Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-19T15:18:19.182Z Has data issue: false hasContentIssue false

2 - Neurobiology of TBI sustained during development

Published online by Cambridge University Press:  14 May 2010

Vicki Anderson
Affiliation:
University of Melbourne
Keith Owen Yeates
Affiliation:
Ohio State University
Get access

Summary

Introduction

Changes in brain growth and connectivity continue throughout an individual's lifespan. The most rapid period of cerebral changes are observed during infancy and childhood but have recently been shown to continue into early adulthood (Toga et al.,2006). While the pediatric population as a whole shows robust differences across countless variables compared to the “adult” or mature brain, there are also significant differences between subgroups within the pediatric population. The pediatric population is not a homogenous group, but rather is made up of subgroups as defined by their developmental profiles for a given parameter. Despite the fact that increasing clinical and experimental evidence reveals age-related differences in response to traumatic brain injury (TBI) within the pediatric population, there remains a lack of appreciation for these differences when establishing standards of care for children. Many parameters (serum glucose management) continue to be “modified” from adult practice without direct knowledge of age-related responses. These findings emphasize the fact that developmental physiology impacts the pathophysiological response to traumatic brain injury and ultimately influences developmental disability.

Traumatic brain injury early in life

Myelination and compliance

Changes in cerebral myelination continue throughout adolescence into early adulthood (Courhesne et al., 2000; Giorgio et al., 2008; Paus et al., 1999). As brain myelin content increases, brain water content decreases (Himwich, 1973) with consequent changes in the biomechanical properties of the brain.

Type
Chapter
Information
Pediatric Traumatic Brain Injury
New Frontiers in Clinical and Translational Research
, pp. 18 - 35
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adelson, P., Clyde, B., Kochanek, P. M., Wisniewski, S., Marion, D. & Yonas, H. (1997). Cerebrovascular response in infants and young children following severe traumatic brain injury. Pediatric Neurosurgery, 26, 200–207.CrossRefGoogle ScholarPubMed
Adelson, P. D., Jenkins, L. W., Hamilton, R. L., Robichaud, P., Tran, M. P. & Kochanek, P. M. (2001). Histopathologic response of the immature rat to diffuse traumatic brain injury. Journal of Neurotrauma, 18, 967–976.CrossRefGoogle ScholarPubMed
Appelberg, S., Hovda, D. A. & Prins, M. L. (2009). The effects of a ketogenic diet on behavioral outcome after controlled cortical impact injury in juvenile and adult rat. Journal of Neurotrauma, 26, 497–506.CrossRefGoogle ScholarPubMed
Bartnik, B. L., Sutton, R. L., Fukushima, M., Harris, N. G., Hovda, D. A. & Lee, S. M. (2005). Upregulation of pentose phosphate pathway and preservation of tricarboxylic acid cycle flux after experimental brain injury. Journal of Neurotrauma, 22, 1052–1065.CrossRefGoogle ScholarPubMed
Berger, N. A. (1985). Poly (ADP-ribose) in the cellular response to DNA damage. Radiation Research, 101, 4–15.CrossRefGoogle ScholarPubMed
Biagas, K. V., Grundl, P. D., Kochanek, P., Schiding, J. K. & Nemoto, E. M. (1996). Posttraumatic hyperemia in immature, mature, and aged rats: autoradiographic determination of cerebral blood flow. Journal of Neurotrauma, 13, 189–200.Google ScholarPubMed
Biegon, A., Fry, P. A., Paden, C. M., Alexandrovich, A. & Tsenter, J. E. S. (2004). Dynamic changes in N-methyl-d-aspartate receptors after closed head injury in mice: implications for treatment of neurological and cognitive deficits. Proceedings of the National Academy of Sciences, USA, 101, 5117–5122.CrossRefGoogle ScholarPubMed
Bittigau, P., Sifringer, M., Pohl, D.et al. (1999). Apoptotic neurodegeneration following trauma is markedly enhanced in the immature brain. Annals of Neurology, 45, 724–735.3.0.CO;2-P>CrossRefGoogle ScholarPubMed
Bittigau, P., Sifringer, M., Genz, K.et al. (2002). Antiepileptic drugs and apoptotic neurodegeneration in the developing brain. Proceedings of the National Academy of Sciences, USA, 99, 15089–15094.CrossRefGoogle ScholarPubMed
Booth, R. F. G., Patel, T. B. & Clark, J. B. (1980). The development of enzymes of energy metabolism in the brain of a precocial (guinea pig) and non-precocial (rat) species. Journal of Neurochemistry, 34, 17–25.CrossRefGoogle ScholarPubMed
Bonvento, G., Sibson, N. & Pellerin, L. (2002). Does glutamate image your thoughts?Trends in Neuroscience, 25, 359–364.CrossRefGoogle ScholarPubMed
Bruce, D., Alvai, A., Bilaniuk, L., Dolinskas, C., Obrist, W. & Uzzell, B. (1981). Diffuse cerebral swelling following head injuries in children: the syndrome of malignant brain edema. Journal of Neurosurgery, 54, 170–178.CrossRefGoogle ScholarPubMed
Cazalis, F., Babikian, T., Newman, N., Hovda, D. A., Giza, C. C. & Asarnow, R. F. (2007). Longitudinal fMRI study of severe traumatic brain injury in adolescents. Society for Neuroscience Abstracts.
