Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2025-01-05T15:33:24.719Z Has data issue: false hasContentIssue false

Chapter 9 - Vascular and perivascular tumors, and tumor-like conditions

Published online by Cambridge University Press:  05 July 2016

Ophelia E. Dadzie
Affiliation:
Hillingdon Hospitals NHS Foundation Trust
Meera Mahalingam
Affiliation:
VA Consolidated Laboratories, New England
Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Primary Sources

International Society for the Study of Vascular Anomalies classification for vascular anomalies. http://issva.org/classification (accessed 14 December 2014)Google Scholar
Miettinen, M., Lindenmayer, A.E., and Chaubal, A. (1994). Endothelial cell markers CD31, CD34, and BNH9 antibody to H- and Y-antigens – evaluation of their specificity and sensitivity in the diagnosis of vascular tumors and comparison with von Willebrand factor. Mod Pathol, 7, 8290Google Scholar
DeYoung, B.R., Swanson, P.E., Argenyi, Z.B., et al. (1995). CD31 immunoreactivity in mesenchymal neoplasms of the skin and subcutis: report of 145 cases and review of putative immunohistologic markers of endothelial differentiation. J Cutan Pathol, 22, 215–22Google Scholar
McKenney, J.K., Weiss, S.W., and Folpe, A.L. (2001).CD31 expression in intratumoral macrophages: a potential diagnostic pitfall. Am J Surg Pathol, 25, 1167–73CrossRefGoogle ScholarPubMed
Thum, C., Husain, E.A., Mulholland, K., et al. (2013). Atypical fibroxanthoma with pseudoangiomatous features: a histologic and immunohistochemical mimic of cutaneous angiosarcoma. Ann Diagn Pathol, 17, 502–7Google Scholar
Sapino, A., Bongiovanni, M., Cassoni, P., et al. (2001). Expression of CD31 by cells of extensive ductal in situ and invasive carcinomas of the breast. J Pathol, 194, 254–61Google Scholar
Manner, J., Radlwimmer, B., Hohenberger, P., et al. (2010). MYC high level gene amplification is a distinctive feature of angiosarcomas after irradiation or chronic lymphedema. Am J Pathol, 176, 34–9CrossRefGoogle ScholarPubMed
Fernandez, A.P., Sun, Y., Tubbs, R.R., et al. (2012). FISH for MYC amplification and anti-MYC immunohistochemistry: useful diagnostic tools in the assessment of secondary angiosarcoma and atypical vascular proliferations. J Cutan Pathol, 39, 234–42CrossRefGoogle ScholarPubMed
Mentzel, T., Schildhause, H.U., Palmedo, G., et al. (2012). Postradiation cutaneous angiosarcoma after treatment of breast carcinoma is characterized by MYC amplification on contrast to atypical vascular lesions after radiotherapy and control cases: clinicopathological, immunohistochemical and molecular analysis of 66 cases. Mod Pathol, 25, 7585Google Scholar
Kahn, H.J., Bailey, D., and Marks, A. (2002). Monoclonal antibody D2–40, a new marker of lymphatic endothelium reacts with Kaposi's sarcoma and a subset of angiosarcoma. Mod Pathol, 15, 434–40Google Scholar
Miettinen, M., Wang, Z.F., Paetau, A., et al. (2011). ERG transcription factor as an immunohistochemical marker for vascular endothelial tumors and prostatic carcinoma. Am J Surg Pathol, 35, 432–44Google Scholar
Miettinen, M., Wang, Z., Sarlomo-Rikala, M., et al. (2013). ERG expression in epithelioid sarcoma: a diagnostic pitfall. Am J Surg Pathol; 37 (10), 1580–5.Google Scholar
Folpe, A.L., Chand, E.M., Goldblum, J.R., et al. (2001). Fli-1, a nuclear transcription factor, distinguishes vascular neoplasms from potential mimics. Am J Surg Pathol, 25, 1061–6.Google Scholar
Rossi, S., Orvieto, E., Furlanetta, A., et al. (2004). Utility of the immunohistochemical detection of FLI-1 expression in round cell and vascular neoplasm using a monoclonal antibody. Mod Pathol, 17, 547–52Google Scholar
North, P.E., Waner, M., Mizeracki, A., et al. (2000). GLUT1: a newly discovered immunohistochemical marker for juvenile hemangiomas. Hum Pathol, 31, 1122Google Scholar
Banerji, S., Ni, J., Wang, S.X., et al. (1999). LYVE-1 a new homologue of the CD44 glycoprotein, is a lymph-specific receptor for hyaluronan. J Cell Biol, 144, 789801Google Scholar
Paipainen, A., Korhonen, J., Mustonen, T., et al. ( 1995). Expression of the fms-like tyrosine kinase 4 gene becomes restricted to lymphatic endothelium during development. Proc Natl Acad Sci USA, 92, 3566–70Google Scholar
Folpe, A.L., Veikkola, T., Valtola, R., et al. (2000). Vascular endothelial growth factor receptor-3 (VEGFR-3): a marker of vascular tumors with presumed lymphatic differentiation, including Kaposi's sarcoma, kaposiform and Dabska-type hemangioendotheliomas, and a subset of angiosarcomas. Mod Pathol, 13 (2), 180–5Google Scholar
Lawley, L.P., Cerimele, F., Weiss, S.W., et al. (2005). Expression of Wilms tumor 1 gene distinguishes vascular malformations from proliferative endothelial lesions. Arch Dermatol, 141, 1297–300Google Scholar
Al Dhaybi, R., Powell, J., McCuaig, C., et al. (2010). Differentiation of vascular tumors from vascular malformations by expression of Wilms tumor 1 gene: evaluation of 126 cases. J Am Acad Dermatol, 63, 1052–7Google Scholar

