Skip to main content Accessibility help
×
Hostname: page-component-55f67697df-sqlfs Total loading time: 0 Render date: 2025-05-08T14:51:30.117Z Has data issue: false hasContentIssue false

Section 3 - Intraoperative Considerations

Published online by Cambridge University Press:  06 January 2018

Sheila Ryan Barnett
Affiliation:
Harvard University Medical School, Massachusetts
Sara E. Neves
Affiliation:
Beth Israel Deaconess Medical Center, Boston, MA, USA
Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Book purchase

Temporarily unavailable

References

References

American Geriatrics Society. Geriatric Review Syllabus – A Core Curriculum in Geriatric Medicine, 6th edn. New York, American Geriatrics Society, 2006.Google Scholar
Halaweish, I, Alam, HB. Changing demographics of the American population. Surg Clin North Am. 2015; 95:110.CrossRefGoogle ScholarPubMed
Al-Temimi, MH, Griffee, M, Enniss, TM, et al. When is death inevitable after emergency laparotomy? Analysis of the American College of Surgeons National Surgical Quality Improvement Program database. J Am Coll Surg. 2012; 215:503511.CrossRefGoogle ScholarPubMed
Ingraham, AM, Cohen, ME, Raval, MV, Ko, CY, Nathens, AB. Variation in quality of care after emergency general surgery procedures in the elderly. J Am Coll Surg. 2011; 212:10391048.CrossRefGoogle ScholarPubMed
Farhat, JS, Velanovich, V, Falvo, AJ, et al. Are the frail destined to fail? Frailty index as predictor of surgical morbidity and mortality in the elderly. J Trauma Acute Care Surg. 2012; 72:15261530.CrossRefGoogle ScholarPubMed
Sheetz, KH, Krell, RW, Englesbe, MJ, et al. The importance of the first complication: understanding failure to rescue after emergent surgery in the elderly. J Am Coll Surg. 2014; 219:365370.CrossRefGoogle ScholarPubMed
Sheetz, KH, Waits, SA, Krell, RW, et al. Improving mortality following emergent surgery in older patients requires focus on complication rescue. Ann Surg. 2013; 258:614617.CrossRefGoogle ScholarPubMed
Chow, WB, Rosenthal, RA, Merkow, RP, et al. Optimal preoperative assessment of the geriatric surgical patient: a best practices guideline from the American College of Surgeons National Surgical Quality Improvement Program and the American Geriatrics Society. J Am Coll Surg. 2012; 215:453466.CrossRefGoogle Scholar
Kim, S, Brooks, AK, Groban, L. Preoperative assessment of the older surgical patient: honing in on geriatric syndromes. Clin Interv Aging. 2015; 10:1327.Google Scholar
Williams, JB, Alexander, KP, Morin, JF, et al. Preoperative anxiety as a predictor of mortality and major morbidity in patients aged >70 years undergoing cardiac surgery. Am J Cardiol. 2013; 111:137142.CrossRefGoogle ScholarPubMed
Saxton, A, Velanovich, V. Preoperative frailty and quality of life as predictors of postoperative complications. Ann Surg. 2011; 253:12231229.CrossRefGoogle ScholarPubMed
Kim, SW, Han, HS, Jung, HW, et al. Multidimensional frailty score for the prediction of postoperative mortality risk. JAMA Surg. 2014; 149:633640.Google ScholarPubMed
Robinson, TN, Eiseman, B, Wallace, JI, et al. Redefining geriatric preoperative assessment using frailty, disability and co-morbidity. Ann Surg. 2009; 250:449455.CrossRefGoogle ScholarPubMed
Robinson, TN, Wallace, JI, Wu, DS, et al. Accumulated frailty characteristics predict postoperative discharge institutionalization in the geriatric patient. J Am Coll Surg. 2011; 213:3742.CrossRefGoogle ScholarPubMed
Robinson, TN, Wu, DS, Pointer, L, et al. Simple frailty score predicts postoperative complications across surgical specialties. Am J Surg. 2013; 206:544550.CrossRefGoogle ScholarPubMed
Revenig, LM, Canter, DJ, Henderson, MA, et al. Preoperative quantification of perceptions of surgical frailty. J Surg Res. 2015; 193:583589.CrossRefGoogle ScholarPubMed
Revenig, LM, Canter, DJ, Taylor, MD, et al. Too frail for surgery? Initial results of a large multidisciplinary prospective study examining preoperative variables predictive of poor surgical outcomes. J Am Coll Surg. 2013; 217:665670 e1.CrossRefGoogle ScholarPubMed
Karam, J, Tsiouris, A, Shepard, A, Velanovich, V, Rubinfeld, I. Simplified frailty index to predict adverse outcomes and mortality in vascular surgery patients. Ann Vasc Surg. 2013; 27:904908.CrossRefGoogle ScholarPubMed
Makary, MA, Segev, DL, Pronovost, PJ, et al. Frailty as a predictor of surgical outcomes in older patients. J Am Coll Surg. 2010; 210:901908.CrossRefGoogle ScholarPubMed
Amrock, LG, Neuman, MD, Lin, HM, Deiner, S. Can routine preoperative data predict adverse outcomes in the elderly? Development and validation of a simple risk model incorporating a chart-derived frailty score. J Am Coll Surg. 2014; 219:684694.CrossRefGoogle ScholarPubMed
Soreide, K, Desserud, KF. Emergency surgery in the elderly: the balance between function, frailty, fatality and futility. Scand J Trauma Resusc Emerg Med. 2015; 23:10.CrossRefGoogle ScholarPubMed
Cohen, RR, Lagoo-Deenadayalan, SA, Heflin, MT, et al. Exploring predictors of complication in older surgical patients: a deficit accumulation index and the Braden Scale. J Am Geriatr Soc. 2012; 60:16091615.CrossRefGoogle ScholarPubMed
Wilson, I, Paul Barrett, M, Sinha, A, Chan, S. Predictors of in-hospital mortality amongst octogenarians undergoing emergency general surgery: a retrospective cohort study. Int J Surg. 2014; 12:11571161.Google ScholarPubMed
Merani, S, Payne, J, Padwal, RS, et al. Predictors of in-hospital mortality and complications in very elderly patients undergoing emergency surgery. World J Emerg Surg. 2014; 9:43.CrossRefGoogle ScholarPubMed
Park, SY, Chung, JS, Kim, SH, et al. The safety and prognostic factors for mortality in extremely elderly patients undergoing an emergency operation. Surg Today. 2016; 46(2):241247.CrossRefGoogle ScholarPubMed
Daley, J, Khuri, SF, Henderson, W, et al. Risk adjustment of the postoperative morbidity rate for the comparative assessment of the quality of surgical care: results of the National Veterans Affairs Surgical Risk Study. J Am Coll Surg. 1997; 185:328340.Google ScholarPubMed
Khuri, SF, Daley, J, Henderson, W, et al. Risk adjustment of the postoperative mortality rate for the comparative assessment of the quality of surgical care: results of the National Veterans Affairs Surgical Risk Study. J Am Coll Surg. 1997; 185:315327.Google ScholarPubMed
Du, Y, Karvellas, CJ, Baracos, V, et al. Sarcopenia is a predictor of outcomes in very elderly patients undergoing emergency surgery. Surgery. 2014; 156:521527.CrossRefGoogle ScholarPubMed
Bates, AT, Divino, C. Laparoscopic surgery in the elderly: a review of the literature. Aging Dis. 2015; 6:149155.CrossRefGoogle ScholarPubMed
Antoniou, SA, Antoniou, GA, Koch, OO, Pointner, R, Granderath, FA. Meta-analysis of laparoscopic vs open cholecystectomy in elderly patients. World J Gastroenterol. 2014; 20:1762617634.CrossRefGoogle ScholarPubMed
Tucker, JJ, Yanagawa, F, Grim, R, Bell, T, Ahuja, V. Laparoscopic cholecystectomy is safe but underused in the elderly. Am Surg. 2011; 77:10141020.CrossRefGoogle ScholarPubMed
Lee, SI, Na, BG, Yoo, YS, Mun, SP, Choi, NK. Clinical outcome for laparoscopic cholecystectomy in extremely elderly patients. Ann Surg Treat Res. 2015; 88:145151.CrossRefGoogle ScholarPubMed
Weber, DM. Laparoscopic surgery: an excellent approach in elderly patients. Arch Surg. 2003; 138:10831088.CrossRefGoogle ScholarPubMed
Seishima, R, Okabayashi, K, Hasegawa, H, et al. Is laparoscopic colorectal surgery beneficial for elderly patients? A systematic review and meta-analysis. J Gastrointest Surg. 2015; 19:756765.CrossRefGoogle ScholarPubMed
Shoair, OA, Grasso, Ii MP, Lahaye, LA, et al. Incidence and risk factors for postoperative cognitive dysfunction in older adults undergoing major noncardiac surgery: a prospective study. J Anaesthesiol Clin Pharmacol. 2015; 31:3036.CrossRefGoogle ScholarPubMed
Kotekar, N, Kuruvilla, CS, Murthy, V. Postoperative cognitive dysfunction in the elderly: a prospective clinical study. Indian J Anaesth. 2014; 58:263268.CrossRefGoogle ScholarPubMed
Tan, CB, Ng, J, Jeganathan, R, et al. Cognitive changes after surgery in the elderly: does minimally invasive surgery influence the incidence of postoperative cognitive changes compared to open colon surgery? Dement Geriatr Cogn Disord. 2015; 39:125131.CrossRefGoogle ScholarPubMed
Gameiro, M, Eichler, W, Schwandner, O, et al. Patient mood and neuropsychological outcome after laparoscopic and conventional colectomy. Surg Innov. 2008; 15:171178.CrossRefGoogle ScholarPubMed
Hussain, M, Berger, M, Eckenhoff, RG, Seitz, DP. General anesthetic and the risk of dementia in elderly patients: current insights. Clin Interv Aging. 2014; 9:16191628.Google ScholarPubMed
OECD. Health at a glance 2013: OECD indicators. OECD Publishing, 2013. Available at: www.oecd.org/els/health-systems/Health-at-a-Glance-2013.pdf (Accessed July 7, 2017).Google Scholar
Barnet, CS, Arriaga, AF, Hepner, DL, et al. Surgery at the end of life: a pilot study comparing decedents and survivors at a tertiary care center. Anesthesiology. 2013; 119:796801.CrossRefGoogle ScholarPubMed
Kwok, AC, Semel, ME, Lipsitz, SR, et al. The intensity and variation of surgical care at the end of life: a retrospective cohort study. Lancet. 2011; 378:14081413.CrossRefGoogle ScholarPubMed

References

Philip, F, Athappan, G, Tuzcu, EM, Svensson, LG, Kapadia, SR. MitraClip for severe symptomatic mitral regurgitation in patients at high surgical risk: a comprehensive systematic review. Catheter Cardiovasc Interv. 2014; 84(4):581590.CrossRefGoogle ScholarPubMed
Meco, M, Biraghi, T, Panisi, P, et al. Aortocoronary bypass grafting in high-risk patients over 75 years. Propensity score analysis of on versus off-pump, early and midterm results. J Cardiovasc Surg (Torino). 2007; 48(3):339347.Google Scholar
Buzzatti, N, Taramasso, M, Latib, A, et al. Transcatheter mitral repair and replacement: state of the art and future directions. J Heart Valve Dis. 2014; 23(4):492505.Google ScholarPubMed
D'ascenzo, F, Moretti, C, Marra, WG, et al. Meta-analysis of the usefulness of Mitraclip in patients with functional mitral regurgitation. Am J Cardiol. 2015; 116(2):325331.CrossRefGoogle ScholarPubMed
Jensen, , Hughes, P, Rasmussen, LS, Pedersen, PU, Steinbrüchel, DA. Health-related quality of life following off-pump versus on-pump coronary artery bypass grafting in elderly moderate to high-risk patients: a randomized trial. Eur J Cardiothorac Surg. 2006; 30(2):294299.CrossRefGoogle ScholarPubMed
Maisano, F, Alfieri, O, Banai, S, et al. The future of transcatheter mitral valve interventions: competitive or complementary role of repair vs. replacement? Eur Heart J. 2015; 36(26):16511659.CrossRefGoogle ScholarPubMed
Raja, SG. Myocardial revascularization for the elderly: current options, role of off-pump coronary artery bypass grafting and outcomes. Curr Cardiol Rev. 2012; 8(1):2636.CrossRefGoogle ScholarPubMed
Alexander, KP, Anstrom, KJ, Muhlbaier, LH, et al. Outcomes of cardiac surgery in patients > or = 80 years: results from the National Cardiovascular Network. J Am Coll Cardiol. 2000; 35(3):731738.CrossRefGoogle ScholarPubMed
Rashedi, N, Otto, CM. Aortic stenosis: changing disease concepts. J Cardiovasc Ultrasound. 2015; 23(2):5969.CrossRefGoogle ScholarPubMed
Nicolini, F, Agostinelli, A, Vezzani, A, et al. The evolution of cardiovascular surgery in elderly patient: a review of current options and outcomes. BioMed Res Int. 2014:110.CrossRefGoogle Scholar
Panesar, SS, Chikwe, J, Mirza, SB, et al. Off-pump coronary artery bypass surgery may reduce the incidence of stroke in patients with significant left main stem disease. Thorac Cardiovasc Surg. 2008; 56(5):247255.CrossRefGoogle ScholarPubMed
Seco, M, Edelman, JJ, Forrest, P, et al. Geriatric cardiac surgery: chronology vs. biology. Heart Lung Circ. 2014; 23(9):794801.CrossRefGoogle ScholarPubMed
Kodali, SK, Williams, MR, Smith, CR, et al. Two-year outcomes after transcatheter or surgical aortic-valve replacement. N Engl J Med. 2012; 366(18):16861695.CrossRefGoogle ScholarPubMed
Cheng, DC, Bainbridge, D, Martin, JE, Novick, RJ; Evidence-Based Perioperative Clinical Outcomes Research Group. Does off-pump coronary artery bypass reduce mortality, morbidity, and resource utilization when compared with conventional coronary artery bypass? A meta-analysis of randomized trials. Anesthesiology. 2005; 102(1):188203.CrossRefGoogle ScholarPubMed
Srinivasan, AK, Oo, AY, Grayson, AD, et al. Mid-term survival after cardiac surgery in elderly patients: analysis of predictors for increased mortality. Interact Cardiovasc Thorac Surg. 2004; 3(2):289293.CrossRefGoogle ScholarPubMed
Thourani, VH, Myung, R, Kilgo, P, et al. Long-term outcomes after isolated aortic valve replacement in octogenarians: a modern perspective. Ann Thorac Surg. 2008; 86(5):14581465.CrossRefGoogle ScholarPubMed
Denti, P, Maisano, F, Alfieri, O. Devices for mitral valve repair. J Cardiovasc Transl Res. 2014; 7(3):266281.CrossRefGoogle ScholarPubMed
Likosky, DS, Dacey, LJ, Baribeau, YR, et al. Long-term survival of the very elderly undergoing coronary artery bypass grafting. Ann Thorac Surg. 2008; 85(4):12331237.CrossRefGoogle ScholarPubMed
Abel, NJ, Rogal, GJ, Burns, P, Saunders, CR, Chamberlain, RS. Aortic valve replacement with and without coronary artery bypass graft surgery in octogenarians: is it safe and feasible? Cardiology. 2013; 124(3):163173.CrossRefGoogle ScholarPubMed
Zingone, B, Gatti, G, Rauber, E, et al. Early and late outcomes of cardiac surgery in octogenarians. ATS. 2009; 87(1):7178.Google ScholarPubMed
Dacey, LJ, Likosky, DS, Ryan, TJ Jr., et al. Long-term survival after surgery versus percutaneous intervention in octogenarians with multivessel coronary disease. Ann Thorac Surg. 2007; 84(6):19041911.CrossRefGoogle ScholarPubMed
Sheridan, BC, Stearns, SC, Rossi, JS, et al. Three-year outcomes of multivessel revascularization in very elderly acute coronary syndrome patients. ATS. 2010; 89(6):18891895.Google ScholarPubMed
Coylewright, M, Cabalka, AK, Malouf, JA, et al. Percutaneous mitral valve replacement using a transvenous, transseptal approach: transvenous mitral valve replacement. J Am Coll Cardiol Intv. 2015; 8(6):850857.CrossRefGoogle ScholarPubMed
Athanasiou, T, Al-Ruzzeh, S, Kumar, P, et al. Off-pump myocardial revascularization is associated with less incidence of stroke in elderly patients. ATS. 2004; 77(2):745753.Google ScholarPubMed
Rashedi, N, Otto, CM. When should we operate in asymptomatic severe aortic stenosis? 2015. Available from: www.acc.org/latest-in-cardiology/articles/2015/02/04/14/49/when-should-we-operate-in-asymptomatic-severe-aortic-stenosis (Accessed July 19, 2017).Google Scholar
Wiedemann, D, Bernhard, D, Laufer, G, Kocher, A. The elderly patient and cardiac surgery: a mini-review. Gerontology. 2010; 56(3):241249.CrossRefGoogle ScholarPubMed
Osnabrugge, RL, Arnold, SV, Reynolds, MR, et al. Health status after transcatheter aortic valve replacement in patients at extreme surgical risk: results from the CoreValve U.S. Trial. J Am Coll Cardiol Intv. 2015; 8(2):315323.CrossRefGoogle ScholarPubMed
Yamamoto, M, Mouillet, G, Meguro, K, et al. Clinical results of transcatheter aortic valve implantation in octogenarians and nonagenarians: insights from the FRANCE-2 Registry. ATS. 2014; 97(1):2936.Google ScholarPubMed
Timek, TA, Turfe, Z, Hooker, RL, et al. Aortic valve replacement in octogenarians with prior cardiac surgery. ATS. 2015; 99(2):518523.Google ScholarPubMed
Maganti, M, Rao, V, Armstrong, S, et al. Redo valvular surgery in elderly patients. ATS. 2009; 87(2):521525.Google ScholarPubMed
Kaneko, T, Loberman, D, Gosev, I, et al. Reoperative aortic valve replacement in the octogenarians: minimally invasive technique in the era of transcatheter valve replacement. J Thoracic Cardiovasc Surg. 2014; 147(1):155162.CrossRefGoogle ScholarPubMed
Reardon, MJ, Adams, DH, Kleiman, NS, et al. 2-year outcomes in patients undergoing surgical or self-expanding transcatheter aortic valve replacement. J Am Coll Cardiol. 2015; 66(2):113121.CrossRefGoogle ScholarPubMed
Saxena, A, Dinh, DT, Yap, CH, et al. Critical analysis of early and late outcomes after isolated coronary artery bypass surgery in elderly patients. ATS. 2011; 92(5):17031711.Google ScholarPubMed
Grossi, EA, Schwartz, CF, Yu, P-J, et al. High-risk aortic valve replacement: are the outcomes as bad as predicted? Ann Thorac Surg. 2008; 85(1):102107.CrossRefGoogle ScholarPubMed
Gallo, M, Gerosa, G. Multiparameter approach to evaluate elderly patients undergoing aortic valve replacement. J Thoracic Cardiovasc Surg. 2014; 148(4):17491751.CrossRefGoogle ScholarPubMed
Afilalo, J, Karunananthan, S, Eisenberg, MJ, Alexander, KP, Bergman, H. Role of frailty in patients with cardiovascular disease. Am J Cardiol. 2009; 103(11):16161621.CrossRefGoogle ScholarPubMed
Afilalo, J, Eisenberg, MJ, Morin, JF, et al. Gait speed as an incremental predictorof mortality and major morbidity in elderly patients undergoing cardiac surgery. J Am Coll Cardiol. 2010; 56(20):16681676.CrossRefGoogle Scholar
Canvasser, LD, Mazurek, AA, Cron, DC, et al. Paraspinous muscle as a predictor of surgical outcome. Surg Res. 2014; 192(1):7681.CrossRefGoogle ScholarPubMed
Englesbe, MJ, Terjimanian, MN, Lee, JS, et al. Morphometric age and surgical risk. J Am Coll Surg. 2013; 216(5):976985.CrossRefGoogle ScholarPubMed

