Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-09T14:49:21.706Z Has data issue: false hasContentIssue false

Chapter 12 - Myeloproliferative Neoplasms (MPNs)

from Section IV - Neoplastic Disorders of Bone Marrow

Published online by Cambridge University Press:  25 January 2024

Xiayuan Liang
Affiliation:
Children’s Hospital of Colorado
Bradford Siegele
Affiliation:
Children’s Hospital of Colorado
Jennifer Picarsic
Affiliation:
Cincinnati Childrens Hospital Medicine Center
Get access

Summary

Chronic myeloid leukemia (CML), BCR-ABL1+, is a clonal myeloproliferative neoplasm (MPN) with a hyperabundance of granulocyte forms, defined by the presence of the BCR-ABL1 fusion gene, most frequently due to the chromosomal translocation t(9;22)(q34.1;q11.2) resulting in the Philadelphia (Ph) chromosome.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2024

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Swerdlow, S, Campo, E, Harris, N, et al., eds. WHO classification of tumors of haematopoietic and lymphoid tissues. Rev. 4th ed. IARC Press; 2017.Google Scholar
Höglund, M, Sandin, F, Simonsson, B. Epidemiology of chronic myeloid leukaemia: an update. Ann Hematol. 2015;94 Suppl 2:S241–7. doi: 10.1007/s00277-015-2314-2Google Scholar
Bleyer, A, Viny, A, Barr, R. Cancer in 15- to 29-year-olds by primary site. Oncologist. 2006;11(6):590601. doi: 10.1634/theoncologist.11-6-590Google Scholar
Krumbholz, M, Karl, M, Tauer, JT, et al. Genomic BCR-ABL1 breakpoints in pediatric chronic myeloid leukemia. Genes Chromosomes Cancer. 2012;51(11):1045–53. doi: 10.1002/gcc.21989CrossRefGoogle ScholarPubMed
Millot, F, Traore, P, Guilhot, J, et al. Clinical and biological features at diagnosis in 40 children with chronic myeloid leukemia. Pediatrics. 2005;116(1):140–3. doi: 10.1542/peds.2004-2473CrossRefGoogle ScholarPubMed
Berger, U, Maywald, O, Pfirrmann, M, et al. Gender aspects in chronic myeloid leukemia: long-term results from randomized studies. Leukemia. 2005;19(6):984–9. doi: 10.1038/sj.leu.2403756Google Scholar
Landgren, O, Goldin, LR, Kristinsson, SY, et al. Increased risks of polycythemia vera, essential thrombocythemia, and myelofibrosis among 24,577 first-degree relatives of 11,039 patients with myeloproliferative neoplasms in Sweden. Blood. 2008;112(6):2199–204. doi: 10.1182/blood-2008-03-143602CrossRefGoogle Scholar
Hijiya, N, Millot, F, Suttorp, M. Chronic myeloid leukemia in children: clinical findings, management, and unanswered questions. Pediatr Clin North Am. 2015;62(1):107–19. doi: 10.1016/j.pcl.2014.09.008Google Scholar
Millot, F, Maledon, N, Guilhot, J, et al. Favourable outcome of de novo advanced phases of childhood chronic myeloid leukaemia. Eur J Cancer. 2019;115:1723. doi: 10.1016/j.ejca.2019.03.020Google Scholar
Cotta, CV, Bueso-Ramos, CE. New insights into the pathobiology and treatment of chronic myelogenous leukemia. Ann Diagn Pathol. 2007;11(1):6878. doi: 10.1016/j.anndiagpath.2006.12.002CrossRefGoogle ScholarPubMed
Czader, M, Orazi, A. Acute myeloid leukemia and other types of disease progression in myeloproliferative neoplasms. Am J Clin Pathol. 2015;144(2):188206. doi: 10.1309/AJCPZQK40JOZZZCCGoogle Scholar
Hijiya, N, Schultz, KR, Metzler, M, et al. Pediatric chronic myeloid leukemia is a unique disease that requires a different approach. Blood. 2016;127(4):392–9. doi: 10.1182/blood-2015-06-648667CrossRefGoogle ScholarPubMed
