from Part III - Types of Phase Transformations
Published online by Cambridge University Press: 24 April 2020
Phase field theory treats the phases in materials as fields inside a material, as opposed to tracking the motions of interfaces during phase transformations. The interface sharpness is determined by a balance between bulk free energies and the square gradients of the fields. Treating phases as fields has advantages for the computational materials science of microstructural evolution, and some kinetic mechanisms are described. The different equations for the evolution of a conserved order parameter (e.g., composition) and a nonconserved order parameter (e.g., spin orientation) are discussed. The structure of an interface, especially its width, is analyzed for the typical case of an antiphase domain boundary. The Ginzburg–Landau equation is presented, and the effects of curvature on interface stability are discussed. Some aspects of the dynamics of domain growth are described.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.