References

Bach, DS, Deeb, GM, Bolling, SF. Accuracy of intraoperative transesophageal echocardiography for estimating the severity of functional mitral regurgitation. Am J Cardiol. 1995; 76(7):508512.CrossRefGoogle ScholarPubMed
Iung, B, Vahanian, A. Epidemiology of acquired valvular heart disease. Can J Cardiol. 2014; 30(9):962970.CrossRefGoogle ScholarPubMed
Khabbaz, KR, Mahmood, F, Shakil, O, et al. Dynamic 3-dimensional echocardiographic assessment of mitral annular geometry in patients with functional mitral regurgitation. Ann Thorac Surg. 2013; 95(1):105110.CrossRefGoogle ScholarPubMed
Iung, B, Baron, G, Butchart, EG. A prospective survey of patients with valvular heart disease in Europe: the Euro Heart Survey on Valvular Heart Disease. Eur Heart J. 2003; 24(13):12311243.CrossRefGoogle ScholarPubMed
Grewal, KS, Malkowski, MJ, Piracha, AR, et al. Effect of general anesthesia on the severity of mitral regurgitation by transesophageal echocardiography. Am J Cardiol. 2000; 85(2):199203.CrossRefGoogle ScholarPubMed
Gorman, JH, Jackson, BM, Enomoto, Y, Gorman, RC. The effect of regional ischemia on mitral valve annular saddle shape. ATS. 2004; 77(2):544548.Google ScholarPubMed
Hahn, RT, Abraham, T, Adams, MS, et al. Guidelines for performing a comprehensive transesophageal echocardiographic examination:recommendations from the american society of echocardiography and the society of cardiovascular anesthesiologists. J Am Soc Echocardiogr. 2013; 26(9):921964.CrossRefGoogle ScholarPubMed
Nishimura, RA, Otto, CM, Bonow, RO, et al. 2014 AHA/ACC Guideline for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Circulation 2014; 129(23):e650.Google Scholar
Kocica, MJ, Gorman, JH, Corno, AF, et al. Annuloplasty ring selection for chronic ischemic mitral regurgitation: lessons from the ovine model. Ann Thorac Surg. 2003; 76(5):1556–63.Google Scholar
Lancellotti, P, Moura, L, Piérard, LA, et al. European Association of Echocardiography recommendations for the assessment of valvular regurgitation. Part 2: mitral and tricuspid regurgitation (native valve disease). Eur J Echocardiogr. 2010; 11(4):307332.CrossRefGoogle ScholarPubMed
Warraich, HJ, Chaudary, B, Maslow, A, et al. Mitral annular nonplanarity: correlation between annular height/commissural width ratio and the nonplanarity angle. J Cardiothorac Vasc Anesth. 2012; 26(2):186190.CrossRefGoogle ScholarPubMed
Bonow, RO, Carabello, B, de Leon, AC Jr., et al. Guidelines for the management of patients with valvular heart disease: executive summary. A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee on Management of Patients with Valvular Heart Disease). Circulation. 1998; 98(18):19491984.CrossRefGoogle Scholar
Smith, CR, Leon, MB, Mack, MJ, et al. Transcatheter versus surgical aortic-valve replacement in high-risk patients. N Engl J Med. 2011; 364(23):21872198.CrossRefGoogle ScholarPubMed
Marsan, NA, Westenberg, JJM, Ypenburg, C, et al. Quantification of functional mitral regurgitation by real-time 3D echocardiography: comparison with 3D velocity-encoded cardiac magnetic resonance. JACC Cardiovasc Imaging. 2009; 2(11):12451252.CrossRefGoogle ScholarPubMed
Leon, MB, Smith, CR, Mack, M, et al. Transcatheter aortic-valve implantation for aortic stenosis in patients who cannot undergo surgery. N Engl J Med. 2010; 363(17):15971607.CrossRefGoogle ScholarPubMed
Grewal, J, Mankad, S, Freeman, WK, et al. Real-time three-dimensional transesophageal echocardiography in the intraoperative assessment of mitral valve disease. J Am Soc Echocardiogr. 2009; 22(1):3441.CrossRefGoogle ScholarPubMed
Fleisher, LA, Fleischmann, KE, Auerbach, AD, et al. 2014 ACC/AHA Guideline on perioperative cardiovascular evaluation and management of patients undergoing noncardiac surgery: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Circulation. 2014; 130(24):22152245.CrossRefGoogle Scholar
Vergnat, M, Levack, MM, Jassar, AS, et al. The influence of saddle-shaped annuloplasty on leaflet curvature in patients with ischaemic mitral regurgitation. Eur J Cardiothorac Surg. 2012; 42(3):493499.CrossRefGoogle ScholarPubMed
Wang, W, Lin, Q, Wu, W, et al. Quantification of mitral regurgitation by general imaging three-dimensional quantification: feasibility and accuracy. J Am Soc Echocardiogr. 2014; 27(3):268276.CrossRefGoogle ScholarPubMed
Bartels, K, Thiele, RH, Phillips-Bute, B, et al. Dynamic indices of mitral valve function using perioperative three-dimensional transesophageal echocardiography. J Cardiothorac Vasc Anesth. 2014; 28(1):1824.CrossRefGoogle ScholarPubMed
Hien, MD, Rauch, H, Lichtenberg, A, et al. Real-time three-dimensional transesophageal echocardiography: improvements in intraoperative mitral valve imaging. Anesth Analg. 2013; 116(2):287295.CrossRefGoogle ScholarPubMed
Carabello, BA, Paulus, WJ. Aortic stenosis. Lancet. 2009; 373(9667):956966.CrossRefGoogle ScholarPubMed
La Canna, G, Arendar, I, Maisano, F, et al. Real-time three-dimensional transesophageal echocardiography for assessment of mitral valve functional anatomy in patients with prolapse-related regurgitation. Am J Cardiol. 2011; 107(9):13651374.CrossRefGoogle ScholarPubMed
Hung, J, Lang, R, Flachskampf, F, et al. 3D echocardiography: a review of the current status and future directions. J Am Soc Echocardiogr. 2007; 20(3):213233.CrossRefGoogle ScholarPubMed
Lindroos, M, Kupari, M, Heikkilä, J, Tilvis, R. Prevalence of aortic valve abnormalities in the elderly: an echocardiographic study of a random population sample. J Am Coll Cardiol. 1993; 21(5):12201225.CrossRefGoogle ScholarPubMed
Otto, CM, Lind, BK, Kitzman, DW, Gersh, BJ, Siscovick, DS. Association of aortic-valve sclerosis with cardiovascular mortality and morbidity in the elderly. N Engl J Med. 1999; 341(3):142147.CrossRefGoogle ScholarPubMed
Mahmood, F, Warraich, HJ, Shahul, S, et al. En face view of the mitral valve: definition and acquisition. Anesth Analg. 2012; 115(4):779784.CrossRefGoogle ScholarPubMed
Kwan, J, Yeom, BW, Jones, M, et al. Acute geometric changes of the mitral annulus after coronary occlusion: a real-time 3D echocardiographic study. J Korean Med Sci. 2006; 21(2):217223.CrossRefGoogle ScholarPubMed
Kwan, J, Qin, JX, Popović, ZB, et al. Geometric changes of mitral annulus assessed by real-time 3-dimensional echocardiography: becoming enlarged and less nonplanar in the anteroposterior direction during systole in proportion to global left ventricular systolic function. J Am Soc Echocardiogr. 2004; 17(11):11791184.CrossRefGoogle ScholarPubMed
Czarny, MJ, Resar, JR. Diagnosis and management of valvular aortic stenosis. Clin Med Insights Cardiol. 2014; 8(Suppl 1):1524.Google ScholarPubMed
Cary, T, Pearce, J. Aortic stenosis: pathophysiology, diagnosis, and medical management of nonsurgical patients. Crit Care Nurse. 2013; 33(2):5872.CrossRefGoogle ScholarPubMed
Kuppahally, SS, Paloma, A, Craig Miller, D, Schnittger, I, Liang, D. Multiplanar visualization in 3D transthoracic echocardiography for precise delineation of mitral valve pathology. Echocardiography. 2008; 25(1):8487.Google ScholarPubMed
Thavendiranathan, P, Phelan, D, Thomas, JD, Flamm, SD, Marwick, TH. Quantitative assessment of mitral regurgitation: validation of new methods. J Am Coll Cardiol. 2012; 60(16):14701483.CrossRefGoogle ScholarPubMed
Anyanwu, AC, Adams, DH. Etiologic classification of degenerative mitral valve disease: Barlow's disease and fibroelastic deficiency. Semin Thorac Cardiovasc Surg. 2007; 19(2):9096.CrossRefGoogle ScholarPubMed
Eriksson, MJ, Bitkover, CY, Omran, AS, et al. Mitral annular disjunction in advanced myxomatous mitral valve disease: echocardiographic detection and surgical correction. J Am Soc Echocardiogr. 2005; 18(10):10141022.CrossRefGoogle ScholarPubMed
Stewart, BF, Siscovick, D, Lind, BK, et al. Clinical factors associated with calcific aortic valve disease. Cardiovascular Health Study. J Am Coll Cardiol. 1997; 29(3):630634.CrossRefGoogle ScholarPubMed
Carmo, P, Andrade, MJ, Aguiar, C, et al. Mitral annular disjunction in myxomatous mitral valve disease: a relevant abnormality recognizable by transthoracic echocardiography. Cardiovasc Ultrasound. 2010; 8:53.CrossRefGoogle ScholarPubMed
Hutchins, GMG, Moore, GWG, Skoog, DKD. The association of floppy mitral valve with disjunction of the mitral annulus fibrosus. N Engl J Med. 1986; 314(9):535540.CrossRefGoogle ScholarPubMed
Filsoufi, F, Carpentier, A. Principles of reconstructive surgery in degenerative mitral valve disease. Semin Thorac Cardiovasc Surg. 2007; 19(2):103110.CrossRefGoogle ScholarPubMed
Barlow, JB, Pocock, WA. Billowing, floppy, prolapsed or flail mitral valves? Am J Cardiol. 1985 Feb 1; 55(4):501502.CrossRefGoogle ScholarPubMed
Rajamannan, NM, Bonow, RO, Rahimtoola, SH. Calcific aortic stenosis: an update. Nat Clin Pract Cardiovasc Med. 2007; 4(5):254262.CrossRefGoogle ScholarPubMed
Maffessanti, F, Marsan, NA, Tamborini, G, et al. Quantitative analysis of mitral valve apparatus in mitral valve prolapse before and after annuloplasty: a three-dimensional intraoperative transesophageal study. J Am Soc Echocardiogr. 2011; 24(4):405413.CrossRefGoogle ScholarPubMed
Carpentier, A, Chauvaud, S, Fabiani, JN, et al. Reconstructive surgery of mitral valve incompetence: ten-year appraisal. J Thoracic Cardiovasc Surg. 1980; 79(3):338348.CrossRefGoogle ScholarPubMed
Chandra, S, Salgo, IS, Sugeng, L, et al. Characterization of degenerative mitral valve disease using morphologic analysis of real-time three-dimensional echocardiographic images: objective insight into complexity and planning of mitral valve repair. Circ Cardiovasc Imaging. 2011; 4(1):2432.CrossRefGoogle ScholarPubMed
Addetia, K, Mor-Avi, V, Weinert, L, et al. A new definition for an old entity: improved definition of mitral valve prolapse using three-dimensional echocardiography and color-coded parametric models. J Am Soc Echocardiogr. 2014; 27(1):816.CrossRefGoogle ScholarPubMed
Zakkar, M, Patni, R, Punjabi, PP. Mitral valve regurgitation and 3D echocardiography. Future Cardiol. 2010; 6(2):231242.CrossRefGoogle ScholarPubMed
Biaggi, P, Jedrzkiewicz, S, Gruner, C, et al. Quantification of mitral valve anatomy by three-dimensional transesophageal echocardiography in mitral valve prolapse predicts surgical anatomy and the complexity of mitral valve repair. J Am Soc Echocardiogr. 2012; 25(7):758765.CrossRefGoogle ScholarPubMed
Mahmood, F, Gorman, JH, Subramaniam, B, et al. Changes in mitral valve annular geometry after repair: saddle-shaped versus flat annuloplasty rings. Ann Thorac Surg. 2010; 90(4):12121220.CrossRefGoogle ScholarPubMed
Ahmed, S, Nanda, NC, Miller, AP, et al. Usefulness of transesophageal three-dimensional echocardiography in the identification of individual segment/scallop prolapse of the mitral valve. Echocardiography. 2003; 20(2):203209.CrossRefGoogle ScholarPubMed
