Published online by Cambridge University Press: 05 October 2010
Abstract
Permuting machines were the early inspiration of the theory of permutation pattern classes. Some examples are given which lead up to distilling the key properties that link them to pattern classes. It is shown how relatively simple ways of combining permuting machines can lead to quite complex behaviour and that the notion of regularity can sometimes be used to contain this complexity. Machines which are sensitive to their input data values are shown to be connected to a more general notion than pattern classes. Finally some open problems are presented.
Introduction
Although permutation patterns have only recently been studied in a systematic manner their history can be traced back many decades. It could be argued that the well-known lemma of Erdős and Szekeres is really a result about pattern classes (a pattern class whose basis contains both an increasing and a decreasing permutation is necessarily finite). However it is perhaps more convincing to attribute the birth of the subject to the ground-breaking first volume of Donald Knuth's Art of Computer Programming series. In the main body of his text, and in some fascinating follow-up exercises, Knuth enumerated some pattern classes, and found some bases, while at the same time introducing some techniques on generating functions that, in due time, were codified as “the kernel method”.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.