Athale, U, Hijiya, N, Patterson, BC, et al. Management of chronic myeloid leukemia in children and adolescents: recommendations from the Children’s Oncology Group CML Working Group. Pediatr Blood Cancer. 2019;66(9):e27827. doi: 10.1002/pbc.27827CrossRefGoogle ScholarPubMed
Thompson, PA, Kantarjian, HM, Cortes, JE. Diagnosis and treatment of chronic myeloid leukemia in 2015. Mayo Clin Proc. 2015;90(10):1440–54. doi: 10.1016/j.mayocp.2015.08.010CrossRefGoogle ScholarPubMed
Melo, JV, Myint, H, Galton, DA, et al. P190BCR-ABL chronic myeloid leukaemia: the missing link with chronic myelomonocytic leukaemia? Leukemia. 1994;8(1):208–11.Google Scholar
Koptyra, M, Falinski, R, Nowicki, MO, et al. BCR/ABL kinase induces self-mutagenesis via reactive oxygen species to encode imatinib resistance. Blood. 2006;108(1):319–27. doi: 10.1182/blood-2005-07-2815CrossRefGoogle ScholarPubMed
Skorski, T. Oncogenic tyrosine kinases and the DNA-damage response. Nat Rev Cancer. 2002;2(5):351–60. doi: 10.1038/nrc799Google Scholar
Nowicki, MO, Falinski, R, Koptyra, M, et al. BCR/ABL oncogenic kinase promotes unfaithful repair of the reactive oxygen species-dependent DNA double-strand breaks. Blood. 2004;104(12):3746–53. doi: 10.1182/blood-2004-05-1941CrossRefGoogle ScholarPubMed
Soverini, S, Hochhaus, A, Nicolini, FE, et al. BCR-ABL kinase domain mutation analysis in chronic myeloid leukemia patients treated with tyrosine kinase inhibitors: recommendations from an expert panel on behalf of European LeukemiaNet. Blood. 2011;118(5):1208–15. doi: 10.1182/blood-2010-12-326405Google Scholar
Prokocimer, M, Rotter, V. Structure and function of p53 in normal cells and their aberrations in cancer cells: projection on the hematologic cell lineages. Blood. 1994;84(8):2391–411.Google Scholar
Sill, H, Goldman, JM, Cross, NC. Homozygous deletions of the p16 tumor-suppressor gene are associated with lymphoid transformation of chronic myeloid leukemia. Blood. Apr 15 1995;85(8):2013–6.Google Scholar
Grossmann, V, Kohlmann, A, Zenger, M, et al. A deep-sequencing study of chronic myeloid leukemia patients in blast crisis (BC-CML) detects mutations in 76.9% of cases. Leukemia. 2011;25(3):557–60. doi: 10.1038/leu.2010.298CrossRefGoogle ScholarPubMed
Ernst, T, Busch, M, Rinke, J, et al. Frequent ASXL1 mutations in children and young adults with chronic myeloid leukemia. Leukemia. 2018;32(9):20462049. doi: 10.1038/s41375-018-0157-2Google Scholar
Berger, R. Differences between blastic chronic myeloid leukemia and Ph-positive acute leukemia. Leuk Lymphoma. 1993;11 Suppl 1:235–7. doi: 10.3109/10428199309047892CrossRefGoogle ScholarPubMed
Uygun, V, Daloğlu, H, Öztürkmen, S, et al. Chronic neutrophilic leukemia, an extremely rare cause of neutrophilia in childhood: cure with hematopoietic stem cell transplantation. Pediatr Transplant. 2018;22(5):e13199. doi: 10.1111/petr.13199CrossRefGoogle ScholarPubMed
Böhm, J, Schaefer, HE. Chronic neutrophilic leukaemia: 14 new cases of an uncommon myeloproliferative disease. J Clin Pathol. 2002;55(11):862–4. doi: 10.1136/jcp.55.11.862CrossRefGoogle ScholarPubMed
Hehlmann, R. CML – where do we stand in 2015? Ann Hematol. 2015;94 Suppl 2:S103–5. doi: 10.1007/s00277-015-2331-1Google Scholar
Hehlmann, R. How I treat CML blast crisis. Blood. 2012;120(4):737–47. doi: 10.1182/blood-2012-03-380147Google Scholar