Agricola, E, Oppizzi, M, Pisani, M, et al. Ischemic mitral regurgitation: mechanisms and echocardiographic classification. Eur J Echocardiogr. 2007; 9(2):207221.Google Scholar
Silbiger, JJ. Mechanistic insights into ischemic mitral regurgitation: echocardiographic and surgical implications. J Am Soc Echocardiogr. 2011; 24(7):707719.CrossRefGoogle ScholarPubMed
Otto, CM, Mickel, MC, Kennedy, JW, et al. Three-year outcome after balloon aortic valvuloplasty: insights into prognosis of valvular aortic stenosis. Circulation. 1994; 89(2):642650.CrossRefGoogle ScholarPubMed
Macnab, A, Jenkins, NP, Bridgewater, BJM, et al. Three-dimensional echocardiography is superior to multiplane transoesophageal echo in the assessment of regurgitant mitral valve morphology. Eur J Echocardiogr. 2004; 5(3):212222.CrossRefGoogle ScholarPubMed
Carpentier, A. Cardiac valve surgery: the “French correction.” J Thorac Cardiovasc Surg. 1983; 86(3):323337.CrossRefGoogle ScholarPubMed
Pepi, M, Tamborini, G, Maltagliati, A, et al. Head-to-head comparison of two- and three-dimensional transthoracic and transesophageal echocardiography in the localization of mitral valve prolapse. J Am Coll Cardiol. 2006; 48(12):25242530.CrossRefGoogle ScholarPubMed
Looi, J-L, Lee, AP-W, Wan, S, et al. Diagnosis of cleft mitral valve using real-time 3-dimensional transesophageal echocardiography. Int J Cardiol. 2013; 168(2):16291630.CrossRefGoogle ScholarPubMed
Olsson, M, Granström, L, Lindblom, D, Rosenqvist, M, Rydén, L. Aortic valve replacement in octogenarians with aortic stenosis: a case-control study. J Am Coll Cardiol. 1992; 20(7):15121516.CrossRefGoogle ScholarPubMed
Levine, RA, Glasson, JR, Handschumacher, MD, et al. Three-dimensional echocardiographic reconstruction of the mitral valve, with implications for the diagnosis of mitral valve prolapse. Circulation. 1989; 80(3):589598.CrossRefGoogle ScholarPubMed
Gaasch, WH, Meyer, TE. Left ventricular response to mitral regurgitation: implications for management. Circulation. 2008; 118(22):22982303.CrossRefGoogle ScholarPubMed
Silbiger, JJ. Anatomy, mechanics, and pathophysiology of the mitral annulus. Am Heart J. 2012; 164(2):163176.CrossRefGoogle ScholarPubMed
Piérard, LA, Carabello, BA. Ischaemic mitral regurgitation: pathophysiology, outcomes and the conundrum of treatment. Eur Heart J. 2010; 31(24):29963005.CrossRefGoogle ScholarPubMed
Hammermeister, K, Sethi, GK, Henderson, WG, et al. Outcomes 15 years after valve replacement with a mechanical versus a bioprosthetic valve: final report of the Veterans Affairs randomized trial. J Am Coll Cardiol. 2000; 36(4):11521158.CrossRefGoogle ScholarPubMed
Salgo, IS, Gorman, JH, Gorman, RC, et al. Effect of annular shape on leaflet curvature in reducing mitral leaflet stress. Circulation. 2002; 106(6):711717.CrossRefGoogle ScholarPubMed
Silbiger, JJ, Bazaz, R. Contemporary insights into the functional anatomy of the mitral valve. Am Heart J. 2009; 158(6):887895.CrossRefGoogle ScholarPubMed
Otsuji, Y, Levine, RA, Takeuchi, M, Sakata, R, Tei, C. Mechanism of ischemic mitral regurgitation. J Cardiol. 2008; 51(3):145156.CrossRefGoogle ScholarPubMed
Burkhoff, D, Flaherty, JT, Yue, DT, et al. In vitro studies of isolated supported human hearts. Heart Vessels. 1988; 4(4):185196.CrossRefGoogle ScholarPubMed
Mangini, A, Contino, M, Romagnoni, C, et al. Aortic valve repair: a ten-year single-centre experience. Interact CardioVasc Thorac Surg. 2014; 19(1):2835.CrossRefGoogle ScholarPubMed
Cohn, JN, Ferrari, R, Sharpe, N. Cardiac remodeling: concepts and clinical implications: a consensus paper from an international forum on cardiac remodeling. J Am Coll Cardiol. 2000; 35(3):569582.CrossRefGoogle ScholarPubMed
Ranganathan, N, Lam, JHC, Wigle, ED, Silver, MD. Morphology of the human mitral valve: II. The valve leaflets. Circulation. 1970; 41(3):459467.CrossRefGoogle Scholar
Turi, ZG. Cardiology patient page: mitral valve disease. Circulation. 2004; 109(6):e38e41.CrossRefGoogle ScholarPubMed
Otsuji, Y, Handschumacher, MD, Schwammenthal, E, et al. Insights from three-dimensional echocardiography into the mechanism of functional mitral regurgitation: direct in vivo demonstration of altered leaflet tethering geometry. Circulation. 1997; 96(6):19992008.CrossRefGoogle ScholarPubMed
Aronow, WS, Kronzon, I. Correlation of prevalence and severity of mitral regurgitation and mitral stenosis determined by Doppler echocardiography with physical signs of mitral regurgitation and mitral stenosis in 100 patients aged 62 to 100 years with mitral anular calcium. Am J Cardiol. 1987; 60(14):11891190.CrossRefGoogle ScholarPubMed
Yiu, SF, Enriquez-Sarano, M, Tribouilloy, C, Seward, JB, Tajik, AJ. Determinants of the degree of functional mitral regurgitation in patients with systolic left ventricular dysfunction: a quantitative clinical study. Circulation. 2000; 102(12):14001406.CrossRefGoogle ScholarPubMed
Agricola, E, Oppizzi, M, Maisano, F, et al. Echocardiographic classification of chronic ischemic mitral regurgitation caused by restricted motion according to tethering pattern. Eur J Echocardiogr. 2004; 5(5):326334.CrossRefGoogle ScholarPubMed
Watanabe, N, Ogasawara, Y, Yamaura, Y, et al. Geometric differences of the mitral valve tenting between anterior and inferior myocardial infarction with significant ischemic mitral regurgitation: quantitation by novel software system with transthoracic real-time three-dimensional echocardiography. J Am Soc Echocardiogr. 2006; 19(1):7175.CrossRefGoogle ScholarPubMed
Kwan, J, Shiota, T, Agler, DA, et al. Geometric differences of the mitral apparatus between ischemic and dilated cardiomyopathy with significant mitral regurgitation: real-time three-dimensional echocardiography study. Circulation 2003; 107(8):11351140.CrossRefGoogle ScholarPubMed
Victor, S, Nayak, VM. Definition and function of commissures, slits and scallops of the mitral valve: analysis in 100 hearts. Asia Pacific J Thoracic Cardiovasc Surg. 1994; 3(1):1016.CrossRefGoogle Scholar
Yamauchi, T, Taniguchi, K, Kuki, S, et al. Evaluation of the mitral valve leaflet morphology after mitral valve reconstruction with a concept “coaptation length index.” J Card Surg. 2005; 20(5):432435.CrossRefGoogle ScholarPubMed
Tibayan, FA, Wilson, A, Lai, DTM, et al. Tenting volume: three-dimensional assessment of geometric perturbations in functional mitral regurgitation and implications for surgical repair. J Heart Valve Dis. 2007; 16(1):17.Google ScholarPubMed
Messas, E, Bel, A, Szymanski, C, et al. Relief of mitral leaflet tethering following chronic myocardial infarction by chordal cutting diminishes left ventricular remodeling. Circ Cardiovasc Imag. 2010; 3(6):679686.CrossRefGoogle ScholarPubMed
Lai, DT, Tibayan, FA, Myrmel, T, et al. Mechanistic insights into posterior mitral leaflet inter-scallop malcoaptation during acute ischemic mitral regurgitation. Circulation. 2002; 106(12 Suppl 1):I40I45.CrossRefGoogle ScholarPubMed
Chmielak, Z, Kłopotowski, M, Demkow, M, et al. Percutaneous mitral balloon valvuloplasty beyond 65 years of age. Cardiol J. 2013; 20(1):4451.CrossRefGoogle ScholarPubMed
Nesta, F, Otsuji, Y, Handschumacher, MD, et al. Leaflet concavity: a rapid visual clue to the presence and mechanism of functional mitral regurgitation. J Am Soc Echocardiogr. 2003; 16(12):13011308.CrossRefGoogle Scholar
Donal, EE, Levy, FF, Tribouilloy, CC. Chronic ischemic mitral regurgitation. J Heart Valve Dis. 2006; 15(2):149157.Google ScholarPubMed
Bothe, W, Miller, DC, Doenst, T. Sizing for mitral annuloplasty: where does science stop and voodoo begin? Ann Thorac Surg. 2013; 95:14751483.CrossRefGoogle ScholarPubMed
Mihalatos, DG, Mathew, ST, Gopal, AS, et al. Relationship of mitral annular remodeling to severity of chronic mitral regurgitation. J Am Soc Echocardiogr. 2006; 19(1):7682.CrossRefGoogle ScholarPubMed
Kim, K, Kaji, S, An, Y, et al. Mechanism of asymmetric leaflet tethering in ischemic mitral regurgitation: 3D analysis with multislice CT. JACC Cardiovasc Imag. 2012; 5(2):230232.CrossRefGoogle ScholarPubMed
Singh, JP, Evans, JC, Levy, D, et al. Prevalence and clinical determinants of mitral, tricuspid, and aortic regurgitation (the Framingham Heart Study). Am J Cardiol. 1999; 83(6):897902.CrossRefGoogle ScholarPubMed
Song, J-M, Kihara, T, Fukuda, S, et al. Value of mitral valve tenting volume determined by real-time three-dimensional echocardiography in patients with functional mitral regurgitation. Am J Cardiol. 2006; 98(8):10881093.CrossRefGoogle ScholarPubMed
Kwan, J, Gillinov, MA, Thomas, JD, Shiota, T. Geometric predictor of significant mitral regurgitation in patients with severe ischemic cardiomyopathy, undergoing Dor procedure: a real-time 3D echocardiographic study. Eur J Echocardiogr. 2007; 8(3):195203.CrossRefGoogle ScholarPubMed
Enriquez-Sarano, M, Akins, CW, Vahanian, A. Mitral regurgitation. Lancet. 2009; 373(9672):13821394.CrossRefGoogle ScholarPubMed
Kaplan, SR, Bashein, G, Sheehan, FH, et al. Three-dimensional echocardiographic assessment of annular shape changes in the normal and regurgitant mitral valve. Am Heart J. 2000; 139(3):378387.CrossRefGoogle ScholarPubMed
Olson, LJ, Subramanian, R, Ackermann, DM, Orszulak, TA, Edwards, WD. Surgical pathology of the mitral valve: a study of 712 cases spanning 21 years. Mayo Clin Proc. 1987; 62(1):2234.CrossRefGoogle ScholarPubMed
Lawrie, GM. Structure, function, and dynamics of the mitral annulus: importance in mitral valve repair for myxamatous mitral valve disease. Methodist Debakey Cardiovasc J. 2010; 6(1):814.CrossRefGoogle ScholarPubMed
Shiran, A, Merdler, A, Ismir, E, et al. Intraoperative transesophageal echocardiography using a quantitative dynamic loading test for the evaluation of ischemic mitral regurgitation. J Am Soc Echocardiogr. 2007; 20(6):690697.CrossRefGoogle ScholarPubMed
Grewal, J, Suri, R, Mankad, S, et al. Mitral annular dynamics in myxomatous valve disease: new insights with real-time 3-dimensional echocardiography. Circulation. 2010; 121(12):14231431.CrossRefGoogle ScholarPubMed
Grossi, EA, Zakow, PK, Sussman, M, et al. Late results of mitral valve reconstruction in the elderly. Ann Thorac Surg. 2000; 70(4):12241226.CrossRefGoogle ScholarPubMed
Biner, S, Rafique, A, Rafii, F, et al. Reproducibility of proximal isovelocity surface area, vena contracta, and regurgitant jet area for assessment of mitral regurgitation severity. JACC Cardiovasc Imag. 2010; 3(3):235243.CrossRefGoogle ScholarPubMed
Lee, AP-W, Fang, F, Jin, C-N, et al. Quantification of mitral valve morphology with three-dimensional echocardiography. Circ J. 2014; 78(5):10291037.CrossRefGoogle ScholarPubMed