Cherian, L., Hlatky, R. & Robertson, C. S. (2004). Comparison of tetrahydrobiopterin and l-arginine on cerebral blood flow after controlled cortical impact injury in rats. Journal of Neurotrauma, 21, 1196–1203.CrossRefGoogle ScholarPubMed
Chiron, C., Raynaud, C., Maxiere, B.et al. (1992). Changes in regional cerebral blood flow during brain maturation in children and adolescents. Journal of Nuclear Medicine, 33, 696–703.Google ScholarPubMed
Chugani, H. T., Phelps, M. E. & Mazziotta, J. C. (1987). Positron emission tomography study of human brain functional development. Annals of Neurology, 22, 487–497.CrossRefGoogle ScholarPubMed
Conti, A. C., Raghupathi, R., Trojanowski, J. Q. & McIntosh, T. K. (1998). Experimental brain injury induces regionally distinct apoptosis during the acute and delayed post-traumatic period. Journal of Neuroscience, 18, 5663–5672.CrossRefGoogle ScholarPubMed
Cosi, C. & Marien, M. (1998). Decreases in mouse brain NAD+ and ATP induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP): prevention by the poly (ADP-ribose) polymerase inhibitor, benzamide. Brain Research, 809, 58–67.CrossRefGoogle ScholarPubMed
Courchesne, E., Chisum, H. J., Townsend, J.et al. (2000). Normal brain development and aging: quantitative analysis at in vivo MR imaging in healthy volunteers. Radiology, 216, 672–682.CrossRefGoogle ScholarPubMed
Cremer, J. E., Braun, L. D. & Oldendorf, W. H. (1976). Changes during development in transport processes of the blood–brain barrier. Biochimica et Biophyica Acta, 448, 633–637.CrossRefGoogle ScholarPubMed
Dahlquist, G. & Persson, B. (1976). The rat of cerebral utilization of glucose, ketone bodies, and oxygen: a comparative in vivo study of infant and adult rats. Pediatric Research, 10, 910–917.CrossRefGoogle ScholarPubMed
Davis, L. M., Pauly, J. R., Readnower, R. D., Rho, J. M. & Sullivan, P. G. (2008). Fasting is neuroprotective following traumatic brain injury. Journal of Neuroscience Research, 86, 1812–1822.CrossRefGoogle ScholarPubMed
Dietrich, W. D., Alonso, O., Busto, R. & Ginsberg, M. D. (1994). Widespread metabolic depression and reduced somatosensory circuit activation following traumatic brain injury in rats. Journal of Neurotrauma, 11, 629–640.CrossRefGoogle ScholarPubMed
Dixon, C. E., Ma, X. & Marion, D. W. (1997). Reduced evoked release of acetylcholine in the rodent neocortex following traumatic brain injury. Brain Research, 749, 127–130.CrossRefGoogle ScholarPubMed
Dudek, F. E. & Sutula, T. P. (2007). Epileptogenesis in the dentate gyrus: a critical perspective. Progress in Brain Research, 163, 755–773.CrossRefGoogle ScholarPubMed
Durham, S. R., Raghupathi, R., Helfaer, M. A., Marwaha, S. & Duhaime, A. C. (2000). Age-related differences in acute physiologic response to focal traumatic brain injury in piglets. Pediatric Neurology, 33, 76–82.Google ScholarPubMed
Enerson, B. E. & Drewes, L. R. (2003). Molecular features, regulation and function of monocarboxylate transporters: implications for drug delivery. Journal of Pharmaceutical Science, 92, 1531–1544.CrossRefGoogle ScholarPubMed
Farwell, J. R., Lee, Y. J., Hirtz, D. G., Sulzbacher, S. I., Ellenberg, J. H. & Nelson, K. B. (1990). Phenobarbital for febrile seizures–effects on intelligence and on seizure recurrence. New England Journal of Medicine, 322, 364–369.CrossRefGoogle ScholarPubMed
Feusner, J., Ritchie, T., Lawford, B., Young, R. M., Kann, B. & Noble, E. P. (2001). GABA(A) receptor beta 3 subunit gene and psychiatric morbidity in a post-traumatic stress disorder population. Psychiatry Research, 104, 109–117.CrossRefGoogle Scholar
Fineman, I., Hovda, D. A., Smith, M., Yoshino, A. & Becker, D. P. (1993). Concussive brain injury is associated with a prolonged accumulation of calcium: a 45Ca autoradiographic study. Brain Research, 624, 94–102.CrossRefGoogle ScholarPubMed
