Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-05T22:33:16.599Z Has data issue: false hasContentIssue false

15 - Intrapartum and neonatal death

Published online by Cambridge University Press:  05 September 2014

Irene Scheimberg
Affiliation:
Barts and the London NHS Trust, London, UK
Susan Arbuckle
Affiliation:
The Children’s Hospital at Westmead, Sydney
Samantha Holden
Affiliation:
Southampton General Hospital
Marta C. Cohen
Affiliation:
Sheffield Children’s Hospital
Irene Scheimberg
Affiliation:
Barts and the London NHS Trust, London
Get access

Summary

Introduction

Neonatal deaths may occur as complications of labor (intrapartum asphyxia and/or trauma), neonatal infections (congenital or acquired after birth), complications of prematurity, lethal congenital abnormalities, metabolic diseases, etc. In this chapter we will focus on intrapartum asphyxia and trauma and neonatal infections. For other conditions, refer to the appropriate chapters.

Intrapartum death is the death of an infant once labor has started. This includes a stillborn infant whose death occurs while the mother is undergoing monitoring in labor [1–3]. Generally this is a fresh stillborn infant with no evidence of maceration [4], indicating death within 12 hours of delivery. Intrapartum deaths are rare in Western societies, reflecting the quality and availability of intrapartum care [1,4–6] and are considered potentially preventable [5]. The global annual number is estimated to be in the region of one million [7], although the rate of intrapartum death varies according to the socioeconomic status of the country; in Westernized societies the rate is much lower than poorer countries. In high-income countries, the proportion of intrapartum stillbirths to all stillbirths is under 10%; in low- and middle-income countries it may be as high as one-third [3]. The rates are likely to be affected by confounding factors – for example, if a mother undergoes a long labor exceeding 12 hours with fetal demise early in this labor, the stillborn infant will show signs of maceration and the death may not be included in the intrapartum death category [7].