References

Vincent, GK, Velkoff, VA. The Next Four Decades, The Older Population in the United States: 2010 to 2050, Current Population Reports, P25-1138. Washington, DC, US Census Bureau, 2010.Google Scholar
Siegel, R, Naishadham, D, Jemal, A. Cancer statistics, 2012. CA Cancer J Clin. 2012; 62:1029.CrossRefGoogle ScholarPubMed
Etzioni, DA, Liu, JH, Maggard, MA, et al. The aging population and its impact on the surgery workforce. Ann Surg. 2003; 238:170177.CrossRefGoogle ScholarPubMed
Boffa, DJ, Allen, MS, Grab, JD, et al. Data from The Society of Thoracic Surgeons General Thoracic Surgery database: the surgical management of primary lung tumors. J Thorac Cardiovasc Surg. 2008; 135:247254.CrossRefGoogle Scholar
Minino, AM. Death in the United States, 2011. NCHS Data Brief. 2013; 115:18.Google Scholar
Janssens, JP, Pache, JC, Nicod, LP. Physiological changes in respiratory function associated with ageing. Eur Respir J. 1999; 13:197205.CrossRefGoogle ScholarPubMed
Janssens, JP. Aging of the respiratory system: impact on pulmonary function tests and adaptations to exertion. Clin Chest Med. 2005; 26:469484.CrossRefGoogle ScholarPubMed
Sprung, J, Gajic, O, Warner, DO. Review article: age related alterations in respiratory function: anesthetic considerations. Can J Anaesth. 2006; 53(12):12441257.CrossRefGoogle ScholarPubMed
Niewoenner, D, Kleinerman, J. Morphologic basis of pulmonary resistance in human lung and effects of aging. J Appl Physiol. 1974; 36:412418.CrossRefGoogle Scholar
Teramoto, S, Ishii, M. Aging, the aging lung, and senile ephysema are different. Am J Respir Crit Care Med. 2007; 175(2):197198.CrossRefGoogle Scholar
Zaugg, M, Lucchinetti, E. Respiratory function in the elderly. Anesthesiol Clin N Am. 2000; 18(1):4758.CrossRefGoogle ScholarPubMed
Svartengren, M, Falk, R, Philipson, K. Long term clearence from small airways decreases with age. Eur Respir J. 2005; 26(4):609615.CrossRefGoogle Scholar
Sharma, G, Goodwin, J. Effect of aging on respiratory system physiology and immunology. Clin Interven Aging. 2006; 1(3):253260.CrossRefGoogle ScholarPubMed
Brown, M, Hasser, EM. Complexity of age-related change in skeletal muscle. J Gerontol A Biol Sci Med Sci. 1996; 51(2):B117B123.CrossRefGoogle ScholarPubMed
El Solh, AA, Ramadan, FH. Overview of respiratory failure in older adults. J Intensive Care Med. 2006; 21(6):345351.CrossRefGoogle ScholarPubMed
Taylor, BJ, Johnson, BD. The pulmonary circulation and exercise responses in the elderly. Semin Respir Crit Care Med. 2010; 31:528538.CrossRefGoogle ScholarPubMed
Humbert, IA, Robbins, J. Dysphagia in the elderly. Phys Med Rehabil Clin North Am. 2008; 19:853866.CrossRefGoogle ScholarPubMed
Paulsen, F, Kimpel, M, Lockemann, U, et al. Effects of ageing on the insertion zones of the human vocal fold. J Anat. 2000; 196:4154.CrossRefGoogle ScholarPubMed
Lalley, PM. The aging respiratory system: pulmonary structure, function and neural control. Respir Physiol Neurobiol. 2013; 187:199210.CrossRefGoogle ScholarPubMed
Crapo, RO. The Aging Lung: Pulmonary Disease in the Elderly Patient. New York, Marcel Dekker, 1993:121.Google Scholar
Cardús, J, Burgos, F, Diaz, O, et al. Increase in pulmonary ventilation-perfusion inequality with age in healthy individuals. Am J Respir Crit Care Med. 1997; 156(2 Pt 1):648653.CrossRefGoogle ScholarPubMed
Sorbini, LA, Grass, V, Solinas, E, et al. Arterial oxygen tension in relation to age in healthy subjects. Respiration. 1968; 25(1):313.CrossRefGoogle ScholarPubMed
Connoly, MJ, Crowley, JJ, Charan, NB, et al. Reduced subjective awareness of bronchoconstriction provoked by methacholine in elderly asthmatic and normal subjects as measured on a simple awareness scale. Thorax. 1992; 47:410413.CrossRefGoogle Scholar
Sharma, G, Goodwin, J. Effect of aging on respiratory system physiology and immunology. J Clin Interven Aging. 2006; 1:253260.CrossRefGoogle ScholarPubMed
Panda, A, Arjona, A, Sapey, E, et al. Humane innate immunosenescence: causes and consequences for immunity in old age. Trends Immunol. 2009; 30(7):325333.CrossRefGoogle Scholar
Lowery, EM, Brubaker, AL, Kuhlmann, E, et al. The aging lung. Clin Interv Aging. 2013; 8:14891496.Google ScholarPubMed
Brunelli, A, Kim, AW, Berger, KI, et al. Physiologic evaluation of the patient with lung cancer being considered for resectional surgery. Chest 2013; 143(5 Suppl):e166Se190S.CrossRefGoogle ScholarPubMed
Brunelli, A, Charloux, A, Bollinger, CT, et al. ERS/ESTS clinical guidelines on fitness for radical therapy in lung cancer patients. Eur Respir J. 2009; 34(1):1741.CrossRefGoogle ScholarPubMed
Extermann, M, Aapro, M, Bernabei, R, et al. Task Force on CGA of the International Society of Geriatric Oncology. Use of comprehensive geriatric assessment in older cancer patients: recommendations from the task force on CGA of the International Society of Geriatric Oncology (SIOG). Crit Rev Oncol Hematol. 2005; 55(3):241252.CrossRefGoogle ScholarPubMed
Schilling, T, Kozian, A, Kretzschmar, M, et al. Effect of propofol and desflurane anesthesia on the alveolar inflammatory response to one-lung ventilation. Br J Anesthesia. 2007; 99:368375.CrossRefGoogle ScholarPubMed
Marik, PE, Kaplan, D. Aspiration pneumonia and dysphagia in the elderly. Chest. 2003; 124:328336.CrossRefGoogle ScholarPubMed
Cedborg, AI, Sundman, E, Boden, K, et al. Pharyngeal function and breathing pattern during partial neuromuscular block in the elderly: effects on airway protection. Anesthesiology. 2014; 120:312325.CrossRefGoogle ScholarPubMed
Matteo, RS, Ornstein, E, Schwartz, AE, et al. Pharmacokinetics and pharmacodynamics of rocuronium in elderly surgical patients. Anesth Analg. 1993; 77:11931197.CrossRefGoogle ScholarPubMed
Cheng, YD, Duan, CJ, Zhang, H, et al. Clinical controlled comparison between lobectomy and segmental resection for patients over 70 years of age with clinical stage I non-small cell lung cancer. Eur J Surg Oncol. 2012; 38:11491155.CrossRefGoogle ScholarPubMed
Miller, MR. Structural and physiological age-associated changes in aging lungs. Semin Respir Crit Care Med. 2010; 31:521527.CrossRefGoogle ScholarPubMed
Lohser, J. Evidence-based management of one-lung ventilation. Anesthesiol Clin. 2008; 26(2):241272.CrossRefGoogle ScholarPubMed
Unzueta, C, Tusman, G, Suarez-Sipmann, F, et al. Alveolar recruitment improves ventilation during thoracic surgery: a randomized controlled trial. Br J Anaesth. 2012; 108(3):517524.CrossRefGoogle ScholarPubMed
Downs, JB, Robinson, LA, Steighner, ML, et al. Open lung ventilation optimizes pulmonary function during lung surgery. J Surg Res. 2014; 192:242249.CrossRefGoogle ScholarPubMed
Kozian, A, Schilling, T, Schutze, H, et al. Ventilatory protective strategies during thoracic surgery: effects of alveolar recruitment maneuver and low-tidal volume ventilation on lung density distribution. Anesthesiology. 2011; 114:10251035.CrossRefGoogle ScholarPubMed
Lin, F, Pan, L, Huang, B, et al. Pressure-controlled versus volume-controlled ventilation during one-lung ventilation in elderly patients with poor pulmonary function. Ann Thoracic Med. 2014:9(4) 203208.Google ScholarPubMed
Kozian, A, Kretzschmar, MA, Schilling, T. Thoracic anesthesia in the elderly. Curr Opin Anesthesiol. 2015; 28:29.CrossRefGoogle ScholarPubMed
Searl, CP, Perrino, A. Fluid management in thoracic surgery. Anesthesiology Clin. 2012; 30:641655.CrossRefGoogle ScholarPubMed
Arslantas, MK, Kara, HV, Tuncer, BB, et al. Effect of the amount of intraoperative fluid administration on postoperative pulmonary complications following anatomic lung resections. J Thorac Cardiovasc Surg. 2015; 149:314320.CrossRefGoogle ScholarPubMed
Yao, S, Mao, T, Fang, W, et al. Incidence and risk factors for acute lung injury after open thoracotomy for thoracic diseases. J Thorac Dis. 2013; 5(4):456460.Google ScholarPubMed
Van der Heijden, M, Verheij, J, Amerongen, GP, et al. Crystalloid or colloid fluid-loading and pulmonary permeability, edema and injury in septic and non-septic patients. Crit Care Med. 2009; 37:12751281.CrossRefGoogle ScholarPubMed
Lee, JH, Jeon, Y, Bahk, JH, et al. Pulse pressure variation as a predictor of fluid responsiveness during one-lung ventilation for lung surgery using thoracotomy: randomized controlled study. Eur J Anaesthesiol. 2011; 28:3944.CrossRefGoogle Scholar
Suehiro, K, Okutani, R. Influence of tidal volume for stroke volume variation to predict fluid responsiveness in patients undergoing one-lung ventilation. J Anesth. 2011; 25:777780.CrossRefGoogle ScholarPubMed
Abdallah, MS, Assad, OM. Randomised study comparing the effect of hydroxyethyl starch HES 130/0.4, HES 200/0.5 and modified fluid gelatin for perioperative volume replacement in thoracic surgery: guided by transoesophageal Doppler. EJCTA. 2010; 4:7684.Google Scholar
Zhang, J, Chen, CQ, Lei, XZ, et al. Goal directed fluid optimization based on stroke volume variation and cardiac index during one-lung ventilation in patients undergoing thoracoscopy lobectomy operations: a pilot study. Clinics (Sao Paulo). 2013; 68:10651070.CrossRefGoogle ScholarPubMed
Gao, T, Li, N, Zhang, JJ, et al. Restricted intravenous fluid regimen reduces the rate of postoperative complications and alters immunological activity of elderly patients operated for abdominal cancer: a randomized prospective clinical trail. World J Surg. 2012; 36:9931002.CrossRefGoogle Scholar
Chau, EHL, Slinger, P. Perioperative fluid management for pulmonary resection surgery and esophagectomy. Semin Cardiothor and Vasc Anesth. 2014; 18(1):3644.CrossRefGoogle ScholarPubMed
National Confidential Enquiry into Patient Outcome and Death. Elective and emergency surgery in elderly: an age old problem. 2010. Available from: www.ncepod.org.uk/2010report3/downloads/EESE_fullreport.pdf (Accessed July 12, 2017).Google Scholar
National Institute for Health and Care Excellence. CG 65. Inadvertent perioperative hypothermia. 2008. Available from: www.nice.org.uk/guidance/cg65 (Accessed July 12, 2017).Google Scholar
Lee, P, Mathur, PN, Colt, H. Advances in thoracoscopy: 100 years since Jacobaeus. Respiration. 2010; 79(3):177186.CrossRefGoogle ScholarPubMed
Swanson, SJ, Meyers, BF, Gunnarson, CL, et al. Video-assisted thoracoscopic lobectomy is less costly and morbid than open lobectomy: retrospective multi-institutional database analysis. Ann Thorac Surg. 2012; 93(4):10271032.CrossRefGoogle Scholar
Jaklitsch, MT, DeCamp, MMJ, Liptay, M, et al. Video-assisted thoracic surgery in the elderly. A review of 307 cases. Chest. 1996; 110:751758.CrossRefGoogle ScholarPubMed
Cattaneo, SM, Park, BJ, Wilton, AS, et al. Use of video-assisted thoracic surgery for lobectomy in the elderly results in fewer complications. Ann Thorac Surg. 2008; 85:231236.CrossRefGoogle ScholarPubMed
Wu, CY, Chen, JS, Lin, YS, et al. Feasibility and safety of nonintubated thoracoscopic lobectomy for geriatric lung cancer patients. Ann Thorac Surg. 2013; 95:405411.CrossRefGoogle ScholarPubMed
Joshi, GP, Bonnet, F, Shah, R, et al. A systematic review of randomized trials evaluating regional techniques for postthoracotomy analgesia. Anesth Analg. 2008; 107:10261040.CrossRefGoogle ScholarPubMed
Li, Y, Zhu, S, Bao, F, et al. The effects of age on the median effective concentration of ropivacaine for motor blockade after epidural anesthesia with ropivacaine. Anesth Analg. 2006; 102:18471850.CrossRefGoogle ScholarPubMed
Hirabayashi, Y, Shimizu, R. Effect of age on extradural dose requirement in thoracic extradural anesthesia. Br J Anaesth. 1993; 71:445446.CrossRefGoogle Scholar
Simon, MJ, Veering, BT, Stienstra, R, et al. The effects of age on neural blockade and hemodynamic changes after epidural anesthesia with ropivacaine. Anesth Analg. 2002; 94:13251330.CrossRefGoogle ScholarPubMed
Macintyre, PE, Schug, SA, Scott, DA, et al. Acute Pain Management: Scientific Evidence, 3rd edn. Melbourne, ANZCA & FPM, 2010.Google ScholarPubMed
Warner, DO, Warmer, MA, Ritman, EL. Human chest wall function during epidural anesthesia. Anesthesiology. 1996; 85:761773.CrossRefGoogle ScholarPubMed
Licker, MJ, Widikker, I, Robert, J, et al. Operative mortality and respiratory complications after lung resection for cancer: impact of chronic obstructive pulmonary disease and time trends. Ann Thorac Surg. 2006; 81:18301837.CrossRefGoogle ScholarPubMed
Wink, J, Veering, BT, Aarts, L, et al. Effect of increasing age on the hemodynamic response to thoracic epidural anesthesia. Eur J Anaesthesiol. 2014; 31:597605.CrossRefGoogle Scholar
Oka, T, Ozawa, Y, Ohkubo, Y. Thoracic epidural bupivacaine attenuates supraventricular tachyarrhythmias after pulmonary resection. Anesth Analg. 2001; 93:253259.CrossRefGoogle ScholarPubMed
Guay, J. The benefits of adding epidural analgesia to general anesthesia: a metanalysis. J Anesth. 2006; 20:335340.CrossRefGoogle Scholar
Okami, J, Higashiyama, M, Asamura, H, et al. Pulmonary resection in patients aged 80 years or over with clinical stage I NSCLC. Prognostic factors for overall survival and risk factors for postoperative complications. J Thoracic Oncol. 2009; 4:12471253.CrossRefGoogle ScholarPubMed
Pei, G, Zhou, S, Han, Y, et al. Risk factors for postoperative complications after lung resection for non-small cell lung cancer in elderly patients at a single institution in China. J Thorac Dis. 2014; 6(9):12301238.Google Scholar
Shiono, S, Abiko, M, Sato, T. Postoperative complications in elderly patients after lung cancer surgery. Interact Cardiovasc Thoracic Surg. 2013; 16:819823.CrossRefGoogle ScholarPubMed
Woodward, RM, Brown, ML, Stewart, ST, et al. The value of medical interventions for lung cancer in the elderly: results from SEER-CMHSF. Cancer. 2007; 110:25112518.CrossRefGoogle ScholarPubMed
Mun, M, Kohno, T. Video assisted thoracic surgery for clinical stage I lung cancer in octogenerians. Ann Thorac Surg. 2008; 85:406411.CrossRefGoogle Scholar
Port, JL, Mirza, FM, Lee, PC, et al. Lobectomy in octogenarians with non-small cell lung cancer: ramifications of increasing life expectancy and the benefits of minimally invasive surgery. Ann Thoracic Surg. 2011; 92(6):19511957.CrossRefGoogle ScholarPubMed