Secondary Sources

Requena, L., Kutzner, H., and Mentzel, T. (2000). Acquired elastotic hemangioma: A clinicopathologic variant of hemangioma. J Am Acad Dermatol, 47, 371–6Google Scholar
Martorell-Calatayud, A., Balmer, N., Sanmartin, O., et al (2010). Definition of the features of acquired elastotic hemangioma, reporting the clinical and histopathologic characteristics of 14 patients. J Cutan Pathol, 37, 460–4Google Scholar
Tong, P.L., and Beer, T.W. Acquired elastotic hemangioma: ten cases with immunohistochemistry refuting a lymphatic origin in most lesions (2010). J Cutan Pathol, 37, 1259–60Google Scholar
Zampetti, A., Orteu, CH., Antuzzi, D., et al (2012). Angiokeratoma: decision-making aid for the diagnosis of Fabry disease. Br J Dermatol, 166, 712–20CrossRefGoogle ScholarPubMed
Nakamura, T., Kaneko, H., and Nishino, I. (1976). Angiokeratoma corporis diffusum (Fabry's disease): a lysosomal disease. Arch Dermatol, 112, 1416–23Google Scholar
Trindade, F., Torrelo, A., Kutzner, H., et al (2014). An immunohistochemical study of angiokeratomas of children. Am J Dermatopathol, 10, 796–9Google Scholar
Wang, L., Yuan, W., Geng, S., et al (2014). Expression of lymphatic markers in angiokeratomas. J Cutan Pathol, 41, 576–81Google Scholar
Enzinger, F.M., and Weiss, S.W. (1988). Soft tissue tumors. 2nd ed. St. Louis: The C.V. Mosby Company.Google Scholar
Girard, C., Graham, J.H., Johnson, W.C. (1974). Arteriovenous hemangioma (arteriovenous shunt): A clinicopathologic and histochemical study. J Cutan Pathol, 1, 73CrossRefGoogle ScholarPubMed
Connelly, M.G., and Wingelmann, R.K. (1985). Acral arteriovenous tumor. A clinicopathologic review. Am J Surg Pathol, 9, 1521Google Scholar
Koutlas, I.G., and Jessurum, J. (1994). Arteriovenous hemangioma: a clinicopathologic and immunohistochemical study. J Cutan Pathol, 21, 343–9Google Scholar
Kanitakis, J., Roger, H., Soubrier, M., et al. (1988). Cutaneous angiomas in POEMS syndrome. An ultrastructural and immunohistochemical study. Arch Dermatol, 124, 695–8Google Scholar
Hogarth, V., Dhoat, S., Mehta, A.B., and Orteu, C.H. (2011). Late-onset Fabry disease associated with angiokeratoma of Fordyce and multiple cherry angiomas. Clin Exp Dermatol, 36, 506–8Google Scholar
Fajgenbaum, D.C., Rosenbach, M., and can Rhee, F., et al. (2013). Eruptive cherry hemangiomatosis associated with multicentric Castleman disease: a case report and diagnostic clue. JAMA Dermatol, 149, 204–8Google Scholar
Graham, J.S., and Schoneboom, B.A. (2013). Historical perspective on effects and treatment of sulfur mustard injuries. Chem Biol Interact, 206, 512–22CrossRefGoogle ScholarPubMed
