigation of the chiral phase transition and the nature of the continuum limit. Nuclear Physics B, 334 (1990), 527–558.
[163] M., Gockeler, R., Horsley, P., Rakow, G., Schierholz, R., Sommer, Scaling laws, renormalization group flow and the continuum limit in non-compact lattice QED. Nuclear Physics B, 371 (1992), 713–772.
[164] M., Gockeler, R., Horsley, V., Linke, P. E. L., Rakow, G., Schierholz, H., Stüben, Seeking the equation of state of non-compact lattice QED. Nuclear Physics B, 487 (1997), 313–341.
[165] M., Gockeler, R., Horsley, V., Linke, P., Rakow, G., Schierholz, H., Stüben, Is there a Landau pole problem in QED? Physical Review Letters, 80 (1998), 4119–4122.
[166] A., Vassallo, M., Esfeld, Leibnizian relationalism for general relativistic physics. Studies in History and Philosophy of Modern Physics, 55 (2016), 101–107.
[167] T., Kugo, I., Ojima, Manifestly covariant canonical formulation of Yang-Mills theories physical state subsidiary conditions and physical S-matrix unitarity. Physics Letters B, 73 (1978), 459–462.
[168] T., Kugo, I., Ojima, Manifestly covariant canonical formulation of the Yang-Mills field theories. I. General formalism. Progress of Theoretical Physics, 60 (1978), 1869–1889.
[169] T., Kugo, I., Ojima, Manifestly covariant canonical formulation of the Yang- Mills field theories. II. SU(2) Higgs-Kibble model with spontaneous symmetry breaking. Progress of Theoretical Physics, 61 (1979), 294–314.
[170] T., Kugo, I., Ojima, Manifestly covariant canonical formulation of the Yang-Mills field theories. III. Pure Yang-Mills theories without spontaneous symmetry breaking. Progress of Theoretical Physics, 61 (1979), 644–655.

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Hans Christian Öttinger, Swiss Federal Institute of Technology, Zürich
  • Book: A Philosophical Approach to Quantum Field Theory
  • Online publication: 21 December 2017
  • Chapter DOI: https://doi.org/10.1017/9781108227667.009
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Hans Christian Öttinger, Swiss Federal Institute of Technology, Zürich
  • Book: A Philosophical Approach to Quantum Field Theory
  • Online publication: 21 December 2017
  • Chapter DOI: https://doi.org/10.1017/9781108227667.009
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Hans Christian Öttinger, Swiss Federal Institute of Technology, Zürich
  • Book: A Philosophical Approach to Quantum Field Theory
  • Online publication: 21 December 2017
  • Chapter DOI: https://doi.org/10.1017/9781108227667.009
Available formats
×