References

CDC. National Vital Statistics Reports. 2013. Available from: www.cdc.gov/nchs/data/nvsr/nvsr62/nvsr62_06.pdf (Accessed July 13, 2017).Google Scholar
CDC. Ten leading causes of death and injury. 2015. Available from: www.cdc.gov/injury/wisqars/leadingcauses.html (Accessed July 13, 2017).Google Scholar
Pandya, SR, Yelon, JA, Sullivan, TS, Risucci, DA. Geriatric motor vehicle collision survival: the role of institutional trauma volume. J Trauma. 2011; 70(6):13261330.Google ScholarPubMed
Travis, KW, Mihevc, NT, Orkin, FK, Zeitlin, GL. Age and anesthetic practice: a regional perspective. J Clin Anesth. 1999; 11(3):175186.CrossRefGoogle Scholar
Frankenfield, D, Cooney, RN, Smith, JS, Rowe, WA. Age-related differences in the metabolic response to injury. J Trauma. 2000; 48(1):4956; discussion 5657.CrossRefGoogle ScholarPubMed
Hashmi, A, Ibrahim-Zada, I, Rhee, P, et al. Predictors of mortality in geriatric trauma patients: a systematic review and meta-analysis. J Trauma Acute Care Surg. 2014; 76(3):894901.CrossRefGoogle ScholarPubMed
Knudson, MM, Lieberman, J, Morris, JA Jr., Cushing, BM, Stubbs, HA. Mortality factors in geriatric blunt trauma patients. Arch Surg. 1994; 129(4):448453.CrossRefGoogle ScholarPubMed
Shulman, CI, Alouidor, R, McKenney, MG. Geriatric trauma. In: Feliciano, DV, Matox, KL, Moore, EE, eds., Trauma, 6th edn. New York, McGraw-Hill Medical, 2008.Google Scholar
Caterino, JM, Valasek, T, Werman, HA. Identification of an age cutoff for increased mortality in patients with elderly trauma. Am J Emerg Med. 2010; 28(2):151158.CrossRefGoogle ScholarPubMed
Joseph, B, Pandit, V, Zangbar, B, et al. Superiority of frailty over age in predicting outcomes among geriatric trauma patients: a prospective analysis. JAMA Surg. 2014; 149(8):766772.CrossRefGoogle ScholarPubMed
Ting, B, Zurakowski, D, Herder, L, et al. Preinjury ambulatory status is associated with 1-year mortality following lateral compression Type I fractures in the geriatric population older than 80 years. J Trauma Acute Care Surg. 2014; 76(5):13061309.CrossRefGoogle ScholarPubMed
Banks, SE, Lewis, MC. Trauma in the elderly: considerations for anesthetic management. Anesthesiol Clin. 2013; 31(1):127139.CrossRefGoogle ScholarPubMed
Qato, DM, Alexander, GC, Conti, RM, et al. Use of prescription and over-the-counter medications and dietary supplements among older adults in the United States. JAMA. 2008; 300(24):28672878.Google ScholarPubMed
The Slone Survey. Patterns of medication use in the United States 2006. 2006. Available from: www.bu.edu/slone/files/2012/11/SloneSurveyReport2006.pdf (Accessed July13, 2017).Google Scholar
Franko, J, Kish, KJ, O'Connell, BG, Subramanian, S, Yuschak, JV. Advanced age and preinjury warfarin anticoagulation increase the risk of mortality after head trauma. J Trauma. 2006; 61(1):107110.CrossRefGoogle ScholarPubMed
Ivascu, FA, Janczyk, RJ, Junn, FS, et al. Treatment of trauma patients with intracranial hemorrhage on preinjury warfarin. J Trauma. 2006; 61(2):318321.CrossRefGoogle ScholarPubMed
Karni, A, Holtzman, R, Bass, T, et al. Traumatic head injury in the anticoagulated elderly patient: a lethal combination. Am Surg. 2001; 67(11):10981100.CrossRefGoogle Scholar
Neideen, T, Lam, M, Brasel, KJ. Preinjury beta blockers are associated with increased mortality in geriatric trauma patients. J Trauma. 2008; 65(5):10161020.Google ScholarPubMed
Arbabi, S, Campion, EM, Hemmila, MR, et al. Beta-blocker use is associated with improved outcomes in adult trauma patients. J Trauma. 2007; 62(1):5661; discussion 6162.CrossRefGoogle ScholarPubMed
Arbabi, S, Ahrns, KS, Wahl, WL, et al. Beta-blocker use is associated with improved outcomes in adult burn patients. J Trauma. 2004; 56(2):265269; discussion 269271.CrossRefGoogle ScholarPubMed
Cotton, BA, Snodgrass, KB, Fleming, SB, et al. Beta-blocker exposure is associated with improved survival after severe traumatic brain injury. J Trauma. 2007; 62(1):2633; discussion 3335.CrossRefGoogle ScholarPubMed
Grossman, MD, Miller, D, Scaff, DW, Arcona, S. When is an elder old? Effect of preexisting conditions on mortality in geriatric trauma. J Trauma. 2002; 52(2):242246.Google Scholar
Ferraris, VA, Ferraris, SP, Saha, SP. The relationship between mortality and preexisting cardiac disease in 5,971 trauma patients. J Trauma. 2010; 69(3):645652.Google ScholarPubMed
Ang, D, Norwood, S, Barquist, E, et al. Geriatric outcomes for trauma patients in the state of Florida after the advent of a large trauma network. J Trauma Acute Care Surg. 2014; 77(1):155160; discussion 160.CrossRefGoogle ScholarPubMed
Mangram, AJ, Mitchell, CD, Shifflette, VK, et al. Geriatric trauma service: a one-year experience. J Trauma Acute Care Surg. 2012; 72(1):119122.CrossRefGoogle Scholar
Chang, DC, Bass, RR, Cornwell, EE, Mackenzie, EJ. Undertriage of elderly trauma patients to state-designated trauma centers. Arch Surg. 2008; 143(8):776781; discussion 782.CrossRefGoogle ScholarPubMed
Phillips, S, Rond, PC III, Kelly, SM, Swartz, PD. The failure of triage criteria to identify geriatric patients with trauma: results from the Florida Trauma Triage Study. J Trauma. 1996; 40(2):278283.CrossRefGoogle ScholarPubMed
American College of Surgeons. Resources for optimal care of the injured patient 2014. 2015. Available from: www.facs.org/quality%20programs/trauma/vrc/resources (Accessed July 13, 2015).Google Scholar
McCoy, CE, Chakravarthy, B, Lotfipour, S. Guidelines for field triage of injured patients: in conjunction with the morbidity and mortality weekly report published by the Center for Disease Control and Prevention. West J Emerg Med. 2013; 14(1):6976.CrossRefGoogle ScholarPubMed
Demetriades, D, Sava, J, Alo, K, et al. Old age as a criterion for trauma team activation. J Trauma. 2001; 51(4):754756; discussion 756757.CrossRefGoogle ScholarPubMed
Lehmann, R, Beekley, A, Casey, L, Salim, A, Martin, M. The impact of advanced age on trauma triage decisions and outcomes: a statewide analysis. Am J Surg. 2009; 197(5):571574; discussion 574575.CrossRefGoogle ScholarPubMed
Muhlberg, W, Platt, D. Age-dependent changes of the kidneys: pharmacological implications. Gerontology. 1999; 45(5):243253.CrossRefGoogle ScholarPubMed
Buemi, M, Nostro, L, Aloisi, C, et al. Kidney aging: from phenotype to genetics. Rejuvenation Res. 2005; 8(2):101109.CrossRefGoogle ScholarPubMed
Peeters, RP. Thyroid hormones and aging. Hormones (Athens). 2008; 7(1):2835.CrossRefGoogle ScholarPubMed
Chau, DL, Walker, V, Pai, L, Cho, LM. Opiates and elderly: use and side effects. Clin Interv Aging. 2008; 3(2):273278.CrossRefGoogle ScholarPubMed
Linnebur, SA, O'Connell, MB, Wessell, AM, et al. Pharmacy practice, research, education, and advocacy for older adults. Pharmacotherapy. 2005; 25(10):13961430.CrossRefGoogle ScholarPubMed
Rastogi, R, Meek, BD. Management of chronic pain in elderly, frail patients: finding a suitable, personalized method of control. Clin Interv Aging. 2013; 8:3746.CrossRefGoogle ScholarPubMed
Arain, SR, Kern, S, Ficke, DJ, Ebert, TJ. Variability of duration of action of neuromuscular-blocking drugs in elderly patients. Acta Anaesthesiol Scand. 2005; 49(3):312315.CrossRefGoogle ScholarPubMed
Sagir, O, Yucesoy Noyan, F, Koroglu, A, Cicek, M, Ilksen Toprak, H. Comparison between the effects of rocuronium, vecuronium, and cisatracurium using train-of-four and clinical tests in elderly patients. Anesth Pain Med. 2013; 2(4):142148.CrossRefGoogle ScholarPubMed
Cope, TM, Hunter, JM. Selecting neuromuscular-blocking drugs for elderly patients. Drugs Aging. 2003; 20(2):125140.CrossRefGoogle ScholarPubMed
Narang, AT, Sikka, R. Resuscitation of the elderly. Emerg Med Clin North Am. 2006; 24(2):261272, v.CrossRefGoogle ScholarPubMed
Zaugg, M, Lucchinetti, E. Respiratory function in the elderly. Anesthesiol Clin North Am. 2000; 18(1):4758, vi.CrossRefGoogle ScholarPubMed
Chalfin, DB. Outcome assessment in elderly patients with critical illness and respiratory failure. Clin Chest Med. 1993; 14(3):583589.CrossRefGoogle ScholarPubMed
Lomoschitz, FM, Blackmore, CC, Mirza, SK, Mann, FA. Cervical spine injuries in patients 65 years old and older: epidemiologic analysis regarding the effects of age and injury mechanism on distribution, type, and stability of injuries. AJR Am J Roentgenol. 2002; 178(3):573577.CrossRefGoogle ScholarPubMed
Wisner, DH. A stepwise logistic regression analysis of factors affecting morbidity and mortality after thoracic trauma: effect of epidural analgesia. J Trauma. 1990; 30(7):799804; discussion 804805.CrossRefGoogle ScholarPubMed
Heffernan, DS, Thakkar, RK, Monaghan, SF, et al. Normal presenting vital signs are unreliable in geriatric blunt trauma victims. J Trauma. 2010; 69(4):813820.Google ScholarPubMed
Salottolo, KM, Mains, CW, Offner, PJ, Bourg, PW, Bar-Or, D. A retrospective analysis of geriatric trauma patients: venous lactate is a better predictor of mortality than traditional vital signs. Scand J Trauma Resusc Emerg Med. 2013; 21:7.CrossRefGoogle ScholarPubMed
Callaway, DW, Shapiro, NI, Donnino, MW, Baker, C, Rosen, CL. Serum lactate and base deficit as predictors of mortality in normotensive elderly blunt trauma patients. J Trauma. 2009; 66(4):10401044.Google ScholarPubMed
McNab, A, Burns, B, Bhullar, I, Chesire, D, Kerwin, A. A prehospital shock index for trauma correlates with measures of hospital resource use and mortality. Surgery. 2012; 152(3):473476.CrossRefGoogle ScholarPubMed
Ramaiah, R, Lam, AM. Postoperative cognitive dysfunction in the elderly. Anesthesiol Clin. 2009; 27(3):485496.Google ScholarPubMed
Meguro, K, Shimada, M, Yamaguchi, S, et al. Cognitive function and frontal lobe atrophy in normal elderly adults: implications for dementia not as aging-related disorders and the reserve hypothesis. Psychiatry Clin Neurosci. 2001; 55(6):565572.Google Scholar
Brody, H. The aging brain. Acta Neurol Scand Suppl. 1992; 137:4044.CrossRefGoogle ScholarPubMed
Thal, DR, Del Tredici, K, Braak, H. Neurodegeneration in normal brain aging and disease. Sci Aging Knowledge Environ. 2004; 2004(23):pe26.CrossRefGoogle ScholarPubMed
Carpenter, CR, DesPain, B, Keeling, TN, Shah, M, Rothenberger, M. The Six-Item Screener and AD8 for the detection of cognitive impairment in geriatric emergency department patients. Ann Emerg Med. 2011; 57(6):653661.CrossRefGoogle ScholarPubMed
Vaughan, MS, Vaughan, RW, Cork, RC. Postoperative hypothermia in adults: relationship of age, anesthesia, and shivering to rewarming. Anesth Analg. 1981; 60(10):746751.CrossRefGoogle ScholarPubMed
Rajagopalan, S, Mascha, E, Na, J, Sessler, DI. The effects of mild perioperative hypothermia on blood loss and transfusion requirement. Anesthesiology. 2008; 108(1):7177.CrossRefGoogle ScholarPubMed
Sessler, DI, Akca, O. Nonpharmacological prevention of surgical wound infections. Clin Infect Dis. 2002; 35(11):13971404.CrossRefGoogle ScholarPubMed
Frank, SM, Higgins, MS, Breslow, MJ, et al. The catecholamine, cortisol, and hemodynamic responses to mild perioperative hypothermia: a randomized clinical trial. Anesthesiology. 1995; 82(1):8393.CrossRefGoogle ScholarPubMed
Frank, SM, Fleisher, LA, Breslow, MJ, et al. Perioperative maintenance of normothermia reduces the incidence of morbid cardiac events. A randomized clinical trial. JAMA. 1997; 277(14):11271134.CrossRefGoogle ScholarPubMed
Chaiwat, O, Lang, JD, Vavilala, MS, et al. Early packed red blood cell transfusion and acute respiratory distress syndrome after trauma. Anesthesiology. 2009; 110(2):351360.CrossRefGoogle ScholarPubMed
Croce, MA, Tolley, EA, Claridge, JA, Fabian, TC. Transfusions result in pulmonary morbidity and death after a moderate degree of injury. J Trauma. 2005; 59(1):1923; discussion 2324.Google ScholarPubMed
Claridge, JA, Sawyer, RG, Schulman, AM, McLemore, EC, Young, JS. Blood transfusions correlate with infections in trauma patients in a dose-dependent manner. Am Surg. 2002; 68(7):566572.Google ScholarPubMed
Inouye, SK. Delirium in older persons. N Engl J Med. 2006; 354(11):11571165.CrossRefGoogle ScholarPubMed
Bitsch, M, Foss, N, Kristensen, B, Kehlet, H. Pathogenesis of and management strategies for postoperative delirium after hip fracture: a review. Acta Orthop Scand. 2004; 75(4):378389.CrossRefGoogle ScholarPubMed
Inouye, SK, Bogardus, ST Jr., Charpentier, PA, et al. A multicomponent intervention to prevent delirium in hospitalized older patients. N Engl J Med. 1999; 340(9):669676.CrossRefGoogle ScholarPubMed
Monk, TG, Weldon, BC, Garvan, CW, et al. Predictors of cognitive dysfunction after major noncardiac surgery. Anesthesiology. 2008; 108(1):1830.CrossRefGoogle ScholarPubMed
Bourne, RS, Tahir, TA, Borthwick, M, Sampson, EL. Drug treatment of delirium: past, present and future. J Psychosom Res. 2008; 65(3):273282.CrossRefGoogle ScholarPubMed
Egbert, AM. Postoperative pain management in the frail elderly. Clin Geriatr Med. 1996; 12(3):583599.Google ScholarPubMed
Zhu, SH, Ji, MH, Gao, DP, Li, WY, Yang, JJ. Association between perioperative blood transfusion and early postoperative cognitive dysfunction in aged patients following total hip replacement surgery. Ups J Med Sci. 2014; 119(3):262267.CrossRefGoogle ScholarPubMed

