Skip to main content Accessibility help
×
Hostname: page-component-669899f699-cf6xr Total loading time: 0 Render date: 2025-05-03T17:47:30.630Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  01 May 2025

Antoni Planes
Affiliation:
University of Barcelona
Avadh Saxena
Affiliation:
Los Alamos National Laboratory
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Phase Transitions
A Materials Perspective
, pp. 370 - 388
Publisher: Cambridge University Press
Print publication year: 2025

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Book purchase

Temporarily unavailable

References

[1]Sachdev, S., Quantum Phase Transitions, 2nd ed., Cambridge University Press, Cambridge, 2011.CrossRefGoogle Scholar
[2]Jaeger, G., The Ehrenfest Classification of Phase Transitions: Introduction and Evolution, Arch. Hist. Exact Sci. 53, 5181 (1998).CrossRefGoogle Scholar
[3]Yeoman, J. M., Statistical Mechanics of Phase Transitions, Oxford University Press, New York, 1992.Google Scholar
[4]Stanley, H. E., Introduction to Phase Transitions and Critical Phenomena, Oxford University Press, New York, 1971.Google Scholar
[5]ter Haar, D. and Wergeland, H., Elements of Thermodynamics, Addison-Wesley Publishing Company, Reading, 1966.Google Scholar
[6]Sun, W. and Powell-Palm, M. J., Generalized Gibbs’ Phase Rule, arXiv:2105.01337v1 [math-ph].Google Scholar
[7]Gibbs, J. W., The Scientific Papers of J. Willard Gibbs, Vol. 1: Thermodynamics, Ox Bow Press, Woodbridge, CT, 1993.Google Scholar
[8]Tolman, R. C., The Effect of Droplet Size on Surface Tension, J. Chem. Phys. 17, 333337 (1949).Google Scholar
[9]Hill, T. L., Thermodynamics of Small Systems, J. Chem. Phys. 36, 31823197 (1962).CrossRefGoogle Scholar
[10]Hill, T. L., Perspective: Nanothermodynamics, Nano Lett. 11, 111112 (2001).CrossRefGoogle Scholar
[11]Gunton, J. D. and Droz, M., Introduction to the Theory of Metastable and Unstable States, Sringer-Verlag, Berlin, 1983.Google Scholar
[12]Hiley, B. J. and Joyce, G. S., Ising Models with Long Range Interactions, Proc. Phys. Soc. 85, 493–507 (1965).Google Scholar
[13]Smart, J. S., Effective Field Theories of Magnetism, Saunders, Philadelphia, PA, 1966.Google Scholar
[14]Blume, M., Emery, V. J., and Griffiths, R. B., Ising Model for the λ Transition and Phase Separation in He3-He4 Mixtures, Phys. Rev. A 4, 10711077 (1971).Google Scholar
[15]Baxter, R. J., Exactly Solved Models in Statistical Mechanics, Academic Press, London, 1982.Google Scholar
[16]Kadanoff, L. P., More Is the Same; Phase Transitions and Mean Field Theory, J. Stat. Phys. 137, 777797 (2009).Google Scholar
[17]Bragg, W. L. and Williams, E. J., The Effect of Thermal Agitation on Atomic Arrangement in Alloys, Proc. R. Soc. Lond. 145 A, 699–730 (1934).Google Scholar
[18]Kinkaid, J. M. and Cohen, E. G. D., Phase Diagrams of Liquids Helium Mixtures and Metamagnets: Experiment and Mean Field Theory, Phys. Rep. 22, 57143 (1975).CrossRefGoogle Scholar
[19]Weiss, P., L hypothèse du champ moléculaire et la propriété ferromagnétique, J. Phys. Theor. Appl. 6, 661690 (1907).CrossRefGoogle Scholar
[20]Bethe, H., Statistical Theory of Superlattices, Proc. R. Soc. Lond. A 150, 552–575 (1935).Google Scholar
[21]Kirkwood, J. G., Order and Disorder in Binary Solid Solutions, J. Chem. Phys. 6, 7075 (1938).CrossRefGoogle Scholar
[22]Kruseman Aretz, F. E. J. and Cohen, E. G. D., A Theory of Order-Disorder Phenomena I, Physica 26, 967980 (1960).CrossRefGoogle Scholar
[23]Moessner, R. and Ramirez, A. P., Geometrical Frustration, Phys. Today 59, 2429 (2006).Google Scholar
[24]van de Walle, A. and Ceder, G., The Effect of Lattice Vibrations on Substitutional Alloy Thermodynamics, Rev. Mod. Phys. 74, 1145 (2002).Google Scholar
[25]Jones, R. A. L., Soft Condensed Matter, Oxford University Press, Oxford, 2002.CrossRefGoogle Scholar
[26]Born, M. and Huang, K., Dynamical Theory of Crystal Lattices, Oxford University Press, Oxford, 1954.Google Scholar
[27]Vives, E., Castán, T., and Planes, A., Unified Mean-Field Study of Ferro- and Antiferromagnetic Behavior of the Ising Model with External Field, Am. J. Phys. 65, 907913 (1997).Google Scholar
[28]Tolédano, J. C. and Tolédano, P., The Landau Theory of Phase Transitions, World Scientific, Singapore, 1987.CrossRefGoogle Scholar
[29]Triguero, C., Porta, M., and Planes, A., Coupling between Lattice Vibrations and Magnetism in Ising-Like Systems, Phys. Rev. B 73, 054401 (2006).Google Scholar
[30]Landau, L. D. and Lifshitz, E. M., Statistical Physics, 3rd ed., Part 1, Course in Theoretical Physics, Vol. 5, Pergamon Press, Oxford, 1980.Google Scholar
[31]Devonshire, A., Theory of Ferroelectrics, Adv. Phys. 3, 85130 (1954).CrossRefGoogle Scholar
[32]Ginzburg, V. L. and Landau, L. D., On the Theory of Superconductivity, Zh. Eksp. Teor. Fiz. 20, 1064–1082 (1950); English translation in: L. D. Landau, Collected Papers, Pergamon Press, Oxford, pp. 546–568, 1965.Google Scholar
[33]Salje, E. K. H., Wruck, B., and Thomas, H., Order-Parameter Saturation and Low-Temperature Extension of Landau Theory, Z. Phys. B 82, 399–404 (1991).Google Scholar
[34]Mermin, N. D. and Wagner, H., Absence of Ferromagnetism or Antiferromagnetism in One- or Two-Dimensional Isotropic Heisenberg Models, Phys. Rev. Lett. 17, 11331136 (1966).CrossRefGoogle Scholar
[35]Chaikin, P. M. and Lubensky, T. C., Principles of Condensed Matter Physics, Cambridge University Press, Cambridge, 1995.Google Scholar
[36]Binney, J. J., Dowrick, N. J., Fisher, A. J., and Newman, M. E. J., The Theory of Critical Phenomena, Oxford University Press, New York, 1992.Google Scholar
[37]Nishimori, H. and Ortiz, G., Elements of Phase Transitions and Critical Phenomena, Oxford University Press, Oxford, 2011.Google Scholar
[38]Widom, B., Equation of State in the Neighborhood of the Critical Point, J. Chem. Phys. 43, 38983905 (1965).Google Scholar
[39]Kadanoff, L. P., Scaling Laws for Ising Models near TC, Phys. 2, 263 (1966).CrossRefGoogle Scholar
[40]Ho, J. T. and Litster, J. D., Magnetic Equation of State of CrBr3, Near the Critical Point, Phys. Rev. Lett. 22, 603606 (1969).Google Scholar
[41]Maris, H. J. and Kadanoff, L. P., Teaching the Renormalization Group, Am. J. Phys. 46, 653657 (1978).Google Scholar
[42]Reichl, L. E., A Modern Course in Statistical Physics, 4th revised and updated edition, Wiley-VCH, Weinheim, 2016.Google Scholar
[43]Wilson, K. G., The Renormalization Group: Critical Phenomena and the Kondo Problem, Rev. Mod. Phys. 47, 773840 (1975).Google Scholar
[44]Gunton, J. D., San Miguel, M., and Sahni, P. S., The Dynamics of First Order Phase Transitions, in Phase Transitions and Critical Phenomena, Vol. 8, pp. 269–466, edited by Domb, C. and Lebowitz, J. L., Press, Academic, London 1983.Google Scholar
[45]Mouritsen, O. G., Pattern Formation in Condensed Matter, Int. J. Mod. Phys. B 4 1925–1954 (1990).CrossRefGoogle Scholar
[46]Mazenko, G. F., Universal Features in Growth Kinetics: Some Experimental Tests, Phys. Rev. B 43, 82048210 (1991).Google ScholarPubMed
[47]Noda, Y., Nishihara, S., and Yamada, Y., Critical Behavior and Scaling Law in Ordering Process of the First Order Phase Transition in Cu3Au Alloy, J. Phys. Soc. Jpn. 53, 42414249 (1984).Google Scholar
[48]Shannon, R. F., Nagler, E. E., Harkless, C. R., and Nicklow, R. M., Time-Resolved X-ray-Scattering Study of Ordering Kinetics in Bulk Single-Crystal Cu3Au, Phys. Rev. B 46, 4054 (1992).CrossRefGoogle ScholarPubMed
[49]Gaulin, B. D., Spooner, S., and Morii, Y., Kinetics of Phase Separation in Mn0.67Cu0.33, Phys. Rev. Lett. 59 668671 (1987).CrossRefGoogle Scholar
[50]Glas, R., Blaschko, O., and Rosta, L., Structure Functions in Decomposing Au-Pt Systems, Phys. Rev. B 46, 59725981 (1992).CrossRefGoogle ScholarPubMed
[51]Gunton, J. D. and Droz, M., Introduction to the Theory of Metastable and Unstable States, Springer-Verlag, Berlin, 1983.CrossRefGoogle Scholar