Fineman, I., Giza, C. C., Nahed, B. V., Lee, S. M. & Hovda, D. A. (2000). Inhibition of neocortical plasticity during development by a moderate concussive brain injury. Journal of Neurotrauma, 17, 739–749.CrossRefGoogle ScholarPubMed
Flint, A. C., Maisch, U. S., Weishaupt, J. H., Kriegstein, A. R. & Monyer, H. (1997). NR2A subunit expression shortens NMDA receptor synaptic currents in developing neocortex. The Journal of Neuroscience, 17, 2469–2476.CrossRefGoogle ScholarPubMed
Geuze, E., Berckel, B. N., Lammertsma, A. A.et al. (2008). Reduced GABAA benzodiazepine receptor binding in veterans with post-traumatic stress disorder. Molecular Psychiatry, 13, 74–83.CrossRefGoogle ScholarPubMed
Giorgio, A., Watkins, K. E., Douaud, G.et al. (2008). Changes in white matter microstructure during adolescence. NeuroImage, 39, 52–61.CrossRefGoogle ScholarPubMed
Giza, C. C. & Hovda, D. A. (2001). The neurometabolic cascade of concussion. Journal of Athletic Training, 36, 228–235.Google ScholarPubMed
Giza, C., Lee, S. M. & Hovda, D. A. (2000). Increased N-Methyl d-Aspartate (NMDA) receptor NR2A:NR2B subunit ratio induced by rearing in an enriched environment (EE). Society for NeuroscienceAbstracts, 15.3.Google Scholar
Giza, C. C., Griesbach, G. S. & Hovda, D. A. (2005). Experience-dependent behavioral plasticity is disturbed following traumatic brain injury to the immature brain. Behavioural Brain Research, 157, 11–22.CrossRefGoogle ScholarPubMed
Giza, C. C., Maria, N. S. & , D. A., , H. (2006). N-methyl-d-aspartate receptor subunit changes after traumatic injury to the developing brain. Journal of Neurotrauma, 23, 950–961.CrossRefGoogle ScholarPubMed
Golarai, G., Greenwood, A., Feeney, D. & Connor, J. (2001). Physiological and structural evidence for hippocampal involvement in persistent seizure susceptibility after traumatic brain injury. Journal of Neuroscience, 21, 8523–8537.CrossRefGoogle ScholarPubMed
Gorman, L., Fu, K., Hovda, D., Murray, M. & Traystman, R. (1996). Effects of traumatic brain injury on the cholinergic system in the rat. Journal of Neurotrauma, 13, 457–463.CrossRefGoogle ScholarPubMed
Greenough, W. T., Volkmar, F. R. & Juraska, J. M. (1973). Effects of rearing complexity on dendritic branching in frontolateral and temporal cortex of the rat. Experimental Neurology, 41, 371–378.CrossRefGoogle ScholarPubMed
Grundl, P. D., Biagas, K. V., Kochanek, P. M., Schiding, J. K., Barmada, M. A. & Nemoto, E. M. (1994). Early cerebrovascular response to head injury in immature and mature rats. Journal of Neurotrauma, 11, 135–148.CrossRefGoogle ScholarPubMed
Gsell, W., Burke, M., Wiedermann, D.et al. (2006). Differential effects of NMDA and AMPA glutamate receptors on functional magnetic resonance imaging signals and evoked neuronal activity during forepaw stimulation of the rat. Journal of Neuroscience, 26, 8409–8416.CrossRefGoogle ScholarPubMed
Gumbiner, B., Wendel, J. A. & McDermott, M. P. (1996). Effects of diet composition and ketosis on glycemia during very-low-energy-diet therapy in obese patients with non-insulin-dependent diabetes mellitus. American Journal of Clinical Nutrition, 63, 110–115.CrossRefGoogle ScholarPubMed
Gurkoff, G. G., Giza, C. C. & Hovda, D. A. (2006). Lateral fluid percussion injury in the developing rat causes an acute, mild behavioral dysfunction in the absence of significant cell death. Brain Research, 1077, 24–36.CrossRefGoogle ScholarPubMed
Hall, E. D., Andrus, P. K. & Yonkers, P. A. (1993). Brain hydroxyl radical generation in acute experimental head injury. Journal of Neurochemistry, 60, 588–594.CrossRefGoogle ScholarPubMed
Hardingham, G. E. & Bading, H. (2002). Coupling of extrasynaptic NMDA receptors to a CREB shut-off pathway is developmentally regulated. Biochimica et Biophysica Acta, 1600, 148–153.CrossRefGoogle ScholarPubMed