References

DeVol, R, Bedroussian, A. An Unhealthy America: The Economic Burden of Chronic Disease. Santa Monica, CA, Miliken Institute, 2007.Google Scholar
Bodenheimer, T, Chen, E, Bennett, HD. Confronting the growing burden of chronic disease: can the U.S. health care workforce do the job? Health Aff (Millwood). 2009; 28(1):6474.CrossRefGoogle ScholarPubMed
Thorpe, KE, Howard, DH, Galactionova, K. Differences in disease prevalence as a source of the U.S.-European health care spending gap. Health Aff (Millwood). 2007; 26(6):w678w686.CrossRefGoogle ScholarPubMed
Kinsella, K, He, W. An Aging World: 2008, International Population Reports, P95/09-1. Suitland, MD, US Census Bureau, 2009.Google Scholar
Administration on Aging. A profile of older Americans: 2013. Washington, DC, US Department of Health and Human Services, 2014.Google Scholar
Turrentine, FE, Wang, H, Simpson, VB, Jones, RS. Surgical risk factors, morbidity, and mortality in elderly patients. J Am Coll Surg. 2006; 203(6):865877.CrossRefGoogle ScholarPubMed
Story, DA. Postoperative complications in elderly patients and their significance for long-term prognosis. Curr Opin Anaesthesiol. 2008; 21(3):375379.CrossRefGoogle ScholarPubMed
Story, DA. Postoperative mortality and complications. Best Pract Res Clin Anaesthesiol. 2011; 25(3):319327.CrossRefGoogle ScholarPubMed
Story, DA, Leslie, K, Myles, PS, et al. Complications and mortality in older surgical patients in Australia and New Zealand (the REASON study): a multicentre, prospective, observational study. Anaesthesia. 2010; 65(10):10221030.CrossRefGoogle ScholarPubMed
Kowdley, GC, Merchant, N, Richardson, JP, et al. Cancer surgery in the elderly. Sci World J. 2012; 2012:9.CrossRefGoogle ScholarPubMed
Al-Refaie, WB, Parsons, HM, Henderson, WG, et al. Major cancer surgery in the elderly: results from the American College of Surgeons National Surgical Quality Improvement Program. Ann Surg. 2010; 251(2):311318.CrossRefGoogle ScholarPubMed
Kwok, AC, Semel, ME, Lipsitz, SR, et al. The intensity and variation of surgical care at the end of life: a retrospective cohort study. Lancet. 2011; 378(9800):14081413.CrossRefGoogle ScholarPubMed
Kehlet, H, Wilmore, DW. Multimodal strategies to improve surgical outcome. Am J Surg. 2002; 183(6):630641.CrossRefGoogle ScholarPubMed
Kehlet, H, Wilmore, DW. Evidence-based surgical care and the evolution of fast-track surgery. Ann Surg. 2008; 248(2):189198.CrossRefGoogle ScholarPubMed
Wilmore, DW, Kehlet, H. Management of patients in fast track surgery. BMJ. 2001; 322(7284):473476.CrossRefGoogle ScholarPubMed
Varadhan, KK, Lobo, DN, Ljungqvist, O. Enhanced recovery after surgery: the future of improving surgical care. Crit Care Clin. 2010; 26(3):527547, x.CrossRefGoogle ScholarPubMed
Ljungqvist, O. ERAS – Enhanced Recovery After Surgery: moving evidence-based perioperative care to practice. JPEN J Parenter Enteral Nutr. 2014; 38(5):559566.CrossRefGoogle ScholarPubMed
Segelman, J, Nygren, J. Evidence or eminence in abdominal surgery: recent improvements in perioperative care. World J Gastroenterol. 2014; 20(44):1661516619.CrossRefGoogle ScholarPubMed
Gustafsson, UO, Scott, MJ, Schwenk, W, et al. Guidelines for perioperative care in elective colonic surgery: Enhanced Recovery After Surgery (ERAS(R)) Society recommendations. Clin Nutr. 2012; 31(6):783800.CrossRefGoogle Scholar
Fearon, KC, Ljungqvist, O, Von Meyenfeldt, M, et al. Enhanced recovery after surgery: a consensus review of clinical care for patients undergoing colonic resection. Clin Nutr. 2005; 24(3):466477.CrossRefGoogle ScholarPubMed
Lassen, K, Soop, M, Nygren, J, et al. Consensus review of optimal perioperative care in colorectal surgery: Enhanced Recovery After Surgery (ERAS) Group recommendations. Arch Surg. 2009; 144(10):961969.CrossRefGoogle ScholarPubMed
Gillissen, F, Hoff, C, Maessen, JM, et al. Structured synchronous implementation of an enhanced recovery program in elective colonic surgery in 33 hospitals in The Netherlands. World J Surg. 2013; 37(5):10821093.CrossRefGoogle ScholarPubMed
Miller, TE, Thacker, JK, White, WD, et al. Reduced length of hospital stay in colorectal surgery after implementation of an enhanced recovery protocol. Anesth Analg. 2014; 118(5):10521061.CrossRefGoogle ScholarPubMed
Findlay, JM, Gillies, RS, Millo, J, et al. Enhanced recovery for esophagectomy: a systematic review and evidence-based guidelines. Ann Surg. 2014; 259(3):413431.CrossRefGoogle ScholarPubMed
Blom, RL, van Heijl, M, Bemelman, WA, et al. Initial experiences of an enhanced recovery protocol in esophageal surgery. World J Surg. 2013; 37(10):23722378.CrossRefGoogle ScholarPubMed
Lee, J, Jeon, H. The clinical indication and feasibility of the enhanced recovery protocol for curative gastric cancer surgery: analysis of 147 consecutive experiences. Dig Surg. 2014; 31(4-5):318323.CrossRefGoogle ScholarPubMed
Mortensen, K, Nilsson, M, Slim, K, et al. Consensus guidelines for enhanced recovery after gastrectomy: Enhanced Recovery After Surgery (ERAS(R)) Society recommendations. Br J Surg. 2014; 101(10):12091229.CrossRefGoogle Scholar
Lassen, K, Coolsen, MM, Slim, K, et al. Guidelines for perioperative care for pancreaticoduodenectomy: Enhanced Recovery After Surgery (ERAS(R)) Society recommendations. Clin Nutr. 2012; 31(6):817830.CrossRefGoogle Scholar
Kagedan, DJ, Ahmed, M, Devitt, KS, Wei, AC. Enhanced recovery after pancreatic surgery: a systematic review of the evidence. HPB (Oxford). 2015; 17(1):1116.CrossRefGoogle ScholarPubMed
Page, AJ, Ejaz, A, Spolverato, G et al. Enhanced recovery after surgery protocols for open hepatectomy–physiology, immunomodulation, and implementation. J Gastrointest Surg. 2015; 19(2):387399.CrossRefGoogle ScholarPubMed
Hughes, MJ, McNally, S, Wigmore, SJ. Enhanced recovery following liver surgery:a systematic review and meta-analysis. HPB (Oxford). 2014; 16(8):699706.CrossRefGoogle ScholarPubMed
Nygren, J, Thacker, J, Carli, F, et al. Guidelines for perioperative care in elective rectal/pelvic surgery: Enhanced Recovery After Surgery (ERAS(R)) Society recommendations. Clin Nutr. 2012; 31(6):801816.CrossRefGoogle Scholar
Cerantola, Y, Valerio, M, Persson, B, et al. Guidelines for perioperative care after radical cystectomy for bladder cancer: Enhanced Recovery After Surgery (ERAS(R)) society recommendations. Clin Nutr. 2013; 32(6):879887.CrossRefGoogle Scholar
Mir, MC, Zargar, H, Bolton, DM, Murphy, DG, Lawrentschuk, N. Enhanced Recovery After Surgery protocols for radical cystectomy surgery: review of current evidence and local protocols. ANZ J Surg. 2015; 85(7–8):514520.CrossRefGoogle ScholarPubMed
de Groot, JJ, van Es, LE, Maessen, JM, et al. Diffusion of Enhanced Recovery principles in gynecologic oncology surgery: is active implementation still necessary? Gynecol Oncol. 2014; 134(3):570575.CrossRefGoogle ScholarPubMed
Nelson, G, Kalogera, E, Dowdy, SC. Enhanced recovery pathways in gynecologic oncology. Gynecol Oncol. 2014; 135(3):586594.CrossRefGoogle ScholarPubMed
Hughes, M, Coolsen, MM, Aahlin, EK, et al. Attitudes of patients and care providers to enhanced recovery after surgery programs after major abdominal surgery. J Surg Res. 2015; 193(1):102110.CrossRefGoogle ScholarPubMed
Bakker, N, Cakir, H, Doodeman, HJ, Houdijk, AP. Eight years of experience with Enhanced Recovery After Surgery in patients with colon cancer: impact of measures to improve adherence. Surgery. 2015; 157(6):11301136.CrossRefGoogle ScholarPubMed
McLeod, RS, Aarts, MA, Chung, F, et al. Development of an Enhanced Recovery After Surgery guideline and implementation strategy based on the knowledge-to-action cycle. Ann Surg. 2015; 262(6):10161025.CrossRefGoogle ScholarPubMed
Stowers, MD, Lemanu, DP, Hill, AG. Health economics in Enhanced Recovery After Surgery programs. Can J Anaesth. 2015; 62(2):219230.CrossRefGoogle ScholarPubMed
Bagnall, NM, Malietzis, G, Kennedy, RH, et al. A systematic review of enhanced recovery care after colorectal surgery in elderly patients. Colorectal Dis. 2014; 16(12):947956.CrossRefGoogle ScholarPubMed
Scharfenberg, M, Raue, W, Junghans, T, Schwenk, W. “Fast-track” rehabilitation after colonic surgery in elderly patients – is it feasible? Int J Colorectal Dis. 2007; 22(12):14691474.CrossRefGoogle ScholarPubMed
Wang, Q, Suo, J, Jiang, J, et al. Effectiveness of fast-track rehabilitation vs conventional care in laparoscopic colorectal resection for elderly patients: a randomized trial. Colorectal Dis. 2012; 14(8):10091013.CrossRefGoogle ScholarPubMed
Baek, SJ, Kim, SH, Kim, SY, et al. The safety of a “fast-track” program after laparoscopic colorectal surgery is comparable in older patients as in younger patients. Surg Endosc. 2013; 27(4):12251232.CrossRefGoogle ScholarPubMed
Jia, Y, Jin, G, Guo, S, et al. Fast-track surgery decreases the incidence of postoperative delirium and other complications in elderly patients with colorectal carcinoma. Langenbecks Arch Surg. 2014; 399(1):7784.CrossRefGoogle ScholarPubMed
Carli, F, Charlebois, P, Stein, B, et al. Randomized clinical trial of prehabilitation in colorectal surgery. Br J Surg. 2010; 97(8):11871197.CrossRefGoogle ScholarPubMed
Li, C, Carli, F, Lee, L, et al. Impact of a trimodal prehabilitation program on functional recovery after colorectal cancer surgery: a pilot study. Surg Endosc. 2013; 27(4):10721082.CrossRefGoogle ScholarPubMed
Bouras, AF. Hospital discharge of elderly patients after surgery: fast-track recovery versus the need for convalescence. J Visc Surg. 2014; 151(2):8990.CrossRefGoogle ScholarPubMed
Biffl, WL, Biffl, SE. Rehabilitation of the geriatric surgical patient: predicting needs and optimizing outcomes. Surg Clin North Am. 2015; 95(1):173190.CrossRefGoogle ScholarPubMed
Carli, F, Brown, R, Kennepohl, S. Prehabilitation to enhance postoperative recovery for an octogenarian following robotic-assisted hysterectomy with endometrial cancer. Can J Anaesth. 2012; 59(8):779784.CrossRefGoogle ScholarPubMed
Cheema, FN, Abraham, NS, Berger, DH, et al. Novel approaches to perioperative assessment and intervention may improve long-term outcomes after colorectal cancer resection in older adults. Ann Surg. 2011; 253(5):867874.CrossRefGoogle ScholarPubMed
Mayo, NE, Feldman, L, Scott, S, et al. Impact of preoperative change in physical function on postoperative recovery: argument supporting prehabilitation for colorectal surgery. Surgery. 2011; 150(3):505514.CrossRefGoogle ScholarPubMed
Gillis, C, Li, C, Lee, L, et al. Prehabilitation versus rehabilitation: a randomized control trial in patients undergoing colorectal resection for cancer. Anesthesiology. 2014; 121(5):937947.CrossRefGoogle ScholarPubMed
Holte, K, Nielsen, KG, Madsen, JL, Kehlet, H. Physiologic effects of bowel preparation. Dis Colon Rectum. 2004; 47(8):13971402.Google ScholarPubMed
Gustafsson, UO, Scott, MJ, Schwenk, W, et al. Guidelines for perioperative care in elective colonic surgery: Enhanced Recovery After Surgery (ERAS(R)) Society recommendations. World J Surg. 2013; 37(2):259284.CrossRefGoogle Scholar
Jung, B, Lannerstad, O, Pahlman, L, et al. Preoperative mechanical preparation of the colon: the patient's experience. BMC Surg. 2007; 7:5.CrossRefGoogle ScholarPubMed
Jung, B, Pahlman, L, Nystrom, PO, Nilsson, E; Mechanical Bowel Preparation Study G. Multicentre randomized clinical trial of mechanical bowel preparation in elective colonic resection. Br J Surg. 2007; 94(6):689695.CrossRefGoogle Scholar
Brady, M, Kinn, S, Stuart, P. Preoperative fasting for adults to prevent perioperative complications. Cochrane Database Syst Rev. 2003(4):CD004423.Google Scholar
American Society of Anesthesiologists Committee. Practice guidelines for preoperative fasting and the use of pharmacologic agents to reduce the risk of pulmonary aspiration: application to healthy patients undergoing elective procedures: an updated report by the American Society of Anesthesiologists Committee on Standards and Practice Parameters. Anesthesiology. 2011; 114(3):495511.CrossRefGoogle Scholar
Nygren, J. The metabolic effects of fasting and surgery. Best Pract Res Clin Anaesthesiol. 2006; 20(3):429438.CrossRefGoogle ScholarPubMed
Shoemaker, WC, Appel, PL, Kram, HB. Tissue oxygen debt as a determinant of lethal and nonlethal postoperative organ failure. Crit Care Med. 1988; 16(11):11171120.CrossRefGoogle ScholarPubMed
Holte, K, Sharrock, NE, Kehlet, H. Pathophysiology and clinical implications of perioperative fluid excess. Br J Anaesth. 2002; 89(4):622632.CrossRefGoogle ScholarPubMed
Nicholau, D. The postanesthesia care unit. In: Miller, RD, ed., Miller's Anesthesia, 7th edn. Philadelphia, PA, Elsevier, 2010; 27082728.Google Scholar
Griffiths, R, Beech, F, Brown, A, et al. Peri-operative care of the elderly 2014: Association of Anaesthetists of Great Britain and Ireland. Anaesthesia. 2014; 69(Suppl 1):8198.Google ScholarPubMed
Kaye, AD, Riopelle, JM. Intravascular fluid and electrolyte physiology. In: Miller, RD, ed., Miller's Anesthesia, 7th edn. Philadelphia, PA, Elsevier, 2010; 17051735.CrossRefGoogle Scholar
Brandstrup, B, Tonnesen, H, Beier-Holgersen, R, et al. Effects of intravenous fluid restriction on postoperative complications: comparison of two perioperative fluid regimens: a randomized assessor-blinded multicenter trial. Ann Surg. 2003; 238(5):641648.CrossRefGoogle ScholarPubMed
Brandstrup, B, Svendsen, PE, Rasmussen, M, et al. Which goal for fluid therapy during colorectal surgery is followed by the best outcome: near-maximal stroke volume or zero fluid balance? Br J Anaesth. 2012; 109(2):191199.CrossRefGoogle ScholarPubMed
Nisanevich, V, Felsenstein, I, Almogy, G, et al. Effect of intraoperative fluid management on outcome after intraabdominal surgery. Anesthesiology. 2005; 103(1):2532.CrossRefGoogle ScholarPubMed
de Aguilar-Nascimento, JE, Diniz, BN, do Carmo, AV, Silveira, EA, Silva, RM. Clinical benefits after the implementation of a protocol of restricted perioperative intravenous crystalloid fluids in major abdominal operations. World J Surg. 2009; 33(5):925930.CrossRefGoogle ScholarPubMed
Chappell, D, Jacob, M, Hofmann-Kiefer, K, Conzen, P, Rehm, M. A rational approach to perioperative fluid management. Anesthesiology. 2008; 109(4):723740.CrossRefGoogle ScholarPubMed
Shoemaker, WC. Oxygen consumption as an outcome predictor. Intensive Care Med. 1988; 15(1):6466.Google Scholar
Shoemaker, WC, Appel, PL, Kram, HB, Waxman, K, Lee, TS. Prospective trial of supranormal values of survivors as therapeutic goals in high-risk surgical patients. Chest. 1988; 94(6):11761186.CrossRefGoogle ScholarPubMed
Grocott, MP, Dushianthan, A, Hamilton, MA, et al. Perioperative increase in global blood flow to explicit defined goals and outcomes following surgery. Cochrane Database Syst Rev. 2012(11):CD004082.Google ScholarPubMed
Corcoran, T, Rhodes, JE, Clarke, S, Myles, PS, Ho, KM. Perioperative fluid management strategies in major surgery: a stratified meta-analysis. Anesth Analg. 2012; 114(3):640651.CrossRefGoogle ScholarPubMed
Fawcett, WJ, Baldini, G. Optimal analgesia during major open and laparoscopic abdominal surgery. Anesthesiol Clin. 2015; 33(1):6578.CrossRefGoogle ScholarPubMed
Vadivelu, N, Mitra, S, Narayan, D. Recent advances in postoperative pain management. Yale J Biol Med. 2010; 83(1):1125.Google ScholarPubMed
Gritsenko, K, Khelemsky, Y, Kaye, AD, Vadivelu, N, Urman, RD. Multimodal therapy in perioperative analgesia. Best Pract Res Clin Anaesthesiol. 2014; 28(1):5979.CrossRefGoogle ScholarPubMed
Lovich-Sapola, J, Smith, CE, Brandt, CP. Postoperative pain control. Surg Clin North Am. 2015; 95(2):301318.CrossRefGoogle ScholarPubMed
Buvanendran, A, Kroin, JS. Multimodal analgesia for controlling acute postoperative pain. Curr Opin Anaesthesiol. 2009; 22(5):588593.CrossRefGoogle ScholarPubMed
Tan, M, Law, LS, Gan, TJ. Optimizing pain management to facilitate Enhanced Recovery After Surgery pathways. Can J Anaesth. 2015; 62(2):203218.CrossRefGoogle ScholarPubMed
White, PF. Multimodal analgesia: its role in preventing postoperative pain. Curr Opin Investig Drugs. 2008; 9(1):7682.Google ScholarPubMed
Joshi, GP, Schug, SA, Kehlet, H. Procedure-specific pain management and outcome strategies. Best Pract Res Clin Anaesthesiol. 2014; 28(2):191201.CrossRefGoogle ScholarPubMed
Joshi, GP, Kehlet, H. Procedure-specific pain management: the road to improve postsurgical pain management? Anesthesiology. 2013; 118(4):780782.CrossRefGoogle ScholarPubMed
Moraca, RJ, Sheldon, DG, Thirlby, RC. The role of epidural anesthesia and analgesia in surgical practice. Ann Surg. 2003; 238(5):663673.CrossRefGoogle ScholarPubMed
Popping, DM, Elia, N, Van Aken, HK, et al. Impact of epidural analgesia on mortality and morbidity after surgery: systematic review and meta-analysis of randomized controlled trials. Ann Surg. 2014; 259(6):10561067.CrossRefGoogle ScholarPubMed
Sun, Y, Li, T, Wang, N, Yun, Y, Gan, TJ. Perioperative systemic lidocaine for postoperative analgesia and recovery after abdominal surgery: a meta-analysis of randomized controlled trials. Dis Colon Rectum. 2012; 55(11):11831194.CrossRefGoogle ScholarPubMed
Golembiewski, J, Dasta, J. Evolving role of local anesthetics in managing postsurgical analgesia. Clin Ther. 2015; 37(6):13541371.CrossRefGoogle ScholarPubMed
Trabold, B, Metterlein, T. Postoperative delirium: risk factors, prevention, and treatment. J Cardiothorac Vasc Anesth. 2014; 28(5):13521360.CrossRefGoogle ScholarPubMed
Sieber, FE, Zakriya, KJ, Gottschalk, A, et al. Sedation depth during spinal anesthesia and the development of postoperative delirium in elderly patients undergoing hip fracture repair. Mayo Clin Proc. 2010; 85(1):1826.CrossRefGoogle ScholarPubMed
Rasmussen, LS, Steentoft, A, Rasmussen, H, Kristensen, PA, Moller, JT. Benzodiazepines and postoperative cognitive dysfunction in the elderly. ISPOCD Group. International Study of Postoperative Cognitive Dysfunction. Br J Anaesth. 1999; 83(4):585589.CrossRefGoogle Scholar
Marcantonio, ER, Juarez, G, Goldman, L, et al. The relationship of postoperative delirium with psychoactive medications. Jama. 1994; 272(19):15181522.CrossRefGoogle ScholarPubMed
Pandharipande, P, Shintani, A, Peterson, J, et al. Lorazepam is an independent risk factor for transitioning to delirium in intensive care unit patients. Anesthesiology. 2006; 104(1):2126.CrossRefGoogle Scholar
Pisani, MA, Murphy, TE, Araujo, KL, et al. Benzodiazepine and opioid use and the duration of intensive care unit delirium in an older population. Crit Care Med. 2009; 37(1):177183.CrossRefGoogle Scholar
Avidan, MS, Zhang, L, Burnside, BA, et al. Anesthesia awareness and the bispectral index. N Engl J Med. 2008; 358(11):10971108.CrossRefGoogle ScholarPubMed
Punjasawadwong, Y, Phongchiewboon, A, Bunchungmongkol, N. Bispectral index for improving anaesthetic delivery and postoperative recovery. Cochrane Database Syst Rev. 2014(6):CD003843.Google Scholar
Chan, MT, Cheng, BC, Lee, TM, Gin, T, Group, CT. BIS-guided anesthesia decreases postoperative delirium and cognitive decline. J Neurosurg Anesthesiol. 2013; 25(1):3342.CrossRefGoogle ScholarPubMed
Wong, J, Song, D, Blanshard, H, Grady, D, Chung, F. Titration of isoflurane using BIS index improves early recovery of elderly patients undergoing orthopedic surgeries. Can J Anaesth. 2002; 49(1):1318.CrossRefGoogle ScholarPubMed
Radtke, FM, Franck, M, Lendner, J, et al. Monitoring depth of anaesthesia in a randomized trial decreases the rate of postoperative delirium but not postoperative cognitive dysfunction. Br J Anaesth. 2013; 110(Suppl 1):i98i105.CrossRefGoogle Scholar
Kehlet, H. Enhanced Recovery After Surgery (ERAS): good for now, but what about the future? Can J Anaesth. 2015; 62(2):99104.CrossRefGoogle ScholarPubMed