Goh, S.G., and Calonje, E. (2008). Cutaneous vascular tumors: an update. Histopathology, 52, 661–73Google Scholar
Gupta, A., and Kozakewich, H. (2011). Histopathology of vascular anomalies. Clin Plast Surg, 38, 3144CrossRefGoogle ScholarPubMed
Aboutalebi, A., Jessup, C.J., North, P.E., et al. (2012). Histopathology of vascular anomalies. Facial Plast Surg, 28, 545–53Google Scholar
Lee, P.W., Frieden, I.J., Streicher, J.L., et al. (2014). Characteristics of non-involuting congenital hemangioma: a retrospective review. J Am Acad Dermatol, 70, 899903Google Scholar
North, P.E., Waner, M., James, C.A., et al. (2001). Congenital non-progressive hemangioma: a distinct clinicopathologic entity unlike infantile hemangioma. Arch Dermatol, 137, 1607–20Google Scholar
Nasseri, E., Piram, M., McCuaid, C.C., et al. (2014). Partially involuting congenital hemangiomas: a report of 8 cases and review of the literature. J Am Acad Dermatol, 70, 75–9Google Scholar
Picardo, A., Boscolo, E., Khan, Z.A., et al. (2008). IGF-2 and FLT-1/VEGF-R1 mRNA levels reveal distinctions and similarities between congenital and common infantile hemangioma. Pediatr Res, 63, 263–7Google Scholar
Brenn, T., and Fletcher, C.D. (2004). Cutaneous epithelioid angiomatous nodule: a distinct lesion in the morphologic spectrum of epithelioid vascular tumors. Am J Dermatopathol, 26, 1421CrossRefGoogle ScholarPubMed
Zamecnik, M. (2004). Relationship between cutaneous epithelioid angiomatous nodule and epithelioid hemangioma. Am J Dermatopathol, 26, 351-2Google Scholar
Sangueza, O., Walsh, S.N., Sheehan, D.J., et al. (2008). Cutaneous epithelioid angiomatous nodule: a case series and proposed classification. Am J Dermatopathol, 30, 1620Google Scholar
Leroy, X., Mortuaire, G., Chevalier, D., et al. (2008). Epithelioid angiomatous nodule of the nasal cavity. Pathol Res Pract, 204, 929–32Google Scholar
Pavlidakey, P.G., Burroughs, C., Karrs, T., et al. (2011). Cutaneous epithelioid angiomatous nodule: a case with metachronous lesions. Am J Dermatopathol, 33, 831–4Google Scholar
Shiomi, T., Kaddu, S., Yoshida, Y., et al. (2011). Cutaneous epithelioid angiomatous nodule arising in capillary malformation. J Cutan Pathol, 38, 372–5Google Scholar
Kantrow, S., Martin, J.D., Vnencak-Jones, C.L., et al. (2007). Cutaneous epithelioid angiomatous nodule: report of a case and absence of microsatellite instability. J Cutan Pathol, 34, 515–16Google Scholar
Fernandez-Flores, A. (2008). D2–40 and cutaneous epithelioid angiomatous nodule. Am J Dermatopathol, 30, 302-4Google Scholar
McLemore, M.S., Huo, L., Deavers, M.T., et al. (2011). Cutaneous epithelioid angiomatous nodule of