Hardingham, G. E. & Bading, H. (2003). The Yin and Yang of NMDA receptor signalling. Trends in Neuroscience, 26, 81–89.CrossRefGoogle ScholarPubMed
Hawkins, R. A., Williamson, D. H. & Krebs, H. A. (1971). Ketone-body utilization by adult and suckling rat brain in vivo. Biochemical Journal, 122, 13–18.CrossRefGoogle ScholarPubMed
Hensch, T., Fagiolini, M., Mataga, N., Stryker, M., Baekkeskov, S. & Kash, S. (1998). Local GABA circuit control of experience-dependent plasticity in developing visual cortex. Science, 282, 1504–1508.CrossRefGoogle ScholarPubMed
Himwich, H. E. (1973). Early studies of the developing brain. In Himwich, W., ed. Biochemistry of the Developing Brain Volume 1. New York, NY: Marcel Dekker Inc, pp. 2–20.Google Scholar
Hovda, D. A. (1996). In Narayan, R. K., Wilberger, J. E. & Povlishock, J. T., ed. Metabolic Dysfunction in Neurotrauma, New York: McGraw-Hill Inc, pp. 1459–1478.Google Scholar
Hovda, D. A., Le, H. M., Lifshitz, J.et al. (1994). Long-term changes in metabolic rates for glucose following mild, moderate and severe concussive head injuries in adult rats. Journal of Neuroscience, 20, 845.Google Scholar
Ikonomidou, C. & Turski, L. (2002). Why did NMDA receptor antagonists fail clinical trials for stroke and traumatic brain injury?Lancet Neurology, 1, 383–386.CrossRefGoogle ScholarPubMed
Ikonomidou, C., Bosch, F., Miksa, M.et al. (1999). Blockade of NMDA receptors and apoptotic neurodegeneration in the developing brain. Science, 283, 70–74.CrossRefGoogle ScholarPubMed
Ip, E. Y., Giza, C. C., Griesbach, G. S. & Hovda, D. A. (2002). Effects of enriched environment and fluid percussion injury on dendritic arborization within the cerebral cortex of the developing rat. Journal of Neurotrauma, 19, 573–585.CrossRefGoogle ScholarPubMed
Ip, E. Y., Zanier, E. R., Moore, A. H., Lee, S. M. & Hovda, D. A. (2003). Metabolic, neurochemical, and histological responses to vibrissa motor cortex stimulation after traumatic brain injury. Journal of Cerebral Blood Flow and Metabolism, 23, 900–910.CrossRefGoogle Scholar
Ishitani, R., Tanaka, M., Sunaga, K., Katsube, N. & Chuang, D. M. (1998). Nuclear localization of overexpressed glyceraldehyde-3-phosphate dehydrogenase in cultured cerebellar neurons undergoing apoptosis. Molecular Pharmacology, 53, 701–707.CrossRefGoogle ScholarPubMed
Jevtovic-Todorovic, V., Hartman, R. E., Izumi, Y.et al. (2003). Early exposure to common anesthetic agents causes widespread neurodegeneration in the developing rat brain and persistent learning deficits. The Journal of Neuroscience, 23, 876–882.CrossRefGoogle ScholarPubMed
Kaindl, A. M., Asimiadou, S., Manthey, D., Hagen, M. V., Turski, L. & Ikonomidou, C. (2006). Antiepileptic drugs and the developing brain. Cellular and Molecular Life Sciences, 63, 399–413.CrossRefGoogle ScholarPubMed
Katayama, Y., Becker, D. P., Tamura, T. & Hovda, D. A. (1990). Massive increases in extracellular potassium and the indiscriminate release of glutamate following concussive brain injury. Journal of Neurosurgery, 73, 889–900.CrossRefGoogle ScholarPubMed
Kawamata, T., Katayama, Y., Hovda, D. A., Yohino, A. & Becker, D. P. (1992). Administration of excitatory amino acid antagonists via microdialysis attenuates the increase in glucose utilization seen following concussive brain injury. Journal of Cerebral Blood Flow and Metabolism, 12, 12–24.CrossRefGoogle ScholarPubMed
Kim, C. I., Lee, S. H., Seong, G. J., Kim, Y. H. & Lee, M. Y. (2006). Nuclear translocation and overexpression of GAPDH by the hyper-pressure in retinal ganglion cell. Biochemical and Biophysical Research Communications, 341, 1237–1243.CrossRefGoogle ScholarPubMed