Osgood, EE. Polycythemia vera: age relationships and survival. Blood. 1965;26:243–56.CrossRefGoogle ScholarPubMed
Cario, H, McMullin, MF, Pahl, HL. Clinical and hematological presentation of children and adolescents with polycythemia vera. Ann Hematol. 2009;88(8):713–9. doi: 10.1007/s00277-009-0758-yGoogle Scholar
Rumi, E. Familial chronic myeloproliferative disorders: the state of the art. Hematol Oncol. 2008;26(3):131–8. doi: 10.1002/hon.863Google Scholar
Cario, H, Schwarz, K, Herter, JM, et al. Clinical and molecular characterisation of a prospectively collected cohort of children and adolescents with polycythemia vera. Br J Haematol. 2008;142(4):622–6. doi: 10.1111/j.1365-2141.2008.07220.xGoogle Scholar
Najean, Y, Mugnier, P, Dresch, C, et al. Polycythaemia vera in young people: an analysis of 58 cases diagnosed before 40 years. Br J Haematol. 1987;67(3):285–91. doi: 10.1111/j.1365-2141.1987.tb02349.xCrossRefGoogle ScholarPubMed
Heilmann, E, Klein, CE, Beck, JD. Primary polycythaemia in childhood and adolescence. Folia Haematol Int Mag Klin Morphol Blutforsch. 1983;110(6):935–41.Google Scholar
Barbui, T, Carobbio, A, Rambaldi, A, et al. Perspectives on thrombosis in essential thrombocythemia and polycythemia vera: is leukocytosis a causative factor? Blood. 2009;114(4):759–63. doi: 10.1182/blood-2009-02-206797Google Scholar
Teofili, L, Giona, F, Martini, M, et al. The revised WHO diagnostic criteria for Ph-negative myeloproliferative diseases are not appropriate for the diagnostic screening of childhood polycythemia vera and essential thrombocythemia. Blood. 2007;110(9):3384–6. doi: 10.1182/blood-2007-06-094276CrossRefGoogle Scholar
Tefferi, A. JAK2 mutations in polycythemia vera – molecular mechanisms and clinical applications. N Engl J Med. 2007;356(5):444–5. doi: 10.1056/NEJMp068293Google Scholar
Andrieux, JL, Demory, JL. Karyotype and molecular cytogenetic studies in polycythemia vera. Curr Hematol Rep. 2005;4(3):224–9.Google Scholar
Adam, MP, Mirzaa, GM, Pagon, RA, et al. GeneReviews. University of Washington. 19932022.Google Scholar
Ladroue, C, Carcenac, R, Leporrier, M, et al. PHD2 mutation and congenital erythrocytosis with paraganglioma. N Engl J Med. 2008;359(25):2685–92. doi: 10.1056/NEJMoa0806277Google Scholar
Percy, MJ, Furlow, PW, Lucas, GS, et al. A gain-of-function mutation in the HIF2A gene in familial erythrocytosis. N Engl J Med. 2008;358(2):162–8. doi: 10.1056/NEJMoa073123Google Scholar
Percy, MJ, Beer, PA, Campbell, G, et al. Novel exon 12 mutations in the HIF2A gene associated with erythrocytosis. Blood. 2008;111(11):5400–2. doi: 10.1182/blood-2008-02-137703Google Scholar
Prchal, JT, Gregg, XT. Red cell enzymes. Hematology Am Soc Hematol Educ Program. 2005:1923. doi: 10.1182/asheducation-2005.1.19CrossRefGoogle Scholar
Passamonti, F, Malabarba, L, Orlandi, E, et al. Polycythemia vera in young patients: a study on the long-term risk of thrombosis, myelofibrosis and leukemia. Haematologica. 2003;88(1):13–8.Google Scholar
Marchioli, R, Finazzi, G, Landolfi, R, et al. Vascular and neoplastic risk in a large cohort of patients with polycythemia vera. J Clin Oncol. 2005;23(10):2224–32. doi: 10.1200/JCO.2005.07.062Google Scholar
Marchioli, R, Finazzi, G, Specchia, G, et al. Cardiovascular events and intensity of treatment in polycythemia vera. N Engl J Med. 2013;368(1):2233. doi: 10.1056/NEJMoa1208500Google Scholar