[52]Binder, K., Theory of First-Order Phase Transitions, Rep. Prog. Phys. 50 783859 (1987).CrossRefGoogle Scholar
[53]Hänggi, P., Talkner, P., and Borkovec, M., Reaction-Rate Theory: Fifty Years after Kramers, Rev. Mod. Phys. 62, 251341 (1990).Google Scholar
[54]Ort́ın, J. and Planes, A., Hysteresis in Shape-Memory Materials, in The Science of Hysteresis, Vol. III, pp. 467–553, edited by Bertotti, G. and Mayergoyz, I., Inc, Elsevier., Amsterdam 2005.CrossRefGoogle Scholar
[55]Mahato, M. C. and Shenoy, R. C., Langevin Dynamics Simulations of Hysteresis in Field-Swept Landau Potentials, J. Stat. Phys. 73, 123145 (1993).Google Scholar
[56]Langer, J. S., Theory of Spinodal Decomposition in Alloys, Ann. Phys. 65, 5386 (1971).Google Scholar
[57]Hohenberg, P. C. and Halperin, B. I., Theory of Dynamic Critical Phenomena, Rev. Mod. Phys. 49, 435479 (1977).CrossRefGoogle Scholar
[58]Cahn, J. W. and Hilliard, J. E., Free Energy of a Nonuniform System. I. Interfacial Free Energy, J. Chem. Phys. 28, 258267 (1958).CrossRefGoogle Scholar
[59]Cahn, J. W., Phase Separation by Spinodal Decomposition in Isotropic Systems, J. Chem. Phys. 42, 9399 (1965).Google Scholar
[60]Onuki, A., Phase Transition Dynamics, Cambridge University Press, Cambridge, 2002.CrossRefGoogle Scholar
[61]Angell, A. Supercooled Water, Ann. Rev. Phys. Chem. 34, 593630 (1984).CrossRefGoogle Scholar
[62]Landau, L. D. and Lifshitz, E. M., Statistical Physics, 3rd ed., Pergamon Press, Oxford, 1980.Google Scholar
[63]Lifshitz, E. M. and Pitaevskii, L. P., Physical Kinetics, Pergamon Press, Oxford, 1981.Google Scholar
[64]Becker, E. and Döring, W., Kinetische Behandlung der Keimbildung in übersättigten Dämpfen, Ann. Phys. 24, 719752 (1935).CrossRefGoogle Scholar
[65]Mullins, W. W. and Sekerka, R. F., Morphological Stability of a Particle Growing by Diffusion or Heat Flow, J. Appl. Phys. 33, 323329 (1963).Google Scholar
[66]Balluffi, R. W., Allen, S. M., and Carter, W. C., Kinetics of Materials, John Wiley & Sons, Hoboken, 2005.CrossRefGoogle Scholar
[67]Cahn, J. W., Nucleation on Dislocations, Acta Metall. 5, 165–172 (1957).Google Scholar
[68]Larché, F. C., Nucleation and Precipitation on Dislocations, in Dislocations in Solids, edited by Nabarro, F. R. N., Vol. 4, pp. 137–152, North Holland, Amsterdam, 1979.Google Scholar
[69]Hirth, J. P. and Lothe, J., Theory of Dislocations, 2nd ed., John Wiley & Sons, New York, 1982.Google Scholar
[70]Langer, J. S., Bar-on, M., and Miller, H. D., New Computational Method in the Theory of Spinodal Decomposition, Phys. Rev. A 11, 14171429 (1975).Google Scholar
[71]Mainville, J., Yang, Y. S., Elder, K. R., Sutton, M., X-ray Scattering Study of Early Stage Spinodal Decomposition in Al0.62Zn0.38, Phys. Rev. Lett. 78, 27872790 (1997).Google Scholar
[72]Bray, A. J., Theory of Phase Ordering Kinetics, Adv. Phys. 43, 357459 (1994).CrossRefGoogle Scholar
[73]Allen, S. M. and Cahn, J. W., A Microscopic Theory for Antiphase Boundary Motion and Its Application to Antiphase Domain Coarsening, Acta metall. 27, 1085–1085 (1979).Google Scholar
[74]Lifshitz, I. M. and Slyozov, V. V., The Kinetics of Precipitation from Super-Saturated Solid Solutions, J. Phys. Chem. Solids 19, 3550 (1961).CrossRefGoogle Scholar
[75]Wagner, C., Theorie der Alterung von Niderschlagen durch Umlösen (Ostwald Reifung), Z. Electrochem. 65, 581591 (1961).Google Scholar
[76]Katano, S., Iizumi, M., Nicklov, R. M., and Child, H. R., Scaling in the Kinetics of the Order-Disorder Transition in Ni3Mn, Phys. Rev. B 38, 26592663 (1988).Google ScholarPubMed
[77]Oki, K., Sagane, H., and Eguchi, T., Separation and Domain Structure of α + B2 Phase in Fe-Al Alloys, J. Phys. 38, C7-414–417 (1977).CrossRefGoogle Scholar
[78]Kikuchi, R. and Cahn, J. W., Theory of Interphase and Antiphase Boundaries in f.c.c. Alloys, Acta Metall. 27, 1337–1353 (1979).Google Scholar
[79]Frontera, C., Vives, E., Castán, T., and Planes, A., Monte Carlo Study of the Growth of L12-ordered domains in fcc A3B binary alloys, Phys. Rev. B 55, 212225 (1997).CrossRefGoogle Scholar
[80]Castán, T. and Lindgård, P.-A., n = ¼ Domain-Growth Univesrality Class: Crossover to the n = ½ Class, Phys. Rev. B 41, 25342536 (1990).Google Scholar
[81]Aizu, K., Possible Species of Ferromagnetic, Ferroelectric, and Ferroelastic Crystals, Phys. Rev. B 2, 754772 (1970).Google Scholar
[82]Aizu, K., Possible Species of “Ferroelastic” Crystals and of Simultaneously Ferroelectric and Ferroelastic Crystals, J. Phys. Soc. Japan 27, 387–396 (1969).Google Scholar
[83]Gutfleisch, O., Willard, M. A., Brück, E., Chen, C. H., Sankar, S. G., and Liu, J. P., Magnetic Materials and Devices for the 21st Century: Stronger, Lighter, and More Energy Efficient, Adv. Mater. 23, 821842 (2011).Google ScholarPubMed
[84]Scott, J. F, Applications of Modern Ferroelectrics, Science 315, 954959 (2007).Google ScholarPubMed
[85]Otsuka, K. and Wayman, C. M., eds., Shape Memory Materials, Cambridge University Press, Cambridge, 1998.Google Scholar
[86]Lehmann, J., Bortis, A., Derlet, P. M., Donnelly, C., and Leo, N., Heyderman, L. J., Fiebig, M., Relation between Microscopic Interactions and Macroscopic Properties in Ferroics, Nature Nanotech. 15, 896–900 (2020).Google Scholar
[87]Jackson, J. D., Classical Electrodynamics, 3rd ed., John Wiley & Sons, Inc., 1999.Google Scholar
[88]Dubovik, V. M., Martsenyuk, M. A., and Saha, B., Materials Equations for Electromagnetism with Toroidal Polarization, Phys. Rev. E 61, 70877097 (2000).CrossRefGoogle Scholar
[89]Beardley, I. A., Reconstruction of the Magnetization in a Thin Film by a Combination of Lorentz Microscopy and External Field Measurements, IEEE Trans. Mag. 25, 671–677 (1989).Google Scholar
[90]Prosandeev, S. and Bellaiche, L., Hypertoroidal Moment in Complex Dipolar Structures, J. Mater. Sci. 44, 52355248 (2009).CrossRefGoogle Scholar
[91]Shenoy, S. R., Lookman, T., and Saxena, A., Scaled Free Energies, Power-Law Potentials, Strain Pseudospins, and Quasiuniversality for First-Order Structural Transitions, Phys. Rev. B 82, 144103 (2010).Google Scholar
[92]Onuki, A., Phase Transition Dynamics, Cambridge University Press, Cambridge, 2002.Google Scholar
[93]Porta, M. and Lookman, T., Heterogeneity and Phase Transformation in Materials: Energy Minimization, Iterative Methods and Geometric Nonlinearity, Acta mater. 61, 53115340 (2013).CrossRefGoogle Scholar
[94]Gröger, R., Lookman, T., and Saxena, A., Defect-Induced Incompatibility of Elastic Strains: Dislocations within the Landau Theory of Martensitic Phase Transformations, Phys. Rev. B 78, 184101 (2008).Google Scholar
[95]Tolédano, P. and Tolédano, J. C., Order-Parameter Symmetries for the Phase Transitions of Nonmagnetic Secondary and Higher-Order Ferroics, Phys. Rev. B 16, 386407 (1977).CrossRefGoogle Scholar
[96]Tolédano, P. and Dimitriev, V., Reconstructive Phase Transitions in Crystals and Quasicrystals, World Scientific, Singapur, 1996.Google Scholar
[97]Moriya, T. and Takahashi, Y., Itinerant Electron Theory, Ann. Rev. Mater. Sci. 14, 125 (1984).Google Scholar
[98]Buschow, K. H. J. and de Boer, F. R. Physics of Magnetism and Magnetic Materials, Kluwer Academic Publishers, New York, 2003.CrossRefGoogle Scholar
[99]Spaldin, N. A., Magnetic Materials. Fundamentals and Applications, 2nd ed., Cambridge University Press, Cambridge, 2003.Google Scholar
[100]Tayler, F., The Magnetization-Temperature Curves of Iron, Cobalt, and Nickel, Philos. Mag. 11, 596602 (1931).CrossRefGoogle Scholar
[101]Aharoni, A., Introduction to the Theory of Ferromagnetism, Oxford University Press, New York, 1996. 1996.Google Scholar
[102]Osborn, J. A., Demagnetizing Factors of the General Ellipsoid, Phys. Rev. 67, 351357 (1945).CrossRefGoogle Scholar
[103]Bertotti, G., Hysteresis in Magnetism, Academic Press, San Diego, 1998.Google Scholar