Kroppenstedt, S. N., Schneider, G. H., Thomale, U. W. & Unterberg, A. W. (1998). Protective effects of aptiganel HCl (Cerestat) following controlled cortical impact injury in the rat. Journal of Neurotrauma, 15, 191–197.CrossRefGoogle ScholarPubMed
Kumar, A., Zou, L., Yuan, X., Long, Y. & Yang, K. (2002). N-methyl-d-aspartate receptors: transient loss of NR1/NR2A/NR2B subunits after traumatic brain injury in a rodent model. Journal of Neuroscience Research, 67, 781–786.CrossRefGoogle Scholar
LaPlaca, M. C., Raghupathi, R., Verma, A.et al. (1999). Temporal patterns of poly (ADP-Ribose) polymerase activation in the cortex following experimental brain injury in the rat. Journal of Neurochemistry, 73, 205–213.CrossRefGoogle ScholarPubMed
Leong, S. F. & Clark, J. B. (1984). Regional enzyme development in rat brain. Enzymes associated with glucose utilization. Biochemical Journal, 218, 131–138.CrossRefGoogle ScholarPubMed
Li, Q., Spigelman, I., Hovda, D. A. & Giza, C. C. (2005). Decreased NMDA receptor mediated synaptic currents in CA1 neurons following fluid percussion injury in developing rats. Journal of Neurotrauma, 20 (10), 1249 (abstract).Google Scholar
Liu, D., Diorio, J., Day, J. C., Francis, D. D. & Meaney, M. J. (2000). Maternal care, hippocampal synaptogenesis and cognitive development in rats. Nature Neuroscience, 3, 799–806.CrossRefGoogle ScholarPubMed
Lotze, M., Grodd, W., Rodden, F. A.et al. (2006). Neuroimaging patterns associated with motor control in traumatic brain injury. Neurorehabilitation and Neural Repair, 20, 14–23.CrossRefGoogle ScholarPubMed
Lowenstein, D. H., Thomas, M. J., Smith, D. H. & McIntosh, T. K. (1992). Selective vulnerability of dentate hilar neurons following traumatic brain injury: a potential mechanistic link between head trauma and disorders of the hippocampus. Journal of Neuroscience, 12, 4846–4853.CrossRefGoogle ScholarPubMed
Marklund, N., Clausen, F., Lewander, T. & Hillered, L. (2001). Monitoring of reactive oxygen species production after traumatic brain injury in rats with microdialysis and the 4-hydroxygenzoic acid trapping methods. Journal of Neurotrauma, 18, 1217–1227.CrossRefGoogle Scholar
Maset, A. L., Marmarou, A., Ward, J.et al. (1987). Pressure–volume index in head injury. Journal of Neurosurgery, 67, 832–840.CrossRefGoogle ScholarPubMed
McAllister, T. W., Saykin, A. J., Flashman, L. A.et al. (1999). Brain activation during working memory 1 month after mild traumatic brain injury: a functional MRI study. Neurology, 53, 1300–1308.CrossRefGoogle ScholarPubMed
McAllister, T. W., Sparling, M. B., Flashman, L. A., Guerin, S. J., Mamourian, A. C. & Saykin, A. J. (2001). Differential working memory load effects after mild traumatic brain injury. Neuroimage, 14, 1004–1012.CrossRefGoogle ScholarPubMed
McIntosh, T. K., Vink, R., Soares, H., Hayes, R. & Simon, R. (1989). Effects of the N-methyl-d-aspartate receptor blocker MK-801 on neurologic function after experimental brain injury. Journal of Neurotrauma, 6, 247–259.CrossRefGoogle ScholarPubMed
Miller, L., Lyeth, B., Jenkins, L.et al. (1990). Excitatory amino acid receptor subtype binding following traumatic brain injury. Brain Research, 526, 103–107.CrossRefGoogle ScholarPubMed
Molteni, R., Ying, Z. & Gomez-Pinilla, F. (2002). Differential effects of acute and chronic exercise on plasticity-related genes in the rat hippocampus revealed by microarray. European Journal of Neuroscience, 16, 1107–1116.CrossRefGoogle ScholarPubMed
Muizelaar, J., Marmarou, A., DeSalles, A.et al. (1989). Cerebral blood flow and metabolism in severely head injured children.1. Relationship with GCS score, outcome, ICPA and PVI. Journal of Neurosurgery, 71, 63–71.CrossRefGoogle Scholar