References

Centers for Disease Control and Prevention National Hospital Discharge Survey: 2010, with special feature on death and dying. Hyattsville, MD, National Center for Health Statistics, 2011.Google Scholar
Centers for Disease Control and Prevention. Health research and quality: cost of hospital discharges with common hospital operating room procedures in nonfederal community hospitals, by age and selected principle procedure: United States 2000-2010. 2012. Available from: www.cdc.gov/hchs/hus/contents2012.htm#115 (Accessed July 14, 2017).Google Scholar
Kurtz, S, Ong, K, Lau, E, Mowat, F, Halpern, M. Projections of primary and revision hip and knee arthroplasty in the United States from 2005 to 2030. J Bone Jt. 2007; 89:780785.CrossRefGoogle ScholarPubMed
Pugely, AJ, Martin, CT, Gao, Y, Mendoza-Lattes, S, Callaghan, JJ. Differences in short-term complications between spinal and general anesthesia for primary total knee arthroplasty. J Bone Joint Surg Am. 2013; 95:193199.CrossRefGoogle ScholarPubMed
Memtsoudis, SG, Sun, X, Chiu, Y-L, et al. Perioperative comparative effectiveness of anesthetic technique in orthopedic patients. Anesthesiology. 2013; 118:10461058.CrossRefGoogle ScholarPubMed
Memtsoudis, SG, Rasul, R, Suzuki, S, et al. Does the impact of the type of anesthesia on outcomes differ by patient age and comorbidity burden? Reg Anesth Pain Med. 2014; 39:112119.CrossRefGoogle ScholarPubMed
Basques, BA, Toy, JO, Bohl, DD, Golinvaus, NS, Grauer, JN. General compared with spinal anesthesia for total hip arthroplasty. J Bone Joint Surg Am. 2015; 97:455461.CrossRefGoogle ScholarPubMed
Krenk, L, Rasmussen, LS, Hansen, TB, et al. Delirium after fast-track hip and knee arthroplasty. Br J Anaesth. 2012; 108:607611.CrossRefGoogle ScholarPubMed
Patel, S, Das, S, Stedman, RB. Urgent cesarean section in a patient with a spinal cord stimulator: implications for surgery and anesthesia. Ochsner J. 2014; 14:131134.Google Scholar
Harsten, A, Kehlet, H, Ljung, P, Toksvig-Larsen, S. Total intravenous anaesthesia vs. spinal anaesthesia for total hip arthroplasty: a randomized, controlled trial. Acta Anaesth Scand. 2015; 59:298309.CrossRefGoogle Scholar
Harden, RN, Bruehl, S, Stanos, S, et al. Prospective examination of pain-related and psychological predictors of CRPS-like phenomena following total knee arthroplasty: a preliminary study. Pain. 2003; 106:393400.CrossRefGoogle ScholarPubMed
Hebl, JR, Dilger, JA, Byer, DE, et al. A pre-emptive multimodal pathway featuring peripheral nerve block improves perioperative outcomes after major orthopedic surgery. Reg Anesth Pain Med. 2008; 33:510517.CrossRefGoogle ScholarPubMed
Kurmis, AP, Kurmis, TP, O'Brien, JX, Dalen, T. The effect of nonsteroidal anti-inflammatory drug administration on acute phase fracture-healing: a reivew. J Bone Joint Surg Am. 2012; 94:815823.CrossRefGoogle Scholar
Trelle, S, Reichenbach, S, Wandel, S, et al. Cardiovascular safety of non-steroidal anti-inflammatory drugs: network meta-analysis. BMJ. 2011; 342:c7086.CrossRefGoogle ScholarPubMed
Buvanendran, A, Kroin, JS, Della Valle, CJ, et al. Perioperative oral pregabalin reduces chronic pain after total knee arthroplasty: a prospective, randomized, controlled trial. Anesth Analg. 2010; 110:199207.CrossRefGoogle ScholarPubMed
Martinez, V, Cymerman, A, Ben Ammar, S, et al. The analgesic efficiency of combined pregabalin and ketamine for total hip arthroplasty: a randomised, double-blind, controlled study. Anaesthesia. 2014; 69:4652.CrossRefGoogle ScholarPubMed
Clarke, H, Pereira, S, Kennedy, D, et al. Gabapentin decreases morphine consumption and improves functional recovery following total knee arthroplasty. Pain Res Manag. 2009; 14:217222.CrossRefGoogle ScholarPubMed
Clarke, H, Katz, J, McCartney, C, et al. Perioperative gabapentin reduces 24 hour opioid consumption and improves in-hospital rehabilitation but not postdischarge outcomes after total knee arthroplasty with peripheral nerve block. Br J Anaesth. 2014; 113(5):855864.CrossRefGoogle Scholar
Paul, J, Nantha-Aree, M, Buckley, N, et al. Gabapentin did not reduce morphine consumption, pain, opioid-related side effects in total knee arthroplasty. Can J Anaesth. 2013; 60(5):423431.CrossRefGoogle ScholarPubMed
Remérand, F, Le Tendre, C, Baud, A, et al. The early and delayed analgesic effects of ketamine after total hip arthroplasty: a prospective, randomized, controlled, double-blind study. Anesth Analg. 2009; 109:19631971.CrossRefGoogle ScholarPubMed
Mu, JL, Lee, A, Joynt, GM. Pharmacologic agents for the prevention and treatment of delirium in patients undergoing cardiac surgery. Crit Care Med. 2015; 43(1):194204.CrossRefGoogle ScholarPubMed
Chan, EY, Fransen, M, Parker, DA, Assam, PN, Chua, N. Femoral nerve blocks for acute postoperative pain after knee replacement surgery. Cochrane Database Syst Rev. 2014(5):CD009941.Google ScholarPubMed
Machi, AT, Sztain, JF, Kormylo, NJ et al. Discharge readiness after tricompartment knee arthroplasty: adductor canal versus femoral continuous nerve blocks-a dual-center randomized trial. Anesthesiology. 2015; 123:444456.CrossRefGoogle ScholarPubMed
Abdallah, FW, Brull, R. Is sciatic nerve block advantageous when combined with femoral nerve block for postoperative analgesia following total knee arthroplasty? A systematic review. Reg Anesth Pain Med. 2011; 36(5):493498.CrossRefGoogle ScholarPubMed
Nagafuchi, M, Sato, T, Sakuma, T, et al. Femoral nerve block-sciatic nerve block vs. femoral nerve block-local infiltration analgesia for total knee arthroplasty: a randomized controlled trial. BMC Anesthesiol. 2015; 15:182188.CrossRefGoogle ScholarPubMed
Grevstad, U, Mathiesen, O, Valentiner, LS, et al. Effect of adductor canal block versus femoral nerve block on quadriceps strength, mobilization, and pain after total knee arthroplasty. Reg Anesth Pain Med. 2015; 40(1):310.CrossRefGoogle ScholarPubMed
Memtsoudis, S, Danniger, T, Rasul, R, et al. Inpatient falls after total knee arthroplasty. Anesthesiology. 2014; 120:551563.CrossRefGoogle ScholarPubMed
Peder, A, Karlsen, H, Geisler, A, et al. Postoperative pain treatment after total hip arthroplasty: a systematic review. Pain. 2015; 156:830.Google Scholar
Fan, L, Zhu, C, Zan, P, et al. The comparison of local infiltration analgesia with peripheral nerve block following TKA: a systematic review with meta-analysis. J Arthroplasty. 2015; 30(9):16641671.CrossRefGoogle ScholarPubMed
Andersen, , Kehlet, H. Analgesic efficacy of local infiltration analgesia in hip and knee arthroplasty: a systematic review. Br J Anaesth. 2014; 113(3):360374.CrossRefGoogle ScholarPubMed
Surdam, JW, Licini, DJ, Baynes, NT, Arce, BR. The use of Exparel (liposomal bupivacaine) to manage postoperative pain in unilateral total knee arthroplasty patients. J Arthrop. 2015; 30:325329.CrossRefGoogle ScholarPubMed
Barrington, JW, Oluseun, O, Lovald, S, Liposomal bupivacaine: a comparative study of more than 1000 total joint arthroplasty cases. Orthop Clin N Am. 2015; 46:469477.CrossRefGoogle ScholarPubMed
Bierbaum, BE, Callaghan, JJ, Galante, JO, et al. An analysis of blood management in patients having a total hip or knee arthroplasty. J Bone Joint Surg. 1999; 81-A:110.Google ScholarPubMed
Friedman, R, Homering, M, Holberg, G, Berkowitz, SD. Allogeneic blood transfusions and postoperative infections after total hip or knee arthroplasty. J Bon Joint Surg Am. 2014; 96:272278.CrossRefGoogle ScholarPubMed
Danninger, T, Rasul, R, Poeran, J, et al. Blood transfusion in total hip and knee arthroplasty: an analysis of outcomes. Sci World J. 2014:110.CrossRefGoogle ScholarPubMed
So-Osman, C, Nelissen, RG, Koopman-van Gemert, AW, et al. Patient blood management in elective total hip and knee replacement surgery: Part 1. Anesthesiology. 2014; 120:839851.CrossRefGoogle ScholarPubMed
Phan, DL, Ani, F, Schwarzkopf, R. Cost analysis of tranexamic acid in anemic total joint arthroplasty patients. J Arthroplasty. 2016; 31(3):579582.CrossRefGoogle ScholarPubMed
Green, WS, Toy, P, Bozic, KJ. Cost minimization analysis of perioperative erythropoietin vs autologous and allogeneic blood donation in total joint arthroplasty. J Arthoplasty. 2010; 25:9396.CrossRefGoogle Scholar
So-Osman, C, Nelissen, RG, Koopman-van Gemert, AW, et al. Patient blood management in elective total hip and knee replacement surgery: Part 2. Anesthesiology. 2014; 120:852860.CrossRefGoogle ScholarPubMed
Kim, S, Bou Monsef, J, King, EA, Sculco, TP, Boettner, F. Nonanemic patients do not benefit from autologous blood donation before total knee replacement. HSSJ. 2011; 7:141144.CrossRefGoogle Scholar
Bong, MR, Patel, V, Chang, E, et al. Risks associated with blood transfusion after total knee arthroplasty. J Arthroplasty. 2014; 19:281287.CrossRefGoogle Scholar
Friedman, R, Homering, M, Holberg, G, Berkowitz, SD. Allogeneic blood transfusions and postoperative infections after total hip or knee arthroplasty. J Bone Joint Surg Am. 2014; 96:272278.CrossRefGoogle ScholarPubMed
Gilbody, J, Dhotar, HS, Perruccio, AV, Davey, JR. Topical tranexamic acid reduces transfusion rates in total hip and knee arthroplasty. J Arthoplasty. 2014; 29:681684.CrossRefGoogle ScholarPubMed
Alshryda, S, Sarda, P, Sukeik, M, et al. Tranexamic acid in total knee replacement: a systematic review and meta-analysis. J Bone Joint Surg Br. 2011; 93(12):15771585.CrossRefGoogle ScholarPubMed
Oremus, K, Sostaric, S, Trkulja, V, Haspl, M. Influence of tranexamic acid on postoperative autologous blood retransfusion in primary total knee and hip arthroplasty: a randomized, controlled trial. Transfusion. 2014; 54:3141.CrossRefGoogle ScholarPubMed
Poeran, J, Rasul, R, Suzuki, S, et al. Tranexamic acid use and postoperative outcomes in patients undergoing total hip or knee arthroplasty in the United States: retrospective analysis of effectiveness and safety. BMJ. 2014; 349:g4829.CrossRefGoogle ScholarPubMed
Ponnusamy, KE, Kim, TJ, Khanjua, HS. Perioperative blood transfusions in orthopaedic surgery. J Bone Joint Surg Am. 2014; 96:18361844.CrossRefGoogle ScholarPubMed
Li, M, Bertout, JA, Ratcliff, SJ, et al. Acute anemia elicits cognitive dysfunction and evidence of cerebral cellular hypoxia in older rats with systemic hypertension. Anesthesiology. 2010; 113:845858.CrossRefGoogle ScholarPubMed
Jacobs, JJ, Mont, MA, Bozic, KJ, et al. American Academy of Orthopaedic Surgeons clinical practice guideline on preventing venous thromboembolic disease in patients undergoing elective hip and knee arthroplasty. J Bone Jt Surg. 2012; 94:746747.CrossRefGoogle ScholarPubMed
Galanis, T, Merli, GJ. New oral anticoagulants: prevention of VTE in phase III studies in total joint replacement surgery and the hospitalized medically-ill patients. J Thromb Thrombol. 2013; 36(2):141148.CrossRefGoogle ScholarPubMed
Raphael, IJ, Tischler, EH, Huang, R, et al. Aspirin: an alternative for pulmonary embolism prophylaxis after arthroplasty? Clin Orthop Relat Res. 2014; 472:482488.CrossRefGoogle ScholarPubMed
Horlocker, TT, Wedel, DJ, Rowlingson, JC, et al. Regional anesthesia in the patient receiving antithrombotic or thrombolytic therapy: American Society of Regional Anesthesia and Pain Medicine evidence-based guidelines (third edition). Reg Anesth Pain Med; 35:64101.CrossRefGoogle Scholar
Khanuja, HS, Vakil, JJ, Goddard, MS, Mont, MA. Cementless femoral fixation in total hip arthroplasty. J Bone Joint Surg Am. 2011; 93:500509.CrossRefGoogle ScholarPubMed
Donaldson, A, Thomson, H, Harper, N, Kenny, N. Bone cement implantation syndrome. Br J Anaesth. 2009; 102(1):1222.Google ScholarPubMed
Brallier, JW, Diener, S. The elderly spine surgery patient: pre- and intraoperative management of drug therapy. Drugs Aging. 2015; 32:601609.CrossRefGoogle ScholarPubMed
Acosta, FL, McClendon, J, O'Shaughnessy, BA, et al. Morbidity and mortality after spinal deformity surgery in patients 75 years and older: complication and predictive factors. J Neurosurg Spine. 2011; 15:667674.CrossRefGoogle ScholarPubMed
O'Lynnger, TM, Zuckerman, SL, Morone, PJ, Vasquez-Castellonos, RA, Cheng, JS. Trends for spine surgery for the elderly: implication for access to healthcare in North America. Neurosurgery. 2015; 77:S136S141.CrossRefGoogle ScholarPubMed
McGirt, MJ, Parker, SL, Hilibrand, A, et al. Lumbar surgery in the elderly provides significant health benefits in the US health care system: patient-reported outcomes in 4370 patients from the N2QOD registry. Neurosurgery. 2015; 77:S125S135.CrossRefGoogle Scholar
Puvanesarajah, V, Liauw, JA, Lina, IA, et al. Analgesic therapy for major spine surgery. Neruosurg Rev. 2015; 38:407419.CrossRefGoogle ScholarPubMed
Chan, MT. BIS-guided anesthesia decreases postoperative delirium and cognitive decline. J Neurosurg Anesthesiol. 2013; 25:3342.CrossRefGoogle ScholarPubMed
Radke, F. Monitoring depth of anesthesia decreases the rate of postoperative delirium but not postoperative cognitive dysfunction. Br J Anaesth. 2013; 110(Suppl 1):i98i105.CrossRefGoogle Scholar
Deiner, S, Lin, HM, Bodansky, D, Silverstein, J, Sano, M. Do stress markers and anesthetic technique predict delirium in the elderly? Dement Geriatr Cogn Disord. 2014; 38:366374.CrossRefGoogle ScholarPubMed
Goldstein, CL, Chutkan, NB, Choma, TJ, Orr, RD. Management of the elderly with vertebral compression fractures. Neurosurgery 2015; 77:S33S45.Google ScholarPubMed
Luginbühl, M. Percutaneous vertebroplasty, kyphoplasty and lordoplasty: implications for the anesthesiologist. Curr Opin Anaesthesiol. 2008; 21:504513.CrossRefGoogle ScholarPubMed
Chen, H-L, Wong, C-S, Ho, S-T, et al. A lethal pulmonary embolism during percutaneous vertebroplasty. Anesth Analg. 2002; 95(4):10601062.CrossRefGoogle ScholarPubMed
Lim, KJ, Yoon, SZ, Jeon, YS, et al. An intraatrial thrombus and pulmonary thromboembolism as a late complication of percutaneous vertebroplasty. Anesth Analg. 2007; 104(4):924926.CrossRefGoogle ScholarPubMed

References

Gill, J, Moore, M. The state of aging and health in America 2013. 2013. www.cdc.gov/aging/pdf/state-aging-health-in-america-2013.pdf (Accessed July 17, 2017).Google Scholar
Franklin, SS, Gustin, W IV, Wong, ND, et al. Hemodynamic patterns of age-related changes in blood pressure: the Framingham Heart Study. Circulation. 1997; 96(1):308315.CrossRefGoogle ScholarPubMed
Ferarri, A, Radaelli, A, Centola, M. Invited review: aging and the cardiovascular system. Circulation. 2003; 95(6):25912597.Google Scholar
Cook, D, Rooke, A. Priorities in perioperative geriatrics. Anesth Analg. 2003; 95(6):25912597.Google Scholar
Sprung, J, Gajic, O, Warner, D. Review article: age-related alterations in respiratory function – anesthetic considerations. Anesth Analg. 2006; 95(6):25912597.Google Scholar
Sieber, FE. Changes which occur in the central nervous system with aging. In: Geriatric Anesthesia. New York, McGraw-Hill, Medical Pub. Division, 2015.Google Scholar
Tsui, BC, Wagner, A, Finucane, B. Regional anaesthesia in the elderly. Drugs Aging. 2004; 21(14):895910.CrossRefGoogle ScholarPubMed
Roy, RC. Choosing general versus regional anesthesia for the elderly. Anesthesiol Clin North Am. 2000; 18(1):91104.CrossRefGoogle ScholarPubMed
O'Hara, DA, Duff, A, Berlin, JA, et al. The effect of anesthetic technique on postoperative outcomes in hip fracture repair. Anesthesiology. 2000; 92(4):947957.CrossRefGoogle ScholarPubMed
Ballantyne, JC, Carr, DB, deFerranti, S, et al. The comparative effects of postoperative analgesic therapies on pulmonary outcome: cumulative meta-analyses of randomized, controlled trials. Anesth Analg. 1998; 86:598612.CrossRefGoogle ScholarPubMed
Wu, CL, Fleisher, LA. Outcomes research in regional anesthesia and analgesia. Anesth Analg. 2000; 91:12321242.Google ScholarPubMed
Wu, CL, Hsu, W, Richman, JM, Raja, SN. Postoperative cognitive function as an outcome of regional anesthesia and analgesia. Reg Anesth Pain Med. 2004; 29(3):257268.Google Scholar
Modig, J, Borg, T, Karlstrom, G, et al. Thromboembolism after total hip replacement: role of epidural and general anesthesia. Anesth Analg. 1983; 62:174180.CrossRefGoogle ScholarPubMed
McKenie, PJ, Wishart, HY, Gray, I, Smith, G. Effects of anaesthetic technique on deep vein thrombosis: a comparison of subarachnoid and general anaesthesia. Br J Anaesth. 1985; 57:853857.CrossRefGoogle Scholar
Jorgensen, LN, Rasmussen, LS, Nielsen, PT, et al. Antithrombotic efficacy of continuous extradural analgesia after knee replacement. Br J Anaesth. 1991; 66:812.CrossRefGoogle ScholarPubMed

