Published online by Cambridge University Press: 05 August 2012
This very short chapter sketches a theoretical scheme – the hydrodynamic scaling model – that is consistent with the results in the previous chapter, and that predicts aspects of the observed behavior of polymers in nondilute solution. The model is incomplete; it does not predict everything. However, where it has been applied, its predictions agree with experiment. Here the model and its developments as of date of writing are described qualitatively, the reader being referred to the literature for extended calculations.
The hydrodynamic scaling model is an extension of the Kirkwood-Riseman model for polymer dynamics(1). The original model considered a single polymer molecule. It effectively treats a polymer coil as a bag of beads. For their collective coordinates, the beads have three center-of-mass translations, three rotations around the center of mass, and unspecified other coordinates. The use of rotation coordinates causes the Kirkwood-Riseman model to differ from the Rouse and Zimm models(2, 3). The other collective coordinates of the Kirkwood–Riseman model are lumped as “internal coordinates” whose fluctuations are in first approximation ignored. The beads are linked end-to-end, the links serving to establish and maintain the coil's bead density and radius of gyration. However, the spring constant of the links only affects the time evolution of the internal coordinates; it has no effect on translation or rotation of the coil as a whole.
When a coil moves with respect to the solvent, each bead sets up a wake, a fluid flow described in first approximation by the Oseen tensor.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.