from Part I - Basic Thermodynamics and Kinetics of Phase Transformations
Published online by Cambridge University Press: 24 April 2020
Chapter 3 begins by describing mechanisms of atomic diffusion in crystals, with emphasis on how their rates depend on temperature. Characteristic diffusion lengths and times are explained. The diffusion equation is derived for the chemical composition in space and time, c(r,t). The mathematics for solving the diffusion equation in one dimension are developed by standard approaches with Gaussian functions and error functions. The method of separation of variables is presented for three-dimensional problems in Cartesian and cylindrical coordinates. Typical boundary value problems for diffusion are solved with Fourier series and Bessel functions.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.