Nakamura, T., Yoshihara, D., Ohmori, T., Yanai, M. & Takeshita, Y. (1994). Effects of diet high in medium-chain triglyceride on plasma ketone, glucose and insulin concentrations in enterectomized and normal rats. Journal of Nutritional Science and Vitaminology, 40, 147–159.CrossRefGoogle ScholarPubMed
Nehlig, A., Pereira de Vasconcelos, A. & Boyet, S. (1987). Quantitative autoradiographic measurement of local cerebral glucose utilization in freely moving rats during postnatal development. Journal of Neuroscience, 8, 2321–2333.CrossRefGoogle Scholar
Nehlig, A., Pereira de Vasconcelos, A. & Boye, S. (1989). Postnatal changes in local cerebral blood flow measured by the quantitative autoradiographic 14cIodoantipyrine technique in freely moving rats. Journal of Cerebral Blood Flow and Metabolism, 9, 579–588.CrossRefGoogle ScholarPubMed
Nehlig, A., Boyet, S. & Pereira de Vasconcelos, A. (1991). Autoradiographic measurements of local cerebral B-hydroxybutyrate uptake in the rat during postnatal development. Neuroscience, 40(3), 871–878.CrossRefGoogle Scholar
Olney, J. W., Young, C., Wozniak, D. F., Jevtovic-Todorovic, V. & Ikonomidou, C. (2004). Do pediatric drugs cause developing neurons to commit suicide?Trends in Pharmacological Sciences, 25, 135–139.CrossRefGoogle Scholar
Osteen, C. L., Moore, A. H., Prins, M. L. & Hovda, D. A. (2001). Age-dependency of 45calcium accumulation following lateral fluid percussion: acute and delayed patterns. Journal of Neurotrauma, 18, 141–162.CrossRefGoogle ScholarPubMed
Osteen, C., Giza, C. & Hovda, D. (2004). Injury-induced alterations in N-methyl-d-aspartate receptor subunit composition contribute to prolonged 45calcium accumulation following lateral fluid percussion. Neuroscience, 128, 305–322.CrossRefGoogle ScholarPubMed
Owen, O. E., Morgan, A. P., Kemp, H. G., Sullivan, J. M., Herrera, M. G. & Cahill, G. F. J. (1967). Brain metabolism during fasting. The Journal of Clinical Investigation, 46, 1589–1595.CrossRefGoogle ScholarPubMed
Passineau, M. J., Zhao, W., Busto, R.et al. (2000). Chronic metabolic sequelae of traumatic brain injury: prolonged suppression of somatosensory activation. American Journal of Physiology Heart Circulatory Physiology, 279, H924–931.CrossRefGoogle ScholarPubMed
Paus, T., Zijdenbos, A., Worsley, K.et al. (1999). Structural maturation of neural pathways in children and adolescents: in vivo study. Science, 283, 1908–1911.CrossRefGoogle ScholarPubMed
Prince, D. A., Parada, I., Scalise, K., Graber, K., Jin, X. & Shen, F. (2009). Epilepsy following cortical injury: cellular and molecular mechanisms as targets for potential prophylaxis. Epilepsia, 50 Suppl 2, 30–40.CrossRefGoogle ScholarPubMed
Prins, M. L. & Da, H. (2001). Mapping cerebral glucose metabolism during spatial learning: interactions of development and traumatic brain injury. Journal of Neurotrauma, 18, 31–46.CrossRefGoogle ScholarPubMed
Prins, M. L. & Hovda, D. A. (1998). Traumatic brain injury in the developing rat: effects of maturation on Morris water maze acquisition. Journal of Neurotrauma, 15, 799–811.CrossRefGoogle ScholarPubMed
Prins, M. L. & Hovda, D. A. (2009). The effects of age and ketogenic diet on local cerebral metabolic rates of glucose after controlled cortical impact injury in rats. Journal of Neurotrauma, 26(7), 1083–1093.CrossRefGoogle ScholarPubMed
Prins, M. L., Lee, S. M., Cheng, C. L. Y., Becker, D. P. & Hovda, D. A. (1996). Fluid percussion brain injury in the developing and adult rat: a comparative study of mortality, morphology, intracranial pressure and mean arterial blood pressure. Developmental Brain Research, 95, 272–282.CrossRefGoogle ScholarPubMed
Prins, M. L., Povlishock, J. T. & Phillips, L. L. (2003). The effects of combined fluid percussion traumatic brain injury and unilateral entorhinal deafferentation on the juvenile rat brain. Developmental Brain Research, 140, 93–104.CrossRefGoogle ScholarPubMed