[104]Smart, J. S., Effective Field Theories of Magnetism, W. B. Saunders Company, Philadelphia, 1966.CrossRefGoogle Scholar
[105]Yoshimori, A., A New Type of Antiferromagnetic Structure in the Rutile Type Crystal J. Phys. Soc. Japan 14, 807–821 (1959).Google Scholar
[106]Borriello, I., Cantele, G., and Ninno, D., Ab initio Investigation of Hybrid Organic-Inorganic Perovskites Based on Tin Halides, Phys. Rev. B 77, 235214 (2008).Google Scholar
[107]Bersuker, I. B., Pseudo-Jahn-Teller Effect – A Two-State Paradigm in Formation, Deformation, and Transformation of Molecular Systems and Solids, Chem. Rev. 113, 13511390 (2013).CrossRefGoogle ScholarPubMed
[108]Van Aken, B., Rivera, J. P., Schmid, H., and Fiebig, M., Observation of Ferrotoroidic Domains, Nature 449, 702705 (2007).CrossRefGoogle ScholarPubMed
[109]Zimmermann, A. S., Meier, D., and Fiebig, M., Ferroic Nature of Magnetic Toroidal Order, Nature Comm. 5, 4796 (2014).Google Scholar
[110]Tang, J., Hewitt, I., Madhu, N. T., Chastanet, G., Wernsdorfer, W., Anson, C. E., Benelli, C., Sessoli, R., and Powell, A. K., Dysprosium Triangles Showing Single-Molecule Magnet Behavior of Thermally Excited Spin States, Angew. Chem., Int. Eds. 45, 1729–1733 (2006).Google Scholar
[111]Ungur, L., Lin, S.-Y., Tang, J., and Chibotaru, L. F., Single-Molecule Toroidics in Ising-Type Lanthanide Molecular Clusters, Chem. Soc. Rev. 43, 68946905 (2014).CrossRefGoogle ScholarPubMed
[112]Luzon, J., Bernot, K., Hewitt, I. J., Anson, C. E., and Powell, A. K., Sessoli, R., Spin Chirality in a Molecular Dysprosium Triangle: The Archetype of the Noncollinear Ising Model, Phys. Rev. Lett. 100, 247205 (2008).Google Scholar
[113]Lehmann, J., Donnelly, C., Derlet, P. M., Heyderman, L. J., and Fiebig, M., Poling of an Artificial Magneto-Toroidal Crystal, Nature Nanotech. 14, 141–144 (2019).Google Scholar
[114]Schmid, H., On Ferrotoroidics and Electrotoroidics, Magnetotoroidics and Piezotoroidics Effects, Ferroelectrics 252, 4150 (2001).CrossRefGoogle Scholar
[115]Spaldin, N. A., Fiebig, M., and Mostovoy, M., The Toroidal Moment in Condensed-Matter Physics and Its Relation to the Magnetoelectric Effect, J. Phys. Condens. Matter. 20, 434203 (2008).CrossRefGoogle Scholar
[116]Baum, M., Schmalzl, K., Steffens, P., Hiess, A., Regnault, L. P., Meven, M., Becker, P., Bohatý, L., and Braden, M., Controlling Toroidal Moments by Crossed Electric and Magnetic Field, Phys. Rev. B 88, 024414 (2013).Google Scholar
[117]Yu, S.-Y., Mao, Schmid, H., Triscone, G., and Muller, J., Spontaneous Magnetization and Magnetic Susceptibility of a Ferroelectric/Ferromagnetic/Ferroelastic Single Domain Crystal of Nickel Bromine Boracite Ni3B7O13Br, J. Mag. Mag. Mater. 195, 6575 (1999).Google Scholar
[118]Popov, Y. F., Kadomtseva, A. M., Vorob’ev, Tomofeeva, V. A., Ustinin, D. M., Zvezdin, A. K., and Tegeranvhi, M. M., Magnetoelectric Effect and Toroidal Ordering in Ga2–xFexO3, JEPT 87, 146–151 (1998).Google Scholar
[119]Popov, Y. F., Kadomtseva, A. M., Vorob’ev, G. P., and Zvezdin, A. K., Magnetic-Field Induced Toroidal Moment in the Magnetoelectric Cr2O3, JEPT Lett. 69, 300–335 (1999).Google Scholar
[120]Sannikov, D. G., Ferrotoroidics, Ferroelectrics 354, 3943 (2007).Google Scholar
[121]Ederer, C. and Spaldin, N. A., Towards a Microscopic Theory of Toroidal Moments in Bulk Periodic Crystals, Phys. Rev. B 76, 214404 (2007).Google Scholar
[122]Eshelby, J. D., The Determination of the Elastic Field of an Ellipsoidal Inclusion, and Related Problems, Proc. R. Soc. A 241 376–396 (1957); The Elastic Field Outside an Ellipsoidal Inclusion, Proc. R. Soc. A 252, 561–569 (1959).Google Scholar
[123]Wechsler, M. S., Lieberman, D. S., and Read, T. A., Theory of the Formation of Martensite, Trans. AIME 197, 1503–1515 (1953).Google Scholar
[124]Bowles, J. S. and Mackenzie, J. K., The Crystallography of Martensite Transformations I, Acta Metal. 2, 129–137 (1954).Google Scholar
[125]Khachaturyan, A. G., The Theory of Structural Transformations in Solids, John Wiley & Sons, New York, 1983.Google Scholar
[126]Ball, J. M. and James, R. D., Fine Phase Mixtures as Minimizers of Energy, Arch. Ration Mech. Anal. 100, 1352 (1987).Google Scholar
[127]Bhattacharya, K., Microstructure of Martensite, 1st ed., Oxford University Press, New York, 2003.Google Scholar
[128]Porta, M., Castán, T., Lloveras. P., Lookman, T., Saxena, A., and Shenoy, S. R., Interfaces in Ferroelastics: Fringing Fields, Microstructure, and Size and Shape Effects, Phys. Rev. B 79, 214117 (2009).CrossRefGoogle Scholar
[129]Kittel, C., Physical Theory of Ferromagnetic Domains, Rev. Mod. Phys. 21, 541583 (1949).Google Scholar
[130]Bales, G. S. and Gooding, R. J., Interfacial Dynamics at a First-Order Phase Transition Involving Strain: Dynamical Twin Formation, Phys. Rev. Lett. 67, 34123415 (1991).CrossRefGoogle Scholar
[131]Lookman, T., Shenoy, S. R., Rasmussen, K. Ø., Saxena, A., and Bishop, A. R., Ferroelastic Dynamics and Strain Compatibility, Phys. Rev. B 67, 024114 (2003).CrossRefGoogle Scholar
[132]Otsuka, K. and Wayman, C. M., eds., Shape Memory Materials, Cambridge University Press, Cambridge, 1998.Google Scholar
[133]Kaspar, G., Ravoo, B. J., van der Wiel, W. G., Wegner, S. V., and Pernice, W. H. P., The Rise of Intelligent Matter, Nature 594, 345355 (2021).Google ScholarPubMed
[134]Schmid, H., Multi-ferroic Magnetoelectrics, Ferroelectrics 162, 317338 (1994).Google Scholar
[135]Eerenstein, W., Mathur, N. D., and Scott, J., Multiferroic and Magnetoelectric Materials, Nature 442, 759765 (2006).Google ScholarPubMed
[136]Martin, L. W., Crane, S. P., Chu, Y.-H., Holcomb, M. B., Gajek, M., Huijben, M., Yang, C.-H., Balke, N., and Ramesh, R., Multiferroics and Magnetoelectrics: Thin Films and Nanostructures, J. Phys.: Condens. Matter 20, 434220 (2008).Google Scholar
[137]Spaldin, N. A. and and Ramesh, R., Advances in Magnetoelectric Multiferroics, Nature Mater. 18, 203212 (2019).Google Scholar
[138]Forsbergh, P. W., Domain Structures and Phase Transitions in Barium Titanate, Phys. Rev. 76, 11871201 (1949).CrossRefGoogle Scholar
[139]Liebermann, H. H. and Graham, C. D., Plastic and Magnetoplastic Deformation of Dy Single Crystals, Acta Metall. 25, 715–720 (1977).Google Scholar
[140]Ullakko, K., Huang, J. K., Kantner, C., O’Handley, R. C., and Kokorin, V. V., Large Magnetic-Field-Induced Strains in Ni2MnGa Single Crystals, Appl. Phys. Lett. 69, 1966–1968 (1996).Google Scholar
[141]Schmid, H., Some Symmetry Aspects of Ferroics and Single Phase Multiferroics, J. Phys. Condens. Matter 20, 434201 (2008).Google Scholar
[142]Hill, N. A., Why Are There So Few Magnetic Ferroelectrics? J. Phys. Chem. B 104, 66946709 (2000).CrossRefGoogle Scholar
[143]Ascher, E., Rieder, H., Schmid. H., and Stössel, H., Some Properties of Ferromagnetoelectric Nickel-Iodine Boracite, Ni3B7O13I, J. Appl. Phys. 37, 14041405 (1966).CrossRefGoogle Scholar
[144]Kiselev, S. V., Ozerov, R. P., and Zhdanov, G. S., Detection of Magnetic Order in Ferroelectric BiFeO3 by Neutron Diffraction, Sov. Phys. Dokl. 7, 742744 (1963).Google Scholar
[145]Bertaut, E. F., Forrat, F., and Fang, P., Les Manganites de Terres Rares et d’Ytrium: Une Nouvelle Classe de Ferroélectriques, Comptes Rendus Acad. Sci. 256, 1958–1961 (1963).Google Scholar
[146]Scott, J. F. and Blinc, R., Multiferroic Magnetoelectric Fluorides: Why Are There So Many Magnetic Ferroelectrics?, J. Phys. Condens. Matter 23, 113202 (2011).CrossRefGoogle ScholarPubMed
[147]Khomskii, D., Classifying Multiferroics: Mechanisms and Effects, Physics 2, 20 (2009).CrossRefGoogle Scholar
[148]Smolenskii, G. A. and Chupis, I. E., Ferroelectromagnets, Sov. Phys. Usp. 25, 475–493 (1982).Google Scholar
[149]Cheong, S.-W. and Mostovoy, M., Multiferroics: A Magnetic Twist for Ferroelectricity, Nature Mater. 6, 1320 (2007).Google Scholar