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Walsh, C. A., McMenamin, M. B., Foley, M. E., et al. Trends in intrapartum fetal death, 1979–2003. Am J Obstet Gynecol 2008; 198: 47e1–e7.CrossRefGoogle ScholarPubMed
Burke, C. J. and Tannenbert, A. E. T.. Intrapartum stillbirths in hospital unrelated to uteroplacental vascular insufficiency. Ped Develop Pathol 2007; 10: 35–40.CrossRefGoogle ScholarPubMed
Darmstadt, G. L., Yakoob, M. Y., Haws, R. A., et al. Reducing stillbirths: interventions during labor. BMC Pregnancy Childbirth 2009; 9(Supp 1): 56.CrossRefGoogle Scholar
Lawn, J. E., Yakoob, M. Y., Haws, R. A., et al. 3.2 million stillbirths: epidemiology and overview of the evidence review. BMC Pregnancy Childbirth 2009; 9(Suppl 1): S2.CrossRefGoogle ScholarPubMed
Becher, J. C., Bell, J. E., Keeling, J. W., McIntosh, N., and Wyatt, B.. The Scottish perinatal neuropathology study: clinicopathological correlation in early neonatal deaths. Arch Dis Child Fetal Neonatal Ed 2004; 89: F399–407.CrossRefGoogle ScholarPubMed
Brailovschi, Y., Sheiner, E., Wiznitzer, A., Shahaf, P., and Levy, A.. Risk factors for intrapartum fetal death and trends over the years. Arch Gynecol Obstet 2012; 285: 323–9.CrossRefGoogle ScholarPubMed
Lawn, J., Shibuya, K., and Stein, C.. No cry at birth: global estimates of intrapartum stillbirths and intrapartum-related neonatal deaths. Bull WHO 2005; 83(6): 409–17.Google ScholarPubMed
Low, J. A.. Intrapartum fetal asphyxia: definition, diagnosis and classification. Am J Obstet Gynaecoly 1997; 176: 957–9.CrossRefGoogle ScholarPubMed
Bax, N. B.. Birth asphyxia: a statement. Develop Med Child Neurol 1993; 35: 1022–4.CrossRefGoogle ScholarPubMed
Pasupathy, D., Wood, A. M., Pell, J. P., Fleming, M., and Smith, G. C. S.. Advanced maternal age and the risk of perinatal death due to intrapartum anoxia at term. J Epidemiol Community Health 2011; 65: 241–5.CrossRefGoogle ScholarPubMed
Low, J. A., Panagiotopoulos, C., and Derrick, E. J.. Newborn complications after intrapartum asphyxia with metabolic acidosis in the term fetus. Am J Obstetr Gynecol 1994; 170: 1081–7.CrossRefGoogle ScholarPubMed
Steer, P. J., Eigbe, F., Lissauer, T. J., and Beard, R. W.. Interrelationships among abnormal cardiotocograms in labor, meconium staining of the amniotic fluid, arterial cord blood pH, and Apgar scores. Obstet Gynecol 1989; 74: 715–21.Google ScholarPubMed
National Institute for Clinical Excellence. Clinical Guideline 55. The Use of Electronic Fetal Monitoring. 2001. London, NICE.Google Scholar
Chandraharan, E. and Arulhumaran, S.. Prevention of birth asphyxia: responding appropriately to cardiotocograph (CTG) traces. Best Pract Res Clin Obstet Gynaecol 2007; 21: 609–24.CrossRefGoogle ScholarPubMed
Yeh, P., Emary, K., and Impey, L.. The relationship between umbilical cord arterial pH and serious adverse neonatal outcome: analysis of 51 519 consecutive validated samples. BJOG 2012; 119: 824–31.CrossRefGoogle ScholarPubMed
Perlman, J. M.. Interruption of placental blood flow during labor: potential systemic and cerebral organ consequences. J Pediatr 2011; 158: e1–4.CrossRefGoogle ScholarPubMed
Winkler, C. L., Hauth, J. C., Tucker, J. M., Owen, J., and Brumfield, C. G.. Neonatal complications at term as related to the degree of umbilical artery acidemia. Am J Obstet Gynecol 1991; 164: 637–41.CrossRefGoogle ScholarPubMed
Leuthner, S. R. and Das, U. G.. Low Apgar scores and the definition of birth asphyxia. Pediatr Clin of North Am 2004; 51: 737–48.CrossRefGoogle ScholarPubMed
Jensen, A., Garnier, Y., and Berger, R.. Dynamics of fetal circulatory responses to hypoxia and asphyxia. Eur J Obstet Gynaecol Reprod Biol 1999; 84: 155–72.CrossRefGoogle ScholarPubMed
Ball, R. H., Espinoza, M. I., Parer, J., et al. Regional blood flow in asphyxiated fetuses with seizures. Am J Obstet Gynecol 1994; 170: 156–61.CrossRefGoogle ScholarPubMed
Jensen, A., Garnier, Y., Middelanis, J., and Berger, R.. Perinatal brain damage: from pathophysiology to prevention. Eur J Obstet Gynaecol Reprod Biol 2003; 110: S70–9.CrossRefGoogle ScholarPubMed
Squier, W. and Cowan, F. M.. The value of autopsy in determining the cause of failure to respond to resuscitation at birth. Semin Neonatol 2004; 9: 331–45.CrossRefGoogle ScholarPubMed
Leone, T. A. and Finer, N. N.. Shock: a common consequence of neonatal asphyxia. J Pediatr 2011; 158: e1–9.CrossRefGoogle ScholarPubMed
Lapointe, A. and Barrington, K. J.. Pulmonary hypertension and the asphyxiated newborn. J Pediatr 2011; 158: e19–24.CrossRefGoogle ScholarPubMed