Passamonti, F, Rumi, E, Arcaini, L, et al. Leukemic transformation of polycythemia vera: a single center study of 23 patients. Cancer. 2005;104(5):1032–6. doi: 10.1002/cncr.21297CrossRefGoogle ScholarPubMed
Ianotto, JC, Curto-Garcia, N, Lauermanova, M, et al. Characteristics and outcomes of patients with essential thrombocythemia or polycythemia vera diagnosed before 20 years of age: a systematic review. Haematologica. 2019;104(8):1580–8. doi: 10.3324/haematol.2018.200832Google Scholar
Hasle, H. Incidence of essential thrombocythaemia in children. Br J Haematol. 2000;110(3):751. doi: 10.1046/j.1365-2141.2000.02239-7.xGoogle Scholar
Giona, F, Teofili, L, Moleti, ML, et al. Thrombocythemia and polycythemia in patients younger than 20 years at diagnosis: clinical and biologic features, treatment, and long-term outcome. Blood. 2012;119(10):2219–27. doi: 10.1182/blood-2011-08-371328CrossRefGoogle ScholarPubMed
Hong, WJ, Gotlib, J. Hereditary erythrocytosis, thrombocytosis and neutrophilia. Best Pract Res Clin Haematol. 2014;27(2):95106. doi: 10.1016/j.beha.2014.07.002CrossRefGoogle ScholarPubMed
Yang, RC, Qian, LS. Essential thrombocythaemia in children: a report of nine cases. Br J Haematol. 2000;110(4):1009–10. doi: 10.1046/j.1365-2141.2000.02270-7.xGoogle Scholar
Randi, ML, Putti, MC, Scapin, M, et al. Pediatric patients with essential thrombocythemia are mostly polyclonal and V617FJAK2 negative. Blood. 2006;108(10):3600–2. doi: 10.1182/blood-2006-04-014746Google Scholar
Nakatani, T, Imamura, T, Ishida, H, et al. Frequency and clinical features of the JAK2 V617F mutation in pediatric patients with sporadic essential thrombocythemia. Pediatr Blood Cancer. 2008;51(6):802–5. doi: 10.1002/pbc.21730CrossRefGoogle ScholarPubMed
Fu, R, Zhang, L, Yang, R. Paediatric essential thrombocythaemia: clinical and molecular features, diagnosis and treatment. Br J Haematol. Nov 2013;163(3):295302. doi: 10.1111/bjh.12530Google Scholar
Randi, ML, Putti, MC, Pacquola, E, et al. Normal thrombopoietin and its receptor (c-MPL) genes in children with essential thrombocythemia. Pediatr Blood Cancer. 2005;44(1):4750. doi: 10.1002/pbc.20185CrossRefGoogle ScholarPubMed
Hofmann, I. Myeloproliferative neoplasms in children. J Hematop. 2015;8(3):143157. doi: 10.1007/s12308-015-0256-1Google Scholar
Wilkins, BS, Erber, WN, Bareford, D, et al. Bone marrow pathology in essential thrombocythemia: interobserver reliability and utility for identifying disease subtypes. Blood. 2008;111(1):6070. doi: 10.1182/blood-2007-05-091850Google Scholar
Tefferi, A, Barbui, T. Polycythemia vera and essential thrombocythemia: 2021 update on diagnosis, risk-stratification and management. Am J Hematol. 12 2020;95(12):1599–613. doi: 10.1002/ajh.26008Google Scholar
Kucine, N. Myeloproliferative neoplasms in children, adolescents, and young adults. Curr Hematol Malig Rep. 2020;15(2):141–8. doi: 10.1007/s11899-020-00571-8Google Scholar
Kucine, N, Viny, AD, Rampal, R, et al. Genetic analysis of five children with essential thrombocytosis identified mutations in cancer-associated genes with roles in transcriptional regulation. Haematologica. 2016;101(6):e237–9. doi: 10.3324/haematol.2016.142935Google Scholar
Kucine, N, Chastain, KM, Mahler, MB, et al. Primary thrombocytosis in children. Haematologica. 2014;99(4):620–8. doi: 10.3324/haematol.2013.092684CrossRefGoogle ScholarPubMed