[150]Efremov, D. V., Van den Brink, J., and Khomskii, D. I., Bond-versus Site-Centred Ordering and Possible Ferroelectricity in Manganites, Nature Mater. 3, 853856 (2004).Google Scholar
[151]Ikeda, N., Ohsumi, H., Ohwada, K., Ishii, K., Inami, T., Kakurai, K., Murakami, Y., Yoshii, K., Mori, S., Horibe, Y., and Kito, H., Ferroelectricity from Iron Valence Ordering in the Charge-Frustrated System LuFe2O4, Nature 436, 11361138 (2005).CrossRefGoogle ScholarPubMed
[152]van Aken, B. B., Palastra, T. T. M., Filippetti, A., and Spaldin, N. A., The Origin of Ferroelectricity in Magnetoelectric YMnO3, Nature Mater. 3, 164170 (2004).Google Scholar
[153]Newnham, R. E., Kramer, J. J. Schulze, W. A., and Cross, L. E., Magnetoferroelectricity in Cr2BeO4, J. Appl. Phys. 49, 60886091 (1978).CrossRefGoogle Scholar
[154]Kimuta, T., Goto, T., Shintani, H., Ishizaka, K., Arima, T., and Tokura, Y., Magnetic Control of Ferroelectric Polarization, Nature 426, 5558 (2003).Google Scholar
[155]Choi, Y. J., Yi, H. T., Lee, S., Huang, Q., Kiryukhin, V., and Cheong, S.-W., Ferroelectricity in an Ising Chain Magnet, Phys. Rev. Lett. 100, 047601 (2008).CrossRefGoogle Scholar
[156]Tokura, Y., Seki, S., and Nagaosa, N., Multiferroics of Spin Origin, Rep. Progress Phys. 77, 076501 (2014).Google Scholar
[157]Bulaevskii, L. N., Batista, C. D., Mostovoy, M. V., and Khomskii, D. I., Electronic Orbital Currents and Polarization in Mott Insulators, Phys. Rev. B 78, 024402 (2008).Google Scholar
[158]Cherifi, R. O., Ivanovskaya, V., Phillips, L. C., Zobelli, A., Infante, I. C., Jacquet, E., Garcia, V., Fusil, S., Briddon, P. R., Guiblin, N., Mougin, A., Ünal, A. A., Kronast, F., Valencia, S., Dkhil, B., Barthélémy, A., and Bibes, M., Electric-Field Control of Magnetic Order above Room Temperature, Nature Mater. 13, 345351 (2014).Google Scholar
[159]Mostovoy, M., Ferroelectricity in Spiral Magnets, Phys. Rev. Lett. 96, 067601 (2006).Google ScholarPubMed
[160]Kenzelmann, M., Harris, A. B., Jonas, S., Broholm, C., Schefer, J., Kim, S. B., Zhang, C. L., Cheong, S.-W., Vajk, O. P., and Lynn, J. W., Magnetic Inversion Symmetry Breaking and Ferroelectricity in TbMnO3, Phys. Rev. Lett. 95, 087206 (2005).CrossRefGoogle ScholarPubMed
[161]Kimura, T. and Tokura, Y., Magnetoelectric Phase Control in a Magnetic System Showing Cycloidal/Conical Spin Order, J. Phys. Condens. Matter 20, 434204 (2008).CrossRefGoogle Scholar
[162]Ge, Y., Heczko, O., Söderberg, O., and Lindroos, V. K., Various Magnetic Domain Structures in a Ni–Mn–Ga Martensite Exhibiting Magnetic Shape Memory Effect, J. Appl. Phys. 96, 2159 (2004).Google Scholar
[163]Merz, W. J., Domain Formation and Domain Wall Motions in Ferroelectric BaTiO3 Single Crystals, Phys. Rev. 95, 690698 (1954).Google Scholar
[164]Sozinov, A., Likhachev, A. A., Lanska, N., and Ullakko, K., Giant Magnetic-Field-Induced Strain in NiMnGa Seven-Layered Martensitic Phase, Appl. Phys. Lett. 80, 17461748 (2002).CrossRefGoogle Scholar
[165]Gebbia, J. F., Lloveras, P., Castán, T., Saxena, A., and Planes, A., Modelling Shape-Memory Effects in Ferromagnetic Alloys, Shap. Mem. Superelasticity 1, 347358 (2015).Google Scholar
[166]James, R. D. and Wuttig, M., Magnetostriction of Martensite, Philos. Mag. A 77, 12731299 (1998).CrossRefGoogle Scholar
[167]Lavrov, A. N., Komiya, S., and Ando, Y., Magnetic Shape-Memory Effects in a Crystal, Nature 418, 385386 (2002).CrossRefGoogle ScholarPubMed
[168]Buchelnikov, V. D., Entel, P., Taskaev, S. V., Sokolovskiy, V. V., Hucht, A., Ogura, M., Akai, H., Gruner, M. E., and Nayak, S. K., Monte Carlo Study of the Influence of Antiferromagnetic Exchange Interactions on the Phase Transitions of Ferromagnetic Ni-Mn-X alloys (X = In,Sn,Sb), Phys. Rev. B 78, 184427 (2008).Google Scholar
[169]Goldschmidt, V. M., Crystal Structure and Chemical Constitution, Trans. Faraday Soc. 25, 253–283 (1929).CrossRefGoogle Scholar
[170]Liu, W. and Ren, X., Large Piezoelectric Effect in Pb-Free Ceramics, Phys. Rev. Lett. 103, 257602 (2009).Google ScholarPubMed
[171]Yang, S., Yang, S., Bao, H., Zhou, C., Wang, Y., Ren, X., Matsushita, Y., Katsuya, Y., Tanaka, M., Kobayashi, K., Song, X., and Gao, J., Large Magnetostriction from Morphotropic Phase Boundary in Ferromagnets, Phys. Rev. Lett. 104, 197201 (2010).CrossRefGoogle ScholarPubMed
[172]Rossetti, G. A., Khachaturyan, A. G., Akcay, G., and Ni, Y., Ferroelectric Solid Solutions with Morphotropic Boundaries: Vanishing Polarization Anisotropy, Adaptive, Polar Glass, and Two-Phase States, J. Appl. Phys. 103, 114113 (2008).CrossRefGoogle Scholar
[173]Porta, M. and Lookman, T., Effects of Tricritical Points and Morphotropic Phase Boundaries on the Piezoelectric Properties of Ferroelectrics, Phys. Rev. B 83, 174108 (2011).Google Scholar
[174]Tagantsev, A. K., Susceptibility Anomaly in Films with Bilinear Coupling between Order Parameter and Strain, Phys. Rev. Lett. 94, 247603 (2005).Google Scholar
[175]Joule, J. P., On Some Thermo-Dynamic Properties of Solids, Phil. Trans. R. Soc. Lond. 149, 91131 (1859).Google Scholar
[176]Weiss, P. and Piccard, A., Les Phenomènes Magnétocaloriques, J. Phys. Theor. Appl. 7, 103109 (1917).CrossRefGoogle Scholar
[177]Debye, P., Einige Bemerkungen zur Magnetisierung bei tiefer Temperatur, Ann. Phys. 81, 11541160 (1926).CrossRefGoogle Scholar
[178]Giauque, W. F., A Thermodynamic Treatment of Certain Magnetic Effects. A Proposed Method of Producing Temperatures Considerably Below 1° Absolute, J. Am. Chem. Soc. 49, 1864–1870 (1927).Google Scholar
[179]Giauque, W. F. and MacDougall, D. P., Attainment of Temperatures Below 1° Absolute by Demagnetization of Gd2(SO4)3.8H2O, Phys. Rev. 43 768 (1933).Google Scholar
[180]Kobeko, P. and Kurtschatov, J., Dielektrische Eigenschaften der Seignettesalzkristalle, Z. Phys. 66, 192205 (1930).Google Scholar
[181]Brown, G. V. Magnetic Heat Pumping Near Room Temperature. J. Appl. Phys. 47, 36733680 (1976).CrossRefGoogle Scholar
[182]Pecharsky, V. K. and Gschneider, K. A., Giant Magnetocaloric Effect in Gd5(Si2Ge2) Phys. Rev. Lett. 78, 44944497 (1997).CrossRefGoogle Scholar
[183]Mischenko, A. S., Zhang, Q., Scott, J. F., Whatmore, R. W., Mathur, N. D., Giant Electrocaloric Effect in Thin-Film PbZr0.95Ti0.05O3, Science 311, 12701271 (2006).Google Scholar
[184]Bonnot, E., Romero, R., Vives, E., Mañosa, L., and Planes, A., Elastocaloric Effect Associated with the Martensitic Transition in Shape-Memory Alloys, Phys. Rev. Lett. 100, 125901 (2008).Google ScholarPubMed
[185]Moya, X., Kar-Narayan, S., and Mathur, N. D., Caloric Materials Near Ferroic Phase Transitions, Nature Mater. 13, 439450 (2014).Google Scholar
[186]Castán, T., Planes, A., and Saxena, A., Thermodynamics of Ferrotoroidic Materials: Toroidocaloric Effect, Phys. Rev. B 85, 144429 (2012).CrossRefGoogle Scholar
[187]Mathon, J. and Wohlfarth, E. P., Thermodynamic Properties of Nickel Near the Curie Temperature, J. Phys. C: Solid St. Phys. 2, 16471652 (1969).Google Scholar
[188]Gottschall, T., Ku’zmin, M. D., Skokov, K. P., Skourski, Y., Fries, M.,Gutfleish, O., Ghorbani Zavareh, M., Schlagel, D. L., Mudryk, Y., Pecharsky, V., and Wosnitza, J., Magnetocaloric Effect of Gadolinium in High Magnetic Fields, Phys. Rev. B 99, 134429 (2019).Google Scholar
[189]Srinath, S. and Kaul, S. N., Static Universality Class for Gadolinium, Phys. Rev. B 60, 12176 (1999).CrossRefGoogle Scholar
[190]Fujita, A., Fujieda, S., Fukachimi, K., Mitamura, H., and Goto, T., Itinerant-Electron Metamagnetic Transition and Large Magnetovolume Effects in La(FexSi1-x)13 Compounds, Phys. Rev. B, 65, 014410 (2001).CrossRefGoogle Scholar
[191]Fujita, A., Fujieda, S., Hasegawa, Y., and Fukachimi, K., Itinerant-Electron Metamagnetic Transition and Large Magnetocaloric Effects in La(FexSi1-x)13 Compounds and their Hydrides, Phys. Rev. B 67, 104416 (2003).Google Scholar
