Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-23T02:29:46.289Z Has data issue: false hasContentIssue false

Chapter 10 - Juvenile Myelomonocytic Leukemia (JMML)

from Section IV - Neoplastic Disorders of Bone Marrow

Published online by Cambridge University Press:  25 January 2024

Xiayuan Liang
Affiliation:
Children’s Hospital of Colorado
Bradford Siegele
Affiliation:
Children’s Hospital of Colorado
Jennifer Picarsic
Affiliation:
Cincinnati Childrens Hospital Medicine Center
Get access

Summary

Juvenile myelomonocytic leukemia (JMML) is a clonal myelomonocytic neoplasm of childhood with prominent granulocytic and monocytic proliferation, characteristically driven by RAS-pathway gene mutations. (See Table 10.1.)

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2024

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Swerdlow, S, Campo, E, Harris, N, et al., eds. WHO classification of tumors of haematopoietic and lymphoid tissues. Rev. 4th ed. Lyon, France: IARC Press; 2017.Google Scholar
Chan, RJ, Cooper, T, Kratz, CP, et al. Juvenile myelomonocytic leukemia: a report from the 2nd International JMML Symposium. Leuk Res. 2009;33(3):355–62. doi: 10.1016/j.leukres.2008.08.022Google Scholar
Loh, ML, Sakai, DS, Flotho, C, et al. Mutations in CBL occur frequently in juvenile myelomonocytic leukemia. Blood. 2009;114(9):1859–63. doi: 10.1182/blood-2009-01-198416CrossRefGoogle ScholarPubMed
Niemeyer, CM, Arico, M, Basso, G, et al. Chronic myelomonocytic leukemia in childhood: a retrospective analysis of 110 cases. European Working Group on Myelodysplastic Syndromes in Childhood (EWOG-MDS). Blood. 1997;89(10):3534–43.Google Scholar
Luna-Fineman, S, Shannon, KM, Atwater, SK, et al. Myelodysplastic and myeloproliferative disorders of childhood: a study of 167 patients. Blood. 1999;93(2):459–66.Google Scholar
Gupta, AK, Meena, JP, Chopra, A, et al. Juvenile myelomonocytic leukemia – a comprehensive review and recent advances in management. Am J Blood Res. 2021;11(1):121.Google Scholar
Aricò, M, Biondi, A, Pui, CH. Juvenile myelomonocytic leukemia. Blood. 1997;90(2):479–88.Google Scholar
Aalbers, AM, van den Heuvel-Eibrink, MM, de Haas, V, et al. Applicability of a reproducible flow cytometry scoring system in the diagnosis of refractory cytopenia of childhood. Leukemia. 2013;27(9):1923–5. doi: 10.1038/leu.2013.81Google Scholar
Emanuel, PD, Bates, LJ, Zhu, SW, et al. The role of monocyte-derived hemopoietic growth factors in the regulation of myeloproliferation in juvenile chronic myelogenous leukemia. Exp Hematol. 1991;19(10):1017–24.Google Scholar
Loh, ML, Vattikuti, S, Schubbert, S, et al. Mutations in PTPN11 implicate the SHP-2 phosphatase in leukemogenesis. Blood. 2004;103(6):2325–31. doi: 10.1182/blood-2003-09-3287CrossRefGoogle ScholarPubMed
Stieglitz, E, Taylor-Weiner, AN, Chang, TY, et al. The genomic landscape of juvenile myelomonocytic leukemia. Nat Genet. 2015;47(11):1326–33. doi: 10.1038/ng.3400Google Scholar
Niemeyer, CM, Kang, MW, Shin, DH, et al. Germline CBL mutations cause developmental abnormalities and predispose to juvenile myelomonocytic leukemia. Nat Genet. 2010;42(9):794800. doi: 10.1038/ng.641Google Scholar
Tartaglia, M, Mehler, EL, Goldberg, R, et al. Mutations in PTPN11, encoding the protein tyrosine phosphatase SHP-2, cause Noonan syndrome. Nat Genet. 2001;29(4):465–8. doi: 10.1038/ng772Google Scholar
Tartaglia, M, Pennacchio, LA, Zhao, C, et al. Gain-of-function SOS1 mutations cause a distinctive form of Noonan syndrome. Nat Genet. 2007;39(1):75–9. doi: 10.1038/ng1939Google Scholar