Prins, M. L., Lee, S. M., Fujima, L. & Hovda, D. A. (2004). Increased cerebral uptake and oxidation of exogenous betaHB improves ATP following traumatic brain injury in adult rats. Journal of Neurochemistry, 90, 666–672.CrossRefGoogle ScholarPubMed
Prins, M. L., Fujima, L. S. & Hovda, D. A. (2005). Age-dependent reduction of cortical contusion volume by ketones after traumatic brain injury. Journal of Neuroscience Research, 82, 413–420.CrossRefGoogle ScholarPubMed
Quinlan, E. M., Olstein, D. H. & Bear, M. F. (1999). Bidirectional, experience-dependent regulation of N-methyl-d-aspartate receptor subunit composition in the rat visual cortex during postnatal development. Proceedings of the National Academy of Sciences, USA, 96, 12876–12880.CrossRefGoogle ScholarPubMed
Quinlan, E. M., Philpot, B. D., Huganir, R. L. & Bear, M. F. (1999). Rapid, experience-dependent expression of synaptic NMDA receptors in visual cortex in vivo [see comments]. Nature Neuroscience, 2, 352–357.CrossRefGoogle Scholar
Rao, V. L., Dogan, A., Todd, K. G., Bowen, K. K. & Dempsey, R. J. (2001). Neuroprotection by memantine, a non-competitive NMDA receptor antagonist after traumatic brain injury in rats. Brain Research, 911, 96–100.Google ScholarPubMed
Reger, M. L., Gurkoff, G. G., Hovda, D. A. & Giza, C. C. (2005). The novel object recognition task detects a transient cognitive deficit after developmental TBI. Journal of Neurotrauma, 20 (10), 1206 (abstract).Google Scholar
Ritter, A. M., Robertson, C. S., Goodman, J. C., Contant, C. F. & Grossman, R. G. (1996). Evaluation of carbohydrate free diet for patients with severe head injury. Journal of Neurotrauma, 13, 473–485.CrossRefGoogle ScholarPubMed
Riva, M. A., Tascedda, F., Molteni, R. & Racagni, G. (1994). Regulation of NMDA receptor subunit mRNA expression in the rat brain during postnatal development. Brain Research Molecular Brain Research, 25, 209–216.CrossRefGoogle ScholarPubMed
Roberts, E. B. & Ramoa, A. S. (1999). Enhanced NR2A subunit expression and decreased NMDA receptor decay time at the onset of ocular dominance plasticity in the ferret. Journal of Neurophysiology, 81, 2587–2591.CrossRefGoogle ScholarPubMed
Robertson, C. S., Goodman, J. C., Narayan, R. K., Contant, C. F. & Grossman, R. G. (1991). The effect of glucose admnistration on carbohydrate metabolism after head injury. Journal of Neurosurgery, 74, 43–50.CrossRefGoogle Scholar
Rosenzweig, M. R. & Bennett, E. L. (1996). Psychobiology of plasticity: effects of training and experience on brain and behavior. Behavioural Brain Research, 78, 57–65.CrossRefGoogle ScholarPubMed
Rudy, J. W., Stadler-Morris, S. & Albert, P. (1987). Ontogeny of spatial navigation behaviors in the rat: dissociation of “proximal” and “distal” cue based behaviors. Behavioral Neuroscience, 101, 62–73.CrossRefGoogle ScholarPubMed
Satchell, M. A., Zhang, X., Kochanek, P.et al. (2003). A dual role for poly-ADP-ribosylation in spatial memory acquisition after traumatic brain injury in mice involving NAD+ depletion and ribosylation of 14–3–3. Journal of Neurochemistry, 85, 697–708.CrossRefGoogle Scholar
Shao, L., Ciallella, J., Yan, H.et al. (1999). Differential effects of traumatic brain injury on vesicular acetylcholine transporter and M2 muscarinic receptor mRNA and protein in rat. Journal of Neurotrauma, 16, 555–566.CrossRefGoogle ScholarPubMed
Sharples, P., Stuart, A., D., M., Aynsley-Green, A. & Eyre, J. (1995). Glasgow coma score, outcome, intracranial pressure and time after injury. Journal of Neurology, Neurosurgery, and Psychiatry, 58, 145–152.CrossRefGoogle ScholarPubMed
Sheline, C. T., Behrens, M. M. & Choi, D. W. (2000). Zinc-induced cortical neuronal death: contribution of energy failure attributable to loss of NAD+ and inhibition of glycolysis. Journal of Neuroscience, 20, 3139–3146.CrossRefGoogle ScholarPubMed