[192]Bean, C. P. and Rodbell, D. S., Magnetic Disorder as a First-Order Phase Transformation, Phys. Rev. 126, 104115 (1962).CrossRefGoogle Scholar
[193]Triguero, C., Porta, M., Planes, A., Magnetocaloric Effect in Metamagnetic Systems, Phys. Rev. B 76, 094415 (2007).CrossRefGoogle Scholar
[194]Planes, A., Castán, T., and Saxena, A., Thermodynamics of Multicaloric Effects in Multiferroics, Philos. Mag. 94, 1893–1908 (2014).Google Scholar
[195]Stern-Taulats, E., Castán, T., Planes, A., Lewis, L. H., Barua, R.,Pramanick, S., Majumdar, S., and Mañosa, L., Giant Multicaloric Response of Bulk Fe49Rh51, Phys. Rev. B 95, 104424 (2017).Google Scholar
[196]Stephen, M. J. and Straley, J. P., Physics of Liquid Crystals, Rev. Mod. Phys. 46, 617704.CrossRefGoogle Scholar
[197]Mitov, M., A Brief History of Liquid Crystals Can Be Found, in Liquid-Crystal Science from 1888 to 1922: Building a Revolution, Chem. Phys. Chem. 15, 12451250 (2014).Google Scholar
[198]Liquid Crystals – Applications and Uses, Vol. III, edited by Bahadur, B., Scientific, World, Singapur, 1992.Google Scholar
[199]Kast, W., Landolt-Bornstein Tables, Vol. 2, Part 2a, Springer-Verlag, Berlin, 1969.Google Scholar
[200]Chandrasekhar, S., Liquid Crystals, 2nd ed., Cambridge University Press, Cambridge, 1992.Google Scholar
[201]Jákli, A., Lavrentovich, O. D., and Selinger, J. V., Physics of Liquid Crystals of Bent-Shaped Molecules, Rev. Mod. Phys. 90, 045004 (2018).CrossRefGoogle Scholar
[202]Bushbya, R. J. and Kawata, K., Liquid Crystals That Affected the World: Discotic Liquid Crystals, Liquid Crystals 38, 14151426 (2011).CrossRefGoogle Scholar
[203]Maier, W. and Saupe, A., Eine Einfache Molekulare Theorie des Nematischen Kristallinflüssigen Zustandes, Z. Naturforsch. A 13a, 564–566 (1958); Eine Einfache Molekular-Statistische Theorie der Nematischen Kristallinflüssigen Phase. Teil 1, Z. Naturforsch. A 14 882–889 (1959); Eine Einfache Molekular-Statistische Theorie der Nematischen Kristallinflüssigen Phase. Teil 2, Z. Naturforsch. A 15, 287–292 (1960).Google Scholar
[204]de Gennes, P. G., Short Range Order Effects in the Isotropic Phase of Nematics and Cholesterics, Mol. Cryst. Liq. Cryst. 12, 193214 (1971).CrossRefGoogle Scholar
[205]Gramsbergen, E. F., Longa, L., and Jeu, W. H., Landau Theory of the Nematic-Isotropic Phase Transition, Phys. Rep. 135, 195257 (1986).CrossRefGoogle Scholar
[206]Chaikin, P. M. and Lubesnsky, T. C., Principles of Condensed Matter Physics, Cambridge University Press, New York, 1995.CrossRefGoogle Scholar
[207]Luckhurst, G. R. and Zannoni, C., Why Is the Maier-Saupe Theory of Nematic Liquid Crystals So Successful?, Nature 267, 412414 (1977).Google Scholar
[208]Gelbart, W. M., Molecular Theory of Nematic Liquid Crystals, J. Chem. Phys. 86, 42984307 (1986).Google Scholar
[209]Saupe, A., Biaxial Nematic Phases in Amphiphilic Systems, J. Chem. Phys. 80, 713 (1983).Google Scholar
[210]Anisimov, M. A., Garber, S. R., Esipov, V. S., Mannitskiĭ, V. M., Ovodov, G. I., Smolenko, L. A., and Sorkin, E. L., Anomaly of the Specific Heat and the Nature of the Phase Transition from an Isotropic Liquid to a Nematic Liquid Crystal, Sov. Phys. JETP 45, 1042–1047 (1977).Google Scholar
[211]Oseen, C. W., The Theory of Liquid Crystals, Trans. Faraday Soc. 29, 883–899 (1933).Google Scholar
[212]Frank, F. C. I., I Liquid Crystals. On the Theory of Liquid Crystals, Discuss. Faraday Soc. 25, 1928 (1958).CrossRefGoogle Scholar
[213]Mori, H., GartlandJr., E. C., Kelly, J. R., and Bos, P. J., Multidimensional Director Modeling Using the Q Tensor Representation in a Liquid Crystal Cell and Its Application to the Cell with Patterned Electrodes, Jpn. J. Appl. Phys. 38, 135146 (1999).CrossRefGoogle Scholar
[214]Binder, K., Egorov, S. A., Milchev, A., and Nikoubashman, A., Understanding the Properties of Liquid-Crystalline Polymers by Computational Modeling, J. Phys. Mater. 3, 032008 (2020).Google Scholar
[215]Zink, H. and De Jeu, W. H., A Light-Scattering Study of Pretransitional Behavior Around the Isotropic-Nematic Phase Transition in Alkylcyanobiphenyls, Mol. Cryst. Liq. Cryst. 124, 287304 (1985).CrossRefGoogle Scholar
[216]Helfrich, W., Effect of Electric Fields on the Temperature of Phase Transitions of Liquid Crystals, Phys. Rev. Lett. 24, 201203.CrossRefGoogle Scholar
[217]Rosenblatt, C., Magnetic Field Dependence of the Nematic-Isotropic Transition Temperature, Phys. Rev. A 24, 22362238 (1981).Google Scholar
[218]Nicastro, A. J. and Heyes, P. H., Electric-Field-Induced Critical Phenomena at the Nematic-Isotropic Transition and the Nematic-Isotropic Critical Point, Phys. Rev. A 30, 31563160 (1984).CrossRefGoogle Scholar
[219]Fréedericksz, V. and Zolina, V., Forces Causing the Orientation of an Anisotropic Liquid, Trans. Faraday Soc. 29, 919–930 (1933).CrossRefGoogle Scholar
[220]Mukherjee, P. K., Pleiner, H., and Brand, H. R., A Simple Landau Model for the Smectic-A-Isotropic Phase Transition, Eur. Phys. J. E4, 293297 (2001).Google Scholar
[221]Brinkman, W. F. and Cladis, P. E., Defects in Liquid Crystals, Phys. Today 35, 4854 (1982).Google Scholar
[222]Kleman, M. and Friedel, J., Disclinations, Dislocations, and Continuous Defects: A Reappraisal, Rev. Mod. Phys. 80, 61115 (2008).Google Scholar
[223]Caroli, C. and Dubois-Violette, E., Energy of a Disinclination Line in an Anisotropic Cholesteric Liquid Crystal, Solid State Commun. 7, 799 (1969).CrossRefGoogle Scholar
[224]Kamien, R. D. and Selinger, J. V., Order and Frustration in Chiral Liquid Crystals, J. Phys. Condens. Matter 13, R1–R22 (2001).Google Scholar
[225]Duzgun, A., Selinger, J. V., and Saxena, A., Comparing Skyrmions and Merons in Liquid Crystals and Magnets, Phys. Rev. B 97, 062706 (2018).CrossRefGoogle ScholarPubMed
[226]Mühlbauer, S., Binz, B., Jonietz, F., Pfleiderer, C., Rosch, A., Neubauer, A., Georgii, R., and Böni, P., Skyrmion Lattice in a Chiral Magnet, Science 323, 915919 (2019).Google Scholar
[227]Bogdanov, A. N. and Rößler, U. K., Chiral Symmetry Breaking in Magnetic Thin Films and Multilayers, Phys. Rev. Lett. 87, 037203 (2001).Google ScholarPubMed
[228]Imry, Y. and Ma, S.-K, Random-Field Instability of the Ordered State of Continuous Symmetry, Phys. Rev. Lett. 35, 13991401 (1975).Google Scholar
[229]Imry, Y. and Wortis, M., Influence of Quenched Impurities on First-Order Phase Transitions, Phys. Rev. B 19, 35803585 (1979).Google Scholar
[230]Lubchenko, V. and Wolynes, P. G., Theory of Structural Glasses and Supercooled Liquids, Ann. Rev. Phys. Chem. 58, 235266 (2007).Google Scholar
[231]Biroli, G and Garrahan, J. P., Perspective: The Glass Transition, J. Chem. Phys. 138, 12A301 (2013).Google Scholar
[232]Mydosh, J. A., Spin Glasses: An Experimental Introduction, Taylor & Francis, London, 1993.Google Scholar
[233]Cowley, R. A., Gvasaliyac†, S. N., Lushnikov, S. G., Roesslicand, B., and Rotaruc, G. M., Relaxing with Relaxors: A Review of Relaxor Ferroelectrics, Adv. Phys. 60, 229327 (2011).Google Scholar
[234]Sharma, P. A., Kim, S. B., Koo, T. Y., Guha, S., and Cheong, S. -W., Reentrant Charge Ordering Transition in the Manganites as Experimental Evidence for Strain Glass, Phys. Rev. B 71, 224416 (2005).Google Scholar
[235]Tolédano, P. and Manchon, D., Structural Mechanism Leading to a Ferroelastic Strain Glass State: Interpretation of Amophization under Pressure, Phys. Rev. B 71, 024210 (2005).Google Scholar
[236]Sarkar, S., Ren, X., Otsuka, K., Evidence for Strain Glass in the Ferroelastic-Martensitic System Ti50+xNi50–x, Phys. Rev. Lett. 95, 205702 (2005).CrossRefGoogle Scholar
[237]Lookman, T. and Ren, X., eds., Frustrated Materials and Ferroic Glasses, Springer-Verlag, Cham, Switzerland, 2018.Google Scholar
[238]Yamaguchi, Y. and Kimura, T., Magnetoelectric Control of Frozen State in a Toroidal Glass, Nature Comm. 4, 2063 (2013).Google Scholar