Randi, ML, Geranio, G, Bertozzi, I, et al. Are all cases of paediatric essential thrombocythaemia really myeloproliferative neoplasms? Analysis of a large cohort. Br J Haematol. 2015;169(4):584–9. doi: 10.1111/bjh.13329Google Scholar
DeLario, MR, Sheehan, AM, Ataya, R, et al. Clinical, histopathologic, and genetic features of pediatric primary myelofibrosis – an entity different from adults. Am J Hematol. 2012;87(5):461–4. doi: 10.1002/ajh.23140Google Scholar
Sheikha, A. Fatal familial infantile myelofibrosis. J Pediatr Hematol Oncol. 2004;26(3):164–8. doi: 10.1097/00043426-200403000-00005CrossRefGoogle ScholarPubMed
Sieff, CA, Malleson, P. Familial myelofibrosis. Arch Dis Child. 1980;55(11):888–93. doi: 10.1136/adc.55.11.888Google Scholar
Dema, S, Lazar, F, Barna, R, et al. Sclerosing extramedullary hematopoietic tumor (SEHT) mimicking a malignant bile duct tumor – case report and literature review. Medicina (Kaunas). 2021;57(8):824. doi: 10.3390/medicina57080824Google Scholar
Mishra, P, Halder, R, Aggarwal, M, et al. Pediatric myelofibrosis: WHO 2024 update on myeloproliferative neoplasms calling? Pediatr Blood Cancer. 2020;67(5):e28232. doi: 10.1002/pbc.28232Google Scholar
An, W, Wan, Y, Guo, Y, et al. CALR mutation screening in pediatric primary myelofibrosis. Pediatr Blood Cancer. 2014;61(12):2256–62. doi: 10.1002/pbc.25211Google Scholar
Stepensky, P, Saada, A, Cowan, M, et al. The Thr224Asn mutation in the VPS45 gene is associated with the congenital neutropenia and primary myelofibrosis of infancy. Blood. 2013;121(25):5078–87. doi: 10.1182/blood-2012-12-475566Google Scholar
Vilboux, T, Lev, A, Malicdan, MC, et al. A congenital neutrophil defect syndrome associated with mutations in VPS45. N Engl J Med. Jul 04 2013;369(1):5465. doi: 10.1056/NEJMoa1301296Google Scholar
Altura, RA, Head, DR, Wang, WC. Long-term survival of infants with idiopathic myelofibrosis. Br J Haematol. 2000;109(2):459–62. doi: 10.1046/j.1365-2141.2000.01977.xGoogle Scholar
Sah, A, Minford, A, Parapia, LA. Spontaneous remission of juvenile idiopathic myelofibrosis. Br J Haematol. 2001;112(4):1083. doi: 10.1046/j.1365-2141.2001.02622.xGoogle Scholar
Lau, SO, Ramsay, NK, Smith, CM, et al. Spontaneous resolution of severe childhood myelofibrosis. J Pediatr. 1981;98(4):585–8. doi: 10.1016/s0022-3476(81)80769-xGoogle Scholar
Druhan, LJ, McMahon, DP, Steuerwald, N, et al. Chronic neutrophilic leukemia in a child with a CSF3R T618I germ line mutation. Blood. 2016;128(16):2097–9. doi: 10.1182/blood-2016-07-730606Google Scholar
Elliott, MA, Hanson, CA, Dewald, GW, et al. WHO-defined chronic neutrophilic leukemia: a long-term analysis of 12 cases and a critical review of the literature. Leukemia. 2005;19(2):313–7. doi: 10.1038/sj.leu.2403562Google Scholar
Plo, I, Zhang, Y, Le Couédic, JP, et al. An activating mutation in the CSF3R gene induces a hereditary chronic neutrophilia. J Exp Med. 2009;206(8):1701–7. doi: 10.1084/jem.20090693CrossRefGoogle ScholarPubMed
Duployez, N, Willekens, C, Plo, I, et al. Inherited transmission of the CSF3R T618I mutational hotspot in familial chronic neutrophilic leukemia. Blood. 2019;134(26):2414–6. doi: 10.1182/blood.2019003206Google Scholar
Maxson, JE, Gotlib, J, Pollyea, DA, et al. Oncogenic CSF3R mutations in chronic neutrophilic leukemia and atypical CML. N Engl J Med. 2013;368(19):1781–90. doi: 10.1056/NEJMoa1214514Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×