Sihver, S., Marklund, N., Hillered, L., Långström, B., Watanabe, Y. & Bergström, M. (2001). Changes in mACh, NMDA and GABA(A) receptor binding after lateral fluid-percussion injury: in vitro autoradiography of rat brain frozen sections. Journal of Neurochemistry, 78, 417–423.CrossRefGoogle ScholarPubMed
Skippen, P., Seear, M., Poskitt, K.et al. (1997). Effect of hyperventilation on regional cerebral blood flow in head injured children. Critical Care Medicine, 25, 1402–1409.CrossRefGoogle ScholarPubMed
Sutton, R. L., Hovda, D. A., Adelson, P. D., Benzel, E. C. & Becker, D. P. (1994). Metabolic changes following coritcal contusion: relationship to edema and morphological changes. Acta Neurochirurgica, 60 Suppl, 446–448.Google Scholar
Takahashi, T., Feldmeyer, D., Suzuki, N.et al. (1996). Functional correlation of NMDA receptor epsilon subunits expression with the properties of single-channel and synaptic currents in the developing cerebellum. Journal of Neuroscience, 16, 4376–4382.CrossRefGoogle ScholarPubMed
Tanaka, R., Mochizuki, H., Suzuki, A.et al. (2002). Induction of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) expression in rat brain after focal ischemia/reperfusion. Journal of Cerebral Blood Flow and Metabolism, 22, 280–288.CrossRefGoogle ScholarPubMed
Thomas, S., Prins, M. L., Samii, M. & Hovda, D. A. (2000). Cerebral metabolic response to traumatic brain injury sustained early in development: a 2-deoxy-d-glucose autoradiographic study. Journal of Neurotrauma, 17, 649–665.CrossRefGoogle ScholarPubMed
Toga, A., Thompson, P. & Sowell, E. (2006). Mapping brain maturation. Trends in Neuroscience, 29, 148–159.CrossRefGoogle ScholarPubMed
Toth, Z., Hollrigel, G. S., Gorcs, T. & Soltesz, I. (1997). Instantaneous perturbation of dentate interneuronal networks by a pressure wave-transient delivered to the neocortex. Journal of Neuroscience, 17, 8106–8117.CrossRefGoogle ScholarPubMed
Tovar, K. R. & Westbrook, G. L. (1999). The incorporation of NMDA receptors with a distinct subunit composition at nascent hippocampal synapses in vitro. The Journal of Neuroscience, 19, 4180–4188.CrossRefGoogle ScholarPubMed
Udomphorn, Y., Armstead, W. M. & Vavilala, M. S. (2008). Cerebral blood flow and autoregulation after pediatric traumatic brain injury. Pediatric Neurology, 38, 225–234.CrossRefGoogle ScholarPubMed
Vannucci, S. J. & Simpson, I. A. (2003). Developmental switch in brain nutrient transporter expression in the rat. American Journal of Physiology, 285, E1127–E1134.Google ScholarPubMed
Vavilala, M. S., Muangman, S., Tontisirin, N.et al. (2006). Impaired cerebral autoregulation and 6-month outcome in children with severe traumatic brain injury: preliminary findings. Developmental Neuroscience, 28(4–5), 348–353.CrossRefGoogle ScholarPubMed
Wilder, R. T., Flick, R. P., Sprung, J.et al. (2009). Early exposure to anesthesia and learning disabilities in a population-based birth cohort. Anesthesiology, 110, 796–804.CrossRefGoogle Scholar
Ying, W., Gernier, P. & Swanson, R. A. (2003). NAD+ repletion prevents PARP-1 induced glycolytic blockade and cell death in cultured mouse astrocytes. Biochemical and Biophysical Research Communications, 308, 809–813.CrossRefGoogle ScholarPubMed
Yoshino, A., Hovda, D. A., Kawamata, T., Katayama, Y. & Becker, D. P. (1991). Dynamic changes in local cerebral glucose utilization following cerebral concussion in rats: evidence of a hyper- and subsequent hypometabolic state. Brain Research, 561, 106–119.CrossRefGoogle ScholarPubMed
Zwienenberg, M. & Muizelaar, J. P. (1999). Severe pediatric head injury: the role of hyperemia revisited. Journal of Neurotrauma, 16(10), 937–943.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×