[239]Hurd, C. M., Varieties of Magnetic Order in Solids, Contemp. Phys. 23, 469493 (1982).CrossRefGoogle Scholar
[240]Bedanta, S. and Kleemann, W., Supermagnetism, J. Phys. D Appl. Phys. 42, 013001 (2009).Google Scholar
[241]Ashcroft, N. W. and Mermin, N. D., Solid State Physics, Holt, Rinehart and Winston, Philadelphia, 1976.Google Scholar
[242]Ruderman, M. A. and Kittel, C., Indirect Exchange Coupling of Nuclear Magnetic Moments by Conduction Electrons, Phys. Rev. 96, 99 (1954).Google Scholar
[243]Kasuya, T. A Theory of Metallic Ferro- and Antiferromagnetism on Zener’s Model, Prog. Theor. Phys. 16, 45 (1956).CrossRefGoogle Scholar
[244]Yoshida, K., Magnetic Properties of Cu-Mn Alloys, Phys. Rev. 106, 893 (1957).Google Scholar
[245]Cole, R. B., Sarkissian, B. V. B., Taylor, R. H., The Role of Finite Magnetic Clusters in Au-Fe Alloys Near the Percolation Concentration, Philos. Mag. B 37, 489498 (1978).Google Scholar
[246]Maletta, H. and Convert, P., Onset of Ferromagnetism in EuxSr1–x Near x = 0.5, Phys. Rev. Lett. 42, 108111 (1979).CrossRefGoogle Scholar
[247]Kasuya, T., Exchange Mechanisms in Europium Chalcogenides, IBM J. Res. Dev. 14, 214223 (1970).Google Scholar
[248]Börgermann, F. -J., Maletta, H., Zinn, W., EuxSr1–x Te: Spin-Glass Behavior in a Diluted Antiferromagnet, Phys. Rev. B 35, 8454–8461 (1986).Google Scholar
[249]Fischer, K. H. and Hertz, J. A., Spin Glasses, Cambridge University Press, Cambridge, 1991.CrossRefGoogle Scholar
[250]Nagata, S., Keesom, P. H., Harrison, H. R., Low-dc-field Susceptibility of CuMn Spin Glass, Phys. Rev. B 19, 16331638 (1979).Google Scholar
[251]Suzuki, M., Phenomenological Theory of Spin-Glasses and Some Rigorous Results, Prog. Ther. Phys. 58, 11511165 (1981).Google Scholar
[252]Barbara, B., Malozernoff, A. I., and Imry, I., Scaling of Nonlinear Susceptibility in MnCu and GdAl Spin-Glasses, Phys. Rev. Lett. 47, 1852–1855 (1981).CrossRefGoogle Scholar
[253]Mulder, C. A. M., van Duyneveldt, A. J., Mydosh, J. A., Susceptibility of the CuMn Spin-Glass: Frequency and Field Dependences, Phys. Rev. 23, 13841396 (1981).Google Scholar
[254]Hohenberg, P. C. and Halperin, B. I., Theory of Dynamic Critical Phenomena, Rev. Mod. Phys. 49, 435479 (1977).CrossRefGoogle Scholar
[255]Shtrikman, S. and Wohlfarth, E. P., The Theory of the Vogel-Fulcher Law of Spin Glasses, Phys. Lett. A 85, 467470 (1981).Google Scholar
[256]Bohn, H. G., Zinn, W., Dorner, D., and Kollmar, A., Neutron Scattering Study of Spin Waves and Exchange Interactions in Ferromagnetic EuS, Phys. Rev. B 22, 54475452 (1980).Google Scholar
[257]Edwards, S. F. and Anderson, P. W., Theory of Spin Glasses, J. Phys. F: Metal Phys. 5, 965974 (1975).Google Scholar
[258]Nattermann, T., Theory of the Random Field Ising Model, in Spin Glasses and Random Fields, edited by Young, A. P., Series on Directions in Condensed Matter Physics, World Scientific, pp. 227–298 (1997).Google Scholar
[259]Southern, B. W., Effective-Field Approximations for Disordered Magnets, J. Phys. C: Solid Stat. Phys, 9, 40114020 (1975).Google Scholar
[260]Sherrington, D. and Kirkpatrick, S., Solvable Model of a Spin-Glass, Phys. Rev. Lett. 35, 17921796 (1975).CrossRefGoogle Scholar
[261]de Almeida, J. R. L. and Thouless, D. J., Stability of the Sherrington-Kirkpatrick Solution of a Spin Glass Model, J. Phys. A: Math. Gen. 11, 983990 (1978).CrossRefGoogle Scholar
[262]Parisi, G., Infinite Number of Order Parameters for Spin-Glasses, Phys. Rev. Lett. 43, 17541756 (1979).CrossRefGoogle Scholar
[263]Kutnjak, Z., Pirc, R., Levstik, A., Levstik, I., Filipic, C., and Blinc, R., Observation of the Freezing Line in a Deuteron Glass, Phys. Rev. B 50, 12421–12428 (1994).Google Scholar
[264]Pirc, R., Tadić, B., and Blinc, R., Random-Field Smearing of the Proton-Glass Transition, Phys. Rev. B. 36, 86078615 (1987).CrossRefGoogle ScholarPubMed
[265]Cowley, R. A., Gvasaliyac, S. N., Lushnikov, S. G., Roessli, B., and Rotaru, G. M., Relaxing with Relaxors: A Review of Relaxor Ferroelectrics, Adv. Phys. 60, 229327 (2011).Google Scholar
[266]Cross, L. E., Relaxor Ferroelectrics, Ferroelectrics 76, 241267 (1987).Google Scholar
[267]Samara, G. A., Ferroelectricity Revisited – Advances in Materials and Physics, Sol. State Phys. 56, 239458 (2001).Google Scholar
[268]Westphal, V., Kleeman, W., and Glinchuk, M. D., Diffuse Phase Transitions and Random-Field-Induced Domain States of the “Relaxor” Ferroelectric PbMg1/3Nb2/3O3, Phys. Rev. Lett. 68, 847– (1992).Google Scholar
[269]Pirc, R. and Blinc, R., Spherical Random-Bond-Random-Field Model of Relaxor Ferroelectric, Phys. Rev. B 60, 13470–13478 (1999).Google Scholar
[270]Kutnjak, Z., Filipič, C., Pirc, R., Levstik, A., Farhi, R., and El Marssi, M., Slow Dynamics and Ergodicity Breaking in a Lanthanum-Modified Lead Zirconate Titanate Relaxor System, Phys. Rev. B 59, 294301 (1999).Google Scholar
[271]Ren, X., Wang, Y., Zhou, Y., Zhang, Z., Wang, D., Fan, G., Otsuka, K., Suzuki, T., Ji, Y., Zhang, J., Tian, Y., Hou, S., and Ding, X., Strain Glass in Ferroelastic Systems: Premartensitic Tweed versus Strain Glass, Philos. Mag. 90, 141157 (2010).Google Scholar
[272]Lloveras, P., Castán, T., Porta, M., Planes, A., and Saxena, A., Influence of Anisotropy on Structural Nanoscale Textures, Phys. Rev. Lett. 100, 165707 (2008).Google ScholarPubMed
[273]Planes, A., Lloveras, P., Castán, T., Saxena, A., and Porta, M., Ginzburg-Landau Modelling of Precusror Nanoscale Textures in Ferroeleastic Materials, Continnum Mech. Thermodym. 24, 619–627 (2012).Google Scholar
[274]Vasseur, R. and Lookman, T., Effects of Disorder in Ferroelastics: A Spin Model for Strain Glass, Phys. Rev. B 81, 094107 (2010).CrossRefGoogle Scholar
[275]Chakrabarti, B. K. and Acharyya, M., Dynamic Transitions and Hysteresis, Rev. Mod. Phys. 71, 847859 (1999).Google Scholar
[276]Sethna, J. P., Dahmen, K. A., and Myers, C. R., Crackling Noise, Nature 410, 242250 (2001).CrossRefGoogle ScholarPubMed
[277]Koshelev, A. E. and Vinokur, V. M., Dynamic Melting of the Vortex Lattice, Phys. Rev. Lett. 73, 35803583 (1994).Google ScholarPubMed
[278]Kes, P. H., Kokubo, N., and Besseling, R., Vortex Matter Driven through Mesoscopic Channels, Physica C 408410, 478 (2004).CrossRefGoogle Scholar
[279]Jiang, Q., Yang, H.-N., and Wang, G.-C., Scaling and Dynamics of Low-Frequency Hysteresis Loops in Ultrathin Co Films on a Cu(001) Surface, Phys. Rev. B 52, 14911 (1995).Google ScholarPubMed
[280]Ogawa, N., Murakami, Y., and Miyano, K., Charge-Density-Wave Phase Reconstruction in the Photoinduced Dynamic Phase Transition in K0.3MoO3, Phys. Rev. B 65, 155107 (2002).CrossRefGoogle Scholar
[281]Geng, Z., Peters, K. J. H., Trichet, A. A. P., Malmir, K., Kolkowski, R., Smith, J. M., and Rodriguez, S. R. K., Universal Scaling in the Dynamic Hysteresis, and Non-Markovian Dynamics, of a Tunable Optical Cavity, Phys. Rev. Lett. 124, 153603 (2020).CrossRefGoogle ScholarPubMed
[282]Tomé, T. and de Oliveira, M. J., Dynamic Phase Transition in the Kinetic Ising Model under a Time-Dependent Oscillating Field, Phys. Rev. A 41, 42514254 (1990).Google Scholar
[283]Bader, S. D. and Moog, E. R., Magnetic Properties of Novel Epitaxial Films, J. Appl. Phys. 61, 3729 (1987).CrossRefGoogle Scholar
[284]He, Y.-L. and Wang, G.-C., Observation of Dynamic Scaling of Magnetic Hysteresis in Ultrathin Ferromagnetic Fe/Au(001) Films, Phys. Rev. Lett. 70, 23362339 (1993).CrossRefGoogle ScholarPubMed
[285]Suen, J.-S and Erskine, J. L., Magnetic Hysteresis Dynamics: Thin p(1×1) Fe Films on Flat and Stepped W(110), Phys. Rev. Lett. 78, 3567 (1997).Google Scholar
[286]Gallardo, R., Idigoras, O., Landeros, P., and Berger, A., Analytical Derivation of Critical Exponents of the Dynamic Phase Transition in the Mean-Field Approximation, Phys. Rev. E 86, 051101 (2012).Google ScholarPubMed