Schubbert, S, Zenker, M, Rowe, SL, et al. Germline KRAS mutations cause Noonan syndrome. Nat Genet. Mar 2006;38(3):331–6. doi: 10.1038/ng1748Google Scholar
Pandit, B, Sarkozy, A, Pennacchio, LA, et al. Gain-of-function RAF1 mutations cause Noonan and LEOPARD syndromes with hypertrophic cardiomyopathy. Nat Genet. 2007;39(8):1007–12. doi: 10.1038/ng2073Google Scholar
Caye, A, Strullu, M, Guidez, F, et al. Juvenile myelomonocytic leukemia displays mutations in components of the RAS pathway and the PRC2 network. Nat Genet. 2015;47(11):1334–40. doi: 10.1038/ng.3420Google Scholar
Sakaguchi, H, Okuno, Y, Muramatsu, H, et al. Exome sequencing identifies secondary mutations of SETBP1 and JAK3 in juvenile myelomonocytic leukemia. Nat Genet. 2013;45(8):937–41. doi: 10.1038/ng.2698Google Scholar
Nucera, S, Fazio, G, Piazza, R, et al. Germ-line TP53 mutation in an adolescent with CMML/atypical CML and familiar cancer predisposition. Hemasphere. 2020;4(5):e460. doi: 10.1097/HS9.0000000000000460Google Scholar
Patnaik, MM, Tefferi, A. Chronic myelomonocytic leukemia: 2020 update on diagnosis, risk stratification and management. Am J Hematol. 2020;95(1):97115. doi: 10.1002/ajh.25684Google Scholar
Federmann, B, Abele, M, Rosero Cuesta, DS, et al. The detection of SRSF2 mutations in routinely processed bone marrow biopsies is useful in the diagnosis of chronic myelomonocytic leukemia. Hum Pathol. 2014;45(12):2471–9. doi: 10.1016/j.humpath.2014.08.014Google Scholar
Meggendorfer, M, Roller, A, Haferlach, T, et al. SRSF2 mutations in 275 cases with chronic myelomonocytic leukemia (CMML). Blood. 2012;120(15):3080–8. doi: 10.1182/blood-2012-01-404863Google Scholar
Patnaik, MM, Itzykson, R, Lasho, TL, et al. ASXL1 and SETBP1 mutations and their prognostic contribution in chronic myelomonocytic leukemia: a two-center study of 466 patients. Leukemia. 2014;28(11):2206–12. doi: 10.1038/leu.2014.125Google Scholar
Breccia, M, Biondo, F, Latagliata, R, et al. Identification of risk factors in atypical chronic myeloid leukemia. Haematologica. 2006;91(11):1566–8.Google Scholar
Wang, SA, Hasserjian, RP, Fox, PS, et al. Atypical chronic myeloid leukemia is clinically distinct from unclassifiable myelodysplastic/myeloproliferative neoplasms. Blood. 2014;123(17):2645–51. doi: 10.1182/blood-2014-02-553800Google Scholar
Melo, JV, Myint, H, Galton, DA, et al. P190BCR-ABL chronic myeloid leukaemia: the missing link with chronic myelomonocytic leukaemia? Leukemia. 1994;8(1):208–11.Google Scholar
Borkhardt, A, Bojesen, S, Haas, OA, et al. The human GRAF gene is fused to MLL in a unique t(5;11)(q31;q23) and both alleles are disrupted in three cases of myelodysplastic syndrome/acute myeloid leukemia with a deletion 5q. Proc Natl Acad Sci USA. 2000;97(16):9168–73. doi: 10.1073/pnas.150079597Google Scholar
Janik-Moszant, A, Barć-Czarnecka, M, van der Burg, M, et al. Concomitant EBV-related B-cell proliferation and juvenile myelomonocytic leukemia in a 2-year-old child. Leuk Res. Jan 2008;32(1):181–4. doi: 10.1016/j.leukres.2007.05.017Google Scholar
Lorenzana, A, Lyons, H, Sawaf, H, et al. Human herpesvirus 6 infection mimicking juvenile myelomonocytic leukemia in an infant. J Pediatr Hematol Oncol. 2002;24(2):136–41. doi: 10.1097/00043426-200202000-00016Google Scholar
Strauss, A, Furlan, I, Steinmann, S, et al. Unmistakable morphology? Infantile malignant osteopetrosis resembling juvenile myelomonocytic leukemia in infants. J Pediatr. 2015;167(2):486–8. doi: 10.1016/j.jpeds.2015.04.064Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×