Altshuler, G.. Placental insights into neurodevelopmental and other childhood diseases. Semin Pediatr Neurol 1995; 2: 90–9.CrossRefGoogle ScholarPubMed
Pinar, H.. Postmortem findings in term neonates. Semin Neonatol 2004; 9: 289–302.CrossRefGoogle ScholarPubMed
MacDonald, D.. Asphyxia. Baillieres Clin Obstet Gynecol 1995; 9: 579–94.Google Scholar
Muraskas, J. K. and Morrison, J. C.. A proposed evidence-based neonatal work-up to confirm or refute allegations of intrapartum asphyxia. Obstet Gynecol 2010; 116: 261–8.CrossRefGoogle ScholarPubMed
Olesen, A. W., Westergaard, J. G., and Olesen, J.. Perinatal and maternal complications related to postterm delivery: a national register-based study, 1978–1993. Am J Obstet Gynecol 2003; 189: 222–7.CrossRefGoogle ScholarPubMed
Schmidt, W. A., Affleck, J. A., and Jacobson, S.-L.. Fatal fetal hemorrhage and placental pathology: report of three cases and a new setting. Placenta 2005; 26: 419–31.CrossRefGoogle Scholar
Wintermark, P., Boyd, T., Gregas, M. C., Labrecque, M., and Hansen, A.. Placental pathology in asphyxiated newborns meeting the criteria for therapeutic hypothermia. Am J Obstet Gynecol 2010; 203: 579e1–9.CrossRefGoogle ScholarPubMed
Scheimberg, I., Cohen, M. C., Zapata Vazquez, R. E., et al. Non-traumatic intradural and subdural hemorrhage and hypoxic ischaemic encephalopathy in fetuses, infants and children up to 3 years of age. Analysis of two audits of 636 cases from two referral centers in the UK. Pediatr Develop Pathol 2013; 16(3): 149–59.CrossRefGoogle Scholar
van Baarlen, J., Schuurman, H. J., and Huber, J.. Acute thymus involution in infancy and childhood: a reliable marker for duration of acute illness. Human Pathol 1988; 19: 1155–60.CrossRefGoogle ScholarPubMed
Peres, L. C., Sethutaman, C., Al-Adnani, M., and Cohen, M. C.. Necrotic epithelial cells in proximal renal tubules of 2nd trimester foetuses: is this “acute tubular necrosis?”Int J Clin Exp Pathol 2012; 5(4): 326–30.Google Scholar
Hughes, L. A., May, K., Talbot, J. F., and Parsons, A.. Incidence, distribution and duration of birth-related retinal hemorrhages: a prospective study. J AAPOS 2006; 10(2): 102–6.CrossRefGoogle ScholarPubMed
Hughes, C. A., Harley, E. H., Milmoe, G., Bala, R., and Martorella, A.. Birth trauma in the head and neck. Arch Otolaryngol Head Neck Surg 1999; 125: 193–9.CrossRefGoogle ScholarPubMed
Hankins, G. D. V., Clark, S. M., and Munn, M. B.. Cesarean section on request at 39 weeks: impact on shoulder dystocia, fetal trauma, neonatal encephalopathy, and intrauterine fetal demise. Semin Perinatol 2006; 30: 276–87.CrossRefGoogle ScholarPubMed
Wigglesworth, J. S. and Husemeyer, R. P.. Intracranial birth trauma in vaginal breech delivery: the continued importance of injury to the occipital bone. BJOG 1977; 84: 684–91.CrossRefGoogle ScholarPubMed
Rookes, V. J., Eaton, J. P., Ruess, L., et al. Prevalence and evolution of intracranial haemorrhage in asymptomatic term infants. Am J Neurioradiol 2008; 29(6): 1082–9.CrossRefGoogle Scholar
Dixit, S., Jain, A., Data, S., and Sinha, N.. Occipital osteodiastasis. Indian Pediatr 2010; 47: 440–2.CrossRefGoogle ScholarPubMed
Towbin, A.. Latent spinal cord and brain stem injury in newborn infants. Dev Med Child Neurol 1969; 11: 54–68.CrossRefGoogle ScholarPubMed
Cox, P., Silvestri, E., Lazda, E., et al. Embolism of brain tissue in intrapartum and early neonatal deaths: report of 9 cases. Pediatr Develop Pathol 2009; 12: 464–8.CrossRefGoogle ScholarPubMed
Hensinger, R. N. and Jones, E. T.. Developmental orthopaedics. II: the spine, trauma and infection. Dev Med Child Neurol 1982; 24: 202–18.CrossRefGoogle ScholarPubMed
Morgan, C. and Newall, S. J.. Cervical spinal cord injury following cephalic presentation and delivery by caesarean section. Dev Med Child Neurol 2001; 43: 274–6.CrossRefGoogle ScholarPubMed
Yates, P. O.. Birth trauma to the vertebral arteries. Arch Dis Child 1959; 34: 436–41.CrossRefGoogle ScholarPubMed
Stanley, P., Duncan, A. W., Isaacson, J., and Isaacson, A. S.. Radiology of fracture-dislocation of the cervical spine during delivery. Am J Roent 1985; 145: 621–5.CrossRefGoogle ScholarPubMed
McLain, R. F., Clark, C. R., and El-Koury, G. Y.. C6–7 dislocation in a neurologically intact neonate; a case report. Spine 1989; 14: 125–7.CrossRefGoogle Scholar
Walsh, J. M., Kandamany, N., Shuibhne, N. N., et al. Neonatal brachial plexus injury: comparison of incidence and antecedents between 2 decades. Am J Obstet Gynecol 2011; 204: e1–6.Google ScholarPubMed