[287]Sethna, J. P., Dahmen, K., Kartha, S., Krumhansl, J. A., Roberts, B. W., and Shore, J. D., Hysteresis and Hierarchies: Dynamics of Disorder-Driven First-Order Phase Transformations, Phys. Rev. Lett. 70, 33473350 (1993).Google ScholarPubMed
[288]Kumar, S. K., Biroli, G., and Tarjus, G., Spinodals with Disorder: From Avalanches in Random Magnets to Glassy Dynamics, Phys. Rev. Lett 116, 145701 (2016).Google Scholar
[289]McClure, J. C. and Schröder, K., The Magnetic Barkhausen Effect, Crit. Rev. Solid State Sci. 6, 4583 (1976).Google Scholar
[290]Durin, G. and Zapperi, S., The Role of Stationarity in Magnetic Crackling Noise, J. Stat. Mech.: Theory and Experiment 2006, P01002.CrossRefGoogle Scholar
[291]Zapperi, S., Cizeau, P., Durin, G., and Stanley, H. E., Dynamics of a Ferromagnetic Domain Wall: Avalanches, Depinning Transition, and Barkhausen Effect, Phys. Rev. B 58, 63536366 (1998).CrossRefGoogle Scholar
[292]da Silveira, R., An Introduction to Breakdown Phenomena in Disorderd Systems, Am. J. Phys. 67, 11771188 (1999).Google Scholar
[293]Perković, O., Dahmen, K., and Sethna, J. P., Avalanches, Barkhausen Noise, and Plain Old Criticality, Phys. Rev. Lett. 75, 45284531 (1995).Google ScholarPubMed
[294]Berger, A., Inomata, J. S., Jiang, J. S., Pearson, J. E., and Bader, S. D., Experimental Observation of Disorder-Driven Hysteresis-Loop Criticality, Phys. Rev. Lett. 85, 41764179 (2000).Google ScholarPubMed
[295]Marcos, J., Vives, E., Mañosa, L., Acet, M., Duman, E., Morin, M., Novák, V., and Planes, A., Disorder Induced Non-Equilibrium Phase Transition in Magnetically Glassy Cu-Al-Mn, Phys. Rev. B 67, 224406 (2003).Google Scholar
[296]Pérez-Reche, F. J., Experimentos y modelos en sistemas que presentan transiciones de fase de primer orden con dinámica de avalanchas, PhD Thesis, University of Barcelona, 2005, http://hdl.handle.net/2445/35492.Google Scholar
[297]Lieneweg, U. and Grosse-Nobis, W., Distribution of Size and Duration of Barkhausen Pulses and Energy Spectrum of Barkhausen Noise Investigated on 81% Nickel-Iron after Heat Treatment, Int. J. Magn. 3, 11–16 (1972).Google Scholar
[298]Durin, G. and Zapperi, S., The Barkhausen Effect in The Science of Hysteresis Vol. II, Chap. 3, edited by Bertotti, G. and Mayergoyz, I., pp. 181–267, Academic Press, Oxford, 2006.Google Scholar
[299]Schwarz, A., Liebmann, M., Kaiser, U., Wiesendanger, R., Noh, T. W., and Kim, D. W., Visualization of the Barkhausen Effect by Magnetic Force Microscopy, Phys. Rev. Lett. 92, 077206 (2004).Google ScholarPubMed
[300]Perković, O., Dahmen, K., and Sethna, J. P. Disorder-Induced Critical Phenomena in Hysteresis: A Numerical Scaling Analysis, arXiv:cond-mat/9609072v1 6 Sep 1996, unpublished.Google Scholar
[301]Sethna, J. P., Dahmen, K., and Perković, Random-Field Ising Models of Hysteresis in The Science of Hysteresis Vol. II, Chap. 2, edited by Bertotti, G. and Mayergoyz, I., pp. 107–179, Academic Press, Oxford, 2006.Google Scholar
[302]Tan, C. D., Flannigan, C., Gardner, J., Morrison, F. D., Salje, E. K. H., and Scott, J. F., Electrical Studies of Barkhausen Switching Noise in Ferroelectric PZT: Critical Exponents and Temperature Dependence, Phys. Rev. Mat. 3, 034402 (2019).Google Scholar
[303]Salje, E. K. H., Xue, D., Ding, D., Dahmen, K., and Scott, J. F., Ferroelectric Switching and Scale Invariant Avalanches in BaTiO3, Phys. Rev. Mat. 3, 014415 (2019).Google Scholar
[304]Pérez-Reche, F. J., Stipcich, M., Vives, E., Mañosa, L., Planes, A., and Morin, M., Kinetics of Martensitic Transitions in Cu-Al-Mn under Thermal Cycling: Analysis at Multiple Length Scales, Phys. Rev. B 69, 0641001 (2004).CrossRefGoogle Scholar
[305]Pérez-Reche, F. J., Truskinovsky, L., and Zanzotto, G., Training-Induced Criticality in Martensites, Phys. Rev. Lett. 99, 075501 (2006).Google Scholar
[306]Porta, M., Castán, T., Saxena, A., and Planes, A., Influence of the Number of Orientational Domains on Avalanche Criticality in Ferroelastic Transitions, Phys. Rev. E 100, 062115 (2019).Google ScholarPubMed
[307]Xu, Y., Xue, D., Zhou, Y., Su, T., Ding, X., Sun, J., and Salje, E. K. H., Avalanche Dynamics of Ferroelectric Phase Transitions in BaTiO3 and 0.7Pb(Mg2/3Nb1/3)O3-0.3PbTiO3 Single Crystals, Appl. Phys. Lett. 115, 022901 (2019).CrossRefGoogle Scholar
[308]Bonnot, E., Mañosa, L., Planes, A., Soto-Parra, D., and Vives, E., Acoustic Emission in the fcc-fct Martensitic Transition of Fe68.8Pd31.2, Phys. Rev. B 78, 184103 (2008).Google Scholar
[309]Bertotti, G., Hysteresis in Magnetism, Academic Press, San Diego, 1998.Google Scholar
[310]Barker, J. A., Schreiber, D. E., Huth, B. G., and Everett, D. H., Magnetic Hysteresis and Minor Loops: Models and Experiments, Proc. R. Soc. Lond. A 386, 251–261 (1983).Google Scholar
[311]Gutenberg, R. and Richter, C. F., Seismicity of the Earth and Associated Phenomena, Princeton University Press, Princeton, NJ, 1949.Google Scholar
[312]Baró, J., Corral, A., Illa, X., Planes, A., Salje, E. K. H., Schranz, W., Soto-Parra, E., and Vives, E., Statistical Similarity between the Compression of a Porous Material and Earthquakes, Phys. Rev. Lett. 110, 088702 (2013).CrossRefGoogle ScholarPubMed
[313]Bonamy, D. and Bouchaud, E., Failure of Heterogeneous Materials: A Dynamic Phase Transition?, Phys. Rep. 498, 144 (2011).Google Scholar
[314]Van Delft, D. and Kes, P., The Discovery of Superconductivity, Phys. Today 63, 3842 (2010).CrossRefGoogle Scholar
[315]Drude, P., Zur Elektronentheorie der Metalle, Annalen der Physik 306, 566613 (1900).CrossRefGoogle Scholar
[316]Kamerlingh Onnes, H., The Resistance of Pure Mercury at Liquid Helium, Commun. Phys. Lab. Univ. Leiden, 120b, 1479–1481 (1911); The Disappearence of the Resistance of Mercury, ibid., 122b, 81–83 (2011); On the Sudden Change in the Rate at Which the Resistance of Mercury Disappears, ibid., 124c, 799–801 (2011).Google Scholar
[317]Meissner, W. and Ochsenfeld, R., Ein neuer Effekt bei Eintritt der Supraleitfähigkeit, Naturwissenschaften 21, 787788 (1933).CrossRefGoogle Scholar
[318]McMillan, W. L., Transition Temperature of Strong-Coupled Superconductors, Phys. Rev. 167, 331344 (1968).CrossRefGoogle Scholar
[319]Bednorz, J. G. and Müller, K. A., Possible High Tc Superconductivity in the Ba-La-Cu-O System, Z. Phys. B 64, 189–193 (1986).Google Scholar
[320]Kleinert, H., Order of Superconductive Phase Transition, Condensed Matter Phys. 8, 7586 (2005).Google Scholar
[321]Gottlieb, U., Lasjaunias, J. C., Tholence, J. L., Laborde, O., Thomas, O., and Madar, R., Superconductivity in TaSi2 Single Crystals, Phys. Rev. B 45, 48034806 (1992).CrossRefGoogle ScholarPubMed
[322]London, F. and London, H., The Electromagnetic Equations of the Supraconductor, Proc. Roy. Soc. A 149, 71–88 (1935).Google Scholar
[323]Abrikosov, A. A., On the Magnetic Properties of Superconductors of the Second Group. J. Phys. Chem. Solids 5, 11741182 (1957).Google Scholar
[324]Abramowitz, M. and Stegun, I. A., eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Mathematical Series, Washington DC, 1964.Google Scholar
[325]Phillips, N. E., Heat Capacity of Aluminum between 0.l°K and 4.0°K, Phys. Rev. 114, 676685 (1959).CrossRefGoogle Scholar
[326]Ginzburg, V. L. and Landau, L. D., On the Theory of Superconductivity, Zh. Eksp. Teor. Fiz. 20, 1064–1082 (1950). English translation in: Landau, L. D Collected Papers, edited by Ter Haar, D., Press, Pergamon, Oxford, 1965,p. 546–568.Google Scholar
[327]Annett, J. F., Superconductivity, Superfluids and Condensates, Oxford University Press, Oxford, 2004.Google Scholar
[328]Abrikosov, A. A., On the Magnetic Properties of Superconductors of Second Group, Sov. Phys. JEPT 5, 1174–1182 (1957).Google Scholar
[329]Hess, H. F., Robinson, R. B., Dynes, R. C., Valles, Jr., J. M., and Waszczak,J. V., Scanning-Tunneling-Microscope Observation of the Abrikosov Flux Lattice and the Density of States near and inside a Fluxoid, Phys. Rev. Lett. 62, 214216 (1989).Google Scholar