References

Drach, GW, Griebling, TL. Geriatric urology. J Am Geriatr Soc. 2003; 51(7 Suppl):S355S358.CrossRefGoogle ScholarPubMed
McVary, KT, Roehrborn, CG, Avins, AL, et al. Update on AUA guideline on the management of benign prostatic hyperplasia. J Urol. 2011; 185(5):17931803.CrossRefGoogle ScholarPubMed
Coward, RT, Horne, C, Peek, CW. Predicting nursing home admissions among incontinent older adults: a comparison of residential differences across six years. Gerontologist. 1995; 35(6):732743.CrossRefGoogle ScholarPubMed
Wu, JM, Matthews, CA, Conover, MM, Pate, V, Jonsson Funk, M. Lifetime risk of stress urinary incontinence or pelvic organ prolapse surgery. Obstetr Gynecol. 2014; 123(6):12011206.CrossRefGoogle ScholarPubMed
Carter, HB, Albertsen, PC, Barry, MJ, et al. Early detection of prostate cancer: AUA Guideline. J Urol. 2013; 190(2):419426.CrossRefGoogle ScholarPubMed
Moyer, VA. Screening for cervical cancer: U.S. Preventive Services Task Force recommendation statement. Ann Intern Med. 2012; 156(12):880891, W312.CrossRefGoogle ScholarPubMed
Miller, RD. Miller's Anesthesia, 7th edn. New York, Churchill Livingstone Elsevier, 2010.Google ScholarPubMed
Warner, MA, Warner, DO, Harper, CM, Schroeder, DR, Maxson, PM. Lower extremity neuropathies associated with lithotomy positions. Anesthesiology. 2000; 93(4):938942.CrossRefGoogle ScholarPubMed
Hu, JC, Gu, X, Lipsitz, SR, et al. Comparative effectiveness of minimally invasive vs open radical prostatectomy. JAMA. 2009; 302(14):15571564.CrossRefGoogle ScholarPubMed
Wright, JD, Ananth, CV, Lewin, SN, et al. Robotically assisted vs laparoscopic hysterectomy among women with benign gynecologic disease. JAMA. 2013; 309(7):689698.CrossRefGoogle ScholarPubMed
Alemozaffar, M, Sanda, M, Yecies, D, et al. Benchmarks for operative outcomes of robotic and open radical prostatectomy: results from the Health Professionals Follow-up Study. Eur Urol. 2015; 67(3):432438.CrossRefGoogle ScholarPubMed
Gainsburg, DM. Anesthetic concerns for robotic-assisted laparoscopic radical prostatectomy. Minerva Anestesiol. 2012; 78(5):596604.Google ScholarPubMed
Hsu, RL, Kaye, AD, Urman, RD. Anesthetic challenges in robotic-assisted urologic surgery. Rev Urol. 2013; 15(4):178184.Google ScholarPubMed
Kalmar, AF, De Wolf, AM, Hendrickx, JFA. Anesthetic considerations for robotic surgery in the steep Trendelenburg position. Adv Anesth. 2012; 30:7596.CrossRefGoogle Scholar
Lestar, M, Gunnarsson, L, Lagerstrand, L, Wiklund, P, Odeberg-Wernerman, S. Hemodynamic perturbations during robot-assisted laparoscopic radical prostatectomy in 45 degrees Trendelenburg position. Anesth Analg. 2011; 113(5):10691075.CrossRefGoogle Scholar
Mondzelewski, TJ, Schmitz, JW, Christman, MS, et al. Intraocular pressure during robotic-assisted laparoscopic procedures utilizing steep Trendelenburg positioning. J Glaucoma. 2015; 24(6):399404.Google ScholarPubMed
Taketani, Y, Mayama, C, Suzuki, N, et al. Transient but significant visual field defects after robot-assisted laparoscopic radical prostatectomy in deep Trendelenburg position. PloS One. 2015; 10(4):e0123361.CrossRefGoogle ScholarPubMed
Awad, H, Santilli, S, Ohr, M, et al. The effects of steep Trendelenburg positioning on intraocular pressure during robotic radical prostatectomy. Anesth Analg. 2009; 109(2):473478.CrossRefGoogle ScholarPubMed
Vijayan, S. TURP syndrome. Trends Anaesth Crit Care. 2011; 1:4650.CrossRefGoogle Scholar
Gainsburg, DM. Geriatric Anesthestiology, 2nd edn. Berlin, Springer Science+Business Media, LLC, 2008.Google Scholar
Issa, MM. Technological advances in transurethral resection of the prostate: bipolar versus monopolar TURP. J Endourol. 2008; 22(8):15871595.CrossRefGoogle ScholarPubMed
Issa, MM, Young, MR, Bullock, AR, Bouet, R, Petros, JA. Dilutional hyponatremia of TURP syndrome: a historical event in the 21st century. Urology. 2004; 64(2):298301.CrossRefGoogle ScholarPubMed
Parker, MJ, Handoll, HH, Griffiths, R. Anaesthesia for hip fracture surgery in adults. Cochrane Database Syst Rev. 2004(4):CD000521.Google ScholarPubMed
Newman, S, Stygall, J, Hirani, S, Shaefi, S, Maze, M. Postoperative cognitive dysfunction after noncardiac surgery: a systematic review. Anesthesiology. 2007; 106(3):572590.CrossRefGoogle ScholarPubMed
McRae, PJ, Peel, NM, Walker, PJ, de Looze, JW, Mudge, AM. Geriatric syndromes in individuals admitted to vascular and urology surgical units. J Am Geriatr Soc. 2014; 62(6):11051109.CrossRefGoogle ScholarPubMed
Tognoni, P, Simonato, A, Robutti, N, et al. Preoperative risk factors for postoperative delirium (POD) after urological surgery in the elderly. Arch Gerontol Geriatr. 2011; 52(3):e166e169.CrossRefGoogle ScholarPubMed
Tai, S, Xu, L, Zhang, L, Fan, S, Liang, C. Preoperative risk factors of postoperative delirium after transurethral prostatectomy for benign prostatic hyperplasia. Int J Clin Exp Med. 2015; 8(3):45694574.Google ScholarPubMed
Bergeron, ME, Ouellet, P, Bujold, E, et al. The impact of anesthesia on glycine absorption in operative hysteroscopy: a randomized controlled trial. Anesth Analg. 2011; 113(4):723728.Google ScholarPubMed
Goldenberg, M, Cohen, SB, Etchin, A, Mashiach, S, Seidman, DS. A randomized prospective comparative study of general versus epidural anesthesia for transcervical hysteroscopic endometrial resection. Am J Obstet Gynecol. 2001; 184(3):273276.CrossRefGoogle ScholarPubMed

References

Watson, A, Sunderraj, P. Comparison of small-incision phacoemulsification with standard extracapsular cataract surgery: postoperative astigmatism and visual recovery. Eye. 1992; 6:626629.CrossRefGoogle ScholarPubMed
Harper, RA, Shock, JP. Lens. In: Riordan-Eva, P, Cunningham, ET Jr., eds., Vaughan & Asbury's General Ophthalmology, 18th edn. New York, McGraw-Hill, 2011; Chapter 8.Google Scholar
Schein, OD, Katz, J, Bass, EB, et al. Study of medical testing for cataract surgery: the value of routine preoperative medical testing before cataract surgery. N Engl J Med. 2000; 342(3):168175.Google ScholarPubMed
Fleisher, LA, Fleischmann, KE, Auerbach, AD, et al. 2014 ACC/AHA guideline on perioperative cardiovascular evaluation and management of patients undergoing noncardiac surgery: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol. 2014; 64:e77e137.CrossRefGoogle Scholar
Thilen, SR, Treggiari, MM, Lange, JM, et al. Preoperative consultations for medicare patients undergoing cataract surgery. JAMA Intern Med. 2014; 174(3):380388.CrossRefGoogle ScholarPubMed
Keay, L, Lindsley, K, Tielsch, J, et al. Routine preoperative medical testing for cataract surgery. Cochrane Database Syst Rev. 2012(3):CD007293.Google ScholarPubMed
Chang, DF, Campbell, JR. Intraoperative floppy iris syndrome associated with tamsulosin. J Cataract Refract Surg. 2005; 31(4):664673.Google ScholarPubMed
Dexter, F, Wachtel, RE. Strategies for net cost reductions with the expanded role and expertise of anesthesiologists in the Perioperative Surgical Home. Anesth Analg. 2014; 118(5):10621071.CrossRefGoogle ScholarPubMed
Katz, J, Feldman, MA, Bass, EB, et al. Risks and benefits of anticoagulant and antiplatelet medication use before cataract surgery. Ophthalmology. 2003; 110(9):17841788.CrossRefGoogle ScholarPubMed
Bonhomme, F, Hafezi, F, Boehlen, F, Habre, W. Management of antithrombotic therapies in patients scheduled for eye surgery. Eur J Anaesthesiol. 2013; 30(8):449454.CrossRefGoogle ScholarPubMed
Mason, JM, Gupta, SR, Compton, CJ, et al. Comparison of hemorrhagic complications of warfarin and clopidogrel bisulfate in 25-gauge vitrectomy versus a control group. Ophthalmology. 2011; 118(3):543547.CrossRefGoogle ScholarPubMed
Haripriya, A, Tan, CS, Venkatesh, R, et al. Effect of preoperative counseling on patient fear from visual sensations during phacoemulsification under topical anesthesia. J Cataract Refract Surg. 2011; 37:814818.CrossRefGoogle ScholarPubMed
Kumar, C, Dowd, T. Ophthalmic regional anaesthesia. Curr Opin Anaesthesiol. 2008; 21:632637.CrossRefGoogle ScholarPubMed
Aldrete, JA, Romo-Salas, F, Arora, S, et al. Reverse arterial blood flow as a pathway for central nervous system toxic responses following injection of local anesthetics. Anesth Analg. 1978; 57:428433.Google ScholarPubMed
Duker, JS, Belmony, JB, Benson, WE, et al. Inadvertant globe perforation during retrobulbar and peribulbar anesthesia: patient characteristics, surgical management, and visual outcome. Ophthalmology. 1991; 98:519526.CrossRefGoogle ScholarPubMed
Gayer, S, Kumar, CM. Ophthalmic regional anesthesia techniques. Minerva Anesthesiol. 2008; 74(1-2):2333.Google ScholarPubMed
Kumar, CM, Dowd, TC. Complications of opthalmic regional blocks: their treatment and prevention. Ophthalmologica. 2006; 220:7382.CrossRefGoogle Scholar
Verghese, I, Sivaraj, R, Lai, YK. The effectiveness of sub-Tenon's infiltration of local anaesthesia for cataract surgery. Aust N Z J Ophthalmol. 1996; 24:117120.Google ScholarPubMed
Guise, P. Sub-Tenon's anesthesia: a prospective study of 6000 blocks. Anesthesiology. 2003; 98:964968.CrossRefGoogle Scholar
El-Hindy, N, Johnston, RL, Jaycock, P, et al.; UK EPR User Group. The Cataract National Dataset electronic multicenter audit of 55,567 operations: anaesthetic techniques and complications. Eye. 2009; 23:5055.Google ScholarPubMed
Ruschen, H, Bremmer, FD, Carr, C. Complications after sub-Tenon's eye block. Anesth Analg. 2003; 96:273277.Google ScholarPubMed
Kershner, RM. Topical anesthesia for small incision self-sealing cataract surgery: a prospective evaluation of the first 100 patients. J Cataract Refract Surg. 1993; 19:290292.CrossRefGoogle ScholarPubMed
Bardocci, A, Lofoco, G, Perdicaro, S, et al. Lidocaine 2% gel versus lidocaine 4% unpreserved drops for topical anesthesia in cataract surgery: a randomized controlled trial. Ophthalmology. 2003; 110:144149.CrossRefGoogle ScholarPubMed
Karp, CL, Cox, TA, Wagoner, MD, et al. Intracameral anesthesia: a report by the American Academy of Ophthalmology. Ophthalmology. 2001; 108:17041710.CrossRefGoogle ScholarPubMed
Eggeling, P, Pleyer, U, Hartman, C, Rieck, PW. Corneal endothelial toxicity of different lidocaine concentrations. J Cataract Refract Surg. 2000; 26:14031408.Google ScholarPubMed
Gayer, S. Key components of risk associated with ophthalmic anesthesia. Anesthesiology. 2006; 105:859.CrossRefGoogle ScholarPubMed
Fung, D, Cohen, MM, Stewart, S, Davies, A. What determines patient satisfaction with cataract care under topical local anesthesia and monitored sedation in a community hospital setting? Anesth Analg. 2005; 100:16441650.CrossRefGoogle Scholar
Katz, J, Feldman, MA, Bass, EB, et al. Adverse intraoperative medical events and their association with anesthesia management strategies in cataract surgery. Ophthalmology. 2001; 108:17211726.CrossRefGoogle ScholarPubMed
Bhananker, SM, Posner, KL, Cheney, FW, et al. Injury and liability associated with monitored anesthesia care: a closed claims analysis. Anesthesiology. 2006; 104:228234.CrossRefGoogle Scholar
Barnett, SR. Polypharmacy and perioperative medications in the elderly. Anesthesiol Clin. 2009; 27(3):377389.CrossRefGoogle ScholarPubMed
Inouye, SK, Robinson, T, Blaum, C, et al.; The American Geriatrics Society Expert Panel on Postoperative Delirium in Older Adults. Postoperative delirium in older adults: best practice statement from the American Geriatrics Society. J Am Coll Surg. 2015; 220(2):136148.CrossRefGoogle Scholar
Greenhalgh, DL, Kumar, CM. Sedation during ophthalmic surgery. Eur J Anaesthesiol. 2008; 25:701707.CrossRefGoogle ScholarPubMed
Janzen, PR, Christys, A, Vucevic, M. Patient-controlled sedation using propofol in elderly patients in day-case cataract surgery. Br J Anaesth. 1999; 82:635636.CrossRefGoogle ScholarPubMed
Aydin, ON, Ku, F, Ozkan, SB, Gusoy, F. Patient-controlled anaesthesia and sedation with fentanyl in phacoemulsification under topical anesthesia. J Cataract Refract Surg. 2002; 28:19681972.CrossRefGoogle ScholarPubMed
Woo, JH, Au Eong, KG, Kumar, CM. Conscious sedation during ophthalmic surgery under local anesthesia. Minerva Anesthesiol. 2009; 75:211219.Google ScholarPubMed
Kang, H, Park, HJ, Baek, SK, et al. Effects of preoxygenation with the three minutes tidal volume breathing technique in the elderly. Korean J Anesthesiol. 2010; 58(4):369373.CrossRefGoogle ScholarPubMed
Porela-Tiihonen, S, Kaarniranta, K, Kokki, H. Postoperative pain after cataract surgery. J Cataract Refract Surg. 2013; 39(5):789798.CrossRefGoogle ScholarPubMed
McCarty, CA, Nanjan, MB, Taylor, HR. Vision impairment predicts 5 year mortality. Br J Ophthalmol. 2001; 85:322326.CrossRefGoogle ScholarPubMed
Wang, JJ, Mitchell, P, Simpson, JM, et al. Visual impairment, age related cataract, and mortality. Arch Ophthalmol. 2001; 119:11861190.CrossRefGoogle ScholarPubMed
Fong, CS, Mitchell, P, Rochtchina, E, et al. Correction of visual impairment by cataract surgery and improved survival in older persons: The Blue Mountain Eye Study cohort. Ophthalmology. 2013; 120(9):17201727.CrossRefGoogle ScholarPubMed
Prajna, NV, Ravilla, TD, Srinivasan, S. Cataract Surgery. In: Jamison, DT, Nugent, R, Gelband, H, Horton, S, Jha, P, Laxminarayan, R, eds., Disease Control Priorities: Essential Surgery, 3rd edn. Washington, DC, World Bank, 2015; Chapter 11, 197212.Google Scholar
Lai, FH, Lok, JYC, Chow, PPC, Young, AL. Clinical outcomes of cataract surgery in very elderly adults. J Am Geriatr Soc. 2014; 62(1):165170.CrossRefGoogle ScholarPubMed
Desai, P, Reidy, A, Minassian, DC, et al. Gains from cataract surgery: visual function and quality of life. Br J Ophthalmol. 1996; 80:868873.CrossRefGoogle ScholarPubMed
Rosen, PN. Cognitive impairment and cataract surgery. J Cataract Refract Surg. 2004; 30:2459–2460.CrossRefGoogle ScholarPubMed
Tamura, H, Tsukamoto, H, Mukai, S, et al. Improvement in cognitive impairment after cataract surgery in elderly patients. J Cataract Refract Surg. 2004; 30:598602.CrossRefGoogle ScholarPubMed
Rovner, BW, Ganguli, M. Depression and disability associated with impaired vision: the MoVIES project. J Am Geriatr Soc. 1998; 46:617619.Google ScholarPubMed
Ishii, K, Kabata, T, Oshika, T. The impact of cataract surgery on cognitive impairment and depressive mental status in elderly patients. Am J Ophthalmol. 2008; 146(3):404409.CrossRefGoogle ScholarPubMed
Fischer, P. The spectrum of depressive pseudo-dementia. J Neural Transm Suppl. 1996; 47:193203.CrossRefGoogle ScholarPubMed
Asplund, R, Lindblad, BE. Sleep and sleepiness 1 and 9 months after cataract surgery. Arch Gerontol Geriatr. 2004; 38(1):6975.CrossRefGoogle ScholarPubMed
Schmoll, C, Tendo, C, Aspinall, P, Dhillon, B. Reaction time as a measure of enhanced blue-light mediated cognitive function following cataract surgery. Br J Ophthalmol. 2011; 95:16561659.CrossRefGoogle ScholarPubMed
Ivers, RQ, Cumming, RG, Mitchell, P, Attebo, K. Visual impairment and falls in older adults: the Blue Mountains Eye Study. J Am Geriatr Soc. 1998; 46:5864.Google ScholarPubMed
Harwood, RH, Foss, AJE, Osborn, F, et al. Falls and health status in elderly women following first eye cataract surgery: a randomized controlled trial. Br J Ophthalmol. 2005; 89:5359.CrossRefGoogle Scholar
Meuleners, LB, Fraser, ML, Ng, J, Morlet, N. The impact of first- and second-eye cataract surgery on injurious falls that require hospitalisation: a whole-population study. Age Ageing. 2014; 43:341346.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×