van Rijn, R. R., Bilo, R. A. C., and Robben, S. G. F.. Birth-related mid-posterior rib fractures in neonates: a report of three cases (and a possible fourth case) and a review of the literature. Pediatr Radiol 2009; 39: 30–4.CrossRefGoogle Scholar
Ralis, Z. A.. Birth trauma to muscles in babies born by breech delivery and its possible fatal consequences. Arch Dis Child 1975; 50: 4–13.CrossRefGoogle ScholarPubMed
Klinger, G., Levy, I., Sirota, L., et al. Outcome of early-onset sepsis in a national cohort of very low birth weight infants. Pediatrics 2010; 125(4): e736–40.CrossRefGoogle Scholar
Castagnini, L. A. and Munoz, F. M.. Clinical characteristics and outcomes of neonatal pertussis: a comparative study. J Pediatr 2010; 156(3): 498–500.CrossRefGoogle ScholarPubMed
Lewis, D. B. and Wilson, C. B.. Developmental immunology and role of host defences in fetal and neonatal susceptibility to infection. In Remington, J., Klein, J., Wilson, C. and Baker, C., eds., Infectious Diseases of the Fetus and the Newborn Infant. 6th edition. Philadelphia, PA, Elsevier Saunders, 2006, 87–210.CrossRefGoogle Scholar
Boyle, J. D. and Boyle, E. M.. Born just a few weeks early: does it matter?Arch Dis Child Fetal Neonatal Ed 2013; 98(1): F85–8.CrossRefGoogle ScholarPubMed
Gordon, A., Lahra, M., Raynes-Greenow, C., and Jeffery, H.. Histological chorioamnionitis is increased at extremes of gestation in stillbirth: a population-based study. Infect Dis Obst Gynecol 2011; .CrossRefGoogle ScholarPubMed
Soper, D. E., Mayhall, C. G., and Dalton, H. P.. Risk factors for intraamniotic infection: a prospective epidemiologic study. Am J Obstet Gynecol 1989; 161(3): 562–6.CrossRefGoogle ScholarPubMed
Cheung, G. Y. and Otto, M.. Understanding the significance of Staphylococcus epidermidis bacteremia in babies and children. Curr Opin Infect Dis 2010; 23(3): 208–16CrossRefGoogle ScholarPubMed
Vergnano, S., Menson, E., Kennea, N., et al. Neonatal infections in England: the NeonIN surveillance network. Arch Dis Child Fetal Neonatal Ed 2011; 96(1): F9–14.CrossRefGoogle ScholarPubMed
Kallapur, S. G., Kramer, B. W., and Jobe, A. H.. Ureaplasma and BPD. Semin Perinatol 2013; 37(2): 94–101.CrossRefGoogle ScholarPubMed
Kumar, S., Maria, A., Saigal, S. R., and Maheshwari, M.. Mycoplasma pneumoniae as a cause of non-resolving pneumonia in a neonate. J Med Microbiol 2010; 59(Pt 6): 731–2.CrossRefGoogle Scholar
Alam, M. A., Ali, N. A., Sultana, N., et al. Newborn umbilical cord and skin care in Sylhet District, Bangladesh: implications for the promotion of umbilical cord cleansing with topical chlorhexidine. J Perinatol 2008; 28(Suppl 2): S61–8.CrossRefGoogle ScholarPubMed
Greenhow, T. L., Hung, Y. Y., and Herz, A. M.. Changing epidemiology of bacteremia in infants aged 1 week to 3 months. Pediatrics. 2012; 129(3): e590–6.CrossRefGoogle ScholarPubMed
Stover, B. H., Shulman, S. T., Bratcher, D. F., et al. Nosocomial infection rates in US children’s hospitals’ neonatal and pediatric intensive care units. Am J Infect Control 2001; 29(3): 152–7.CrossRefGoogle ScholarPubMed
Yalaz, M., Altun-Köroğlu, O., Ulusoy, B., et al. Evaluation of device-associated infections in a neonatal intensive care unit. Turk J Pediatr. 2012; 54(2): 128–35.Google Scholar
Paddock, C. D., Sanden, G. N., Cherry, J. D., et al. Pathology and pathogenesis of fatal Bordetella pertussis infection in infants. Clin Infect Dis 2008; 47(3): 328–38.CrossRefGoogle ScholarPubMed
Baltimore, R. S., Huie, S. M., Meek, J. I., Schuchat, A., and O’Brien, K. L.. Early-onset neonatal sepsis in the era of group B streptococcal prevention. Pediatrics. 2001; 108(5): 1094–8.CrossRefGoogle ScholarPubMed
Centers for Diseases Control and Prevention. Increased detections and severe neonatal disease associated with coxsackievirus B1 infection: United States 2007. MMWR Morb Mortal Wkly Rep 2008; 23(20): 553–6.Google Scholar
Trincado, D. and Eawlinson, W. D.. Congenital and perinatal infection with cytomegalovirus. J Paediatr Child Health 2001; 37: 187–92.CrossRefGoogle ScholarPubMed
Enright, A. M. and Prober, C. G.. Neonatal herpes infection: diagnosis, treatment and prevention. Semin Neonatol 2002; 7: 283–91.CrossRefGoogle Scholar
Whitley, R. J., Corey, L., Arvin, A., et al. Changing presentation of herpes simplex virus infection in neonates. J Infect Dis. 1988; 158(1): 109–16.CrossRefGoogle ScholarPubMed
Panella, M.. Disseminated neonatal herpetic infection simulating abusive anal trauma. J Forensic Sci. 2011; 56(4): 1058–61.CrossRefGoogle ScholarPubMed
Singer, D. B.. Pathology of neonatal herpes simplex virus infection. Persp Pediatr Pathol 1981; 6: 243–78.Google ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×