[330]Riseman, T. M., Kealey, P. G., Forgan, E. M., Mackenzie, A. P., Galvin, L. M., Tyler, A. W., Lee, L. S., Ager, C., McK. Paul, D., Aegerter, C. M., Cubittk, R., Mao, Z. Q., Akima, T., and Maeno, Y., Observation of a Square Flux-Line Lattice in the Unconventional Superconductor Sr2RuO4, Nature 396, 242245 (1998).CrossRefGoogle Scholar
[331]Altshuler,. E. and Johansen, T. H., Colloquium: Experiments in Vortex Avalanches, Rev. Mod. Phys. 76, 471–487 (2004).Google Scholar
[332]Field, S., Witt, J., Nori, F., and Ling, X., Superconducting Vortex Avalanches, Phys. Rev. Lett. 74, 12061209 (1995).Google ScholarPubMed
[333]de Gennes, P. G., An Analogy between Superconductors and Smectics A, Solid State Comm. 10, 753–756 (1972).Google Scholar
[334]Renn, S. R. and Lubensky, T., Abrikosov Dislocation Lattice in a Model of the Cholesteric–to–Smectic-A Transition, Phys. Rev. A 38, 21322147 (1988).CrossRefGoogle Scholar
[335]Goodby, J. W., Waugh, M. A., Stein, S. M., Chin, E., Pindak, R., and Patel, J. S., Characterization of a New Helical Smectic Liquid Crystal, Nature, 337, 449452 (1989).Google Scholar
[336]Bardeen, J., Cooper, L. N., and Schrieffer, J. R., Microscopic Theory of Superconductivity, Phys. Rev. 106, 162164 (1957).Google Scholar
[337]Cooper, L, Bound Electron Pairs in a Degenerate Fermi Gas, Phys. Rev. 104, 11891190 (1956).Google Scholar
[338]Giaever, I. and Megerle, K., Study of Superconductors by Electron Tunneling, Phys. Rev. 122, 11011111 (1961).Google Scholar
[339]Gor’kov, L. P., Microscopic Derivation of the Ginzburg-Landau Equations in the Theory of Superconductivity, Sov. Phys. JETP 36, 1364–1367 (1959).Google Scholar
[340]de Gennes, P. G., Role of Double Exchange in Copper Oxides of Mixed Valency, Comptes Rendus Acad. Sci. (Paris) 305, 345–348 (1987).Google Scholar
[341]O’Mahony, S. M., Ren, W., Chen, W., and Séamus Davis, J. C., On the Electron Pairing Mechanism of Copper-Oxide High Temperature Superconductivity, PNAS 119, e2207449119 (2022).CrossRefGoogle Scholar
[342]Moriya, T. and Ueda, K., Spin Fluctuations and High Temperature Superconductivity, Adv. Phys. 49, 555606 (2010).CrossRefGoogle Scholar
[343]Hattori, T., Ihara, Y., Nakai, Y., Ishida, K., Tada, Y., Fujimoto, S., Kawakami, N., Osaki, E., Deguchi, K., Sato, N. K., and Satoh, I., Superconductivity Induced by Longitudinal Ferromagnetic Fluctuations in UCoGe, Phys. Rev. Lett. 108, 066403 (2012).Google ScholarPubMed
[344]Gorter, C. J. and Casimir, H. G. B., On Supraconductivity I, Physica 1, 306–320 (1934); Gorter, C. J., The Two Fluid Model for Superconductors and Helium II, in Progress in Low Temperature Physics, Vol. I, edited by Gorter, C. J., North-Hollad Publishing Company, Amsterdam, 1955, pp. 1–16.Google Scholar
[345]Sachdev, S., Quantum Phase Transitions, Phys. World, 12, 33–38 (1999); Sachdev, S. and Keimer, B., Quantum Criticality, Phys. Today, 64, 29–35 (2011).Google Scholar
[346]Hertz, J. A., Quantum Critical Phenomena, Phys. Rev. B 14, 11661184 (1976).Google Scholar
[347]Sondhi, S. L., Girvin, S. M., Carin, J. P., and Shahar, D., Continuous Quantum Phase Transitions, Rev. Mod. Phys. 69, 315333 (1997).CrossRefGoogle Scholar
[348]Vojta, M., Quantum Phase Transitions, Rep. Prog. Phys. 66, 20692110 (2003).Google Scholar
[349]Bitko, D., Rosenbaum, T. F., and Aeppli, G., Quantum Critical Behavior for a Model Magnet, Phys. Rev. Lett. 77, 940943 (1996).Google ScholarPubMed
[350]Coldea, R., Tennant, D. A., Wheeler, E. M., Wawrzynska, E., Prabhakaran, D., Telling, M., Habicht, K., Smeibidl, P., and Kiefe, K., Quantum Criticality in an Ising Chain: Experimental Evidence for Emergent E8 Symmetry, Science 327, 177180 (2010).Google Scholar
[351]Rüegg, C., Furrer, A., Sheptyakov, D., Strässle, T., Krämer, K. W., Güdel, H. -U., and Mélési, Pressure-Induced Quantum Phase Transition in the Spin-Liquid TlCuCl, Phys. Rev. Lett. 93, 257201 (2004).CrossRefGoogle Scholar
[352]Rüegg, C., Normand, B., Matsumoto, M., Furrer, A., McMorrow, D. F., Krämer, K. W., Güdel, H. -U., Gvasaliya, S. N., Mutka, H., and Boehm, M., Quantum Magnets under Pressure: Controlling Elementary Excitations in TlCuCl3, Phys. Rev. Lett. 100, 205701 (2008).Google Scholar
[353]Ando, Y., Komiya, S., Segawa, K., Ono, S., and Kurita, Y., Electronic Phase Diagram of High-Tc Cuprate Superconductors from a Mapping of the In-Plane Resistivity Curvature, Phys. Rev. Lett. 93, 267001 (2004).Google ScholarPubMed
[354]Armitage, N. P., Fournier, P., and Green, R. L., Progress and Perspectives on Electron-Doped Cuprates, Rev. Mod. Phys. 82, 24212487 (2010).CrossRefGoogle Scholar
[355]Kasahara, S., Shibauchi, T., Hashimoto, K., Ikada, K., Tonegawa, S., Okazaki, R., Shishido, H., Ikeda, H., Takeya, H., Hirata, K., Terashima, and T., Matsuda, Y., Evolution from Non-Fermi- to Fermi-Liquid Transport via Isovalent Doping in BaFe2(As1–xPx)2 Superconductors, Phys. Rev. B 81, 184519 (2010).Google Scholar
[356]Sachdev, S., Where Is the Quantum Critical Point in the Cuprate Superconductors?, Phys. Stat. Sol. B 247, 537–543 (2010).Google Scholar
[357]Thompson, C. J., Classical Equilibrium Statistical Mechanics, Clarendon Press, Oxford, 1988.Google Scholar
[358]International Tables for Crystallography, Vols. A to I, Wiley, 2019 (online version available at, https://it.iucr.org/).Google Scholar
[359]Hatch, D. M., Lookman, T., Saxena, A., and Shenoy, S. R., Proper Ferroelastic Transitions in Two Dimensions: Anisotropic Long-Range Kernels, Domain Wall Orientations, and Microstructure, Phys. Rev. B 68, 104105 (2003).CrossRefGoogle Scholar
[360]Stokes, H. T. and Hatch, D. M., Isotropy Subgroups of the 230 Crystallographic Space Groups, World Scientific, Singapore, 1988. The software package ISOTROPY is available at www.physics.byu.edu/stokesh/isotropy.html.Google Scholar
[361]Bilbao Crystallographic Server: www.cryst.ehu.es/.Google Scholar
[362]Hu, H. L. and Chen, L. Q., Computer Simulation of 90° Ferroelectric Domain Formation in Two-Dimensions, Mater. Sci. Eng. A 238, 182191 (1997).CrossRefGoogle Scholar
[363]Ahluwalia, R. and Cao, W., Influence of Dipolar Defects on Switching Behavior in Ferroelectrics, Phys. Rev. B 63, 012103 (2001).Google Scholar
[364]Saxena, A., Barsch, G. R., and Hatch, D. M., Lattice Dynamics Representation Theory versus Isotropy Subgroup Method with Application to M-5 Mode Instability in CsCl Structure, Phase Trans. 46, 89–142 (1994).Google Scholar
[365]Saxena, A. and Lookman, T., Magnetic Symmetry of Low-Dimensional Multiferroics and Ferroelastics, Phase Trans. 84, 421–437 (2011).Google Scholar
[366]Birss, R. R., Symmetry and Magnetism, North-Holland, Amsterdam, 1964.Google Scholar
[367]Srinivasan, S. G., Hatch, D. M., Stokes, H. T., Saxena, A., Albers, R. C., and Lookman, T., Mechanism for BCC to HCP Transformation: Generalization of the Burgers Model, arXiv:cond-mat/0209530.Google Scholar
[368]Hatch, D. M., Lookman, T., Saxena, A., and Stokes, H. T., Systematics of Group-Nonsubgroup Transitions: Square to Triangle Transition, Phys. Rev. B 64, 060104 (2001).Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Antoni Planes, University of Barcelona, Avadh Saxena, Los Alamos National Laboratory
  • Book: Phase Transitions
  • Online publication: 01 May 2025
  • Chapter DOI: https://doi.org/10.1017/9781009549776.014
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Antoni Planes, University of Barcelona, Avadh Saxena, Los Alamos National Laboratory
  • Book: Phase Transitions
  • Online publication: 01 May 2025
  • Chapter DOI: https://doi.org/10.1017/9781009549776.014
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Antoni Planes, University of Barcelona, Avadh Saxena, Los Alamos National Laboratory
  • Book: Phase Transitions
  • Online publication: 01 May 2025
  • Chapter DOI: https://doi.org/10.1017/9781009549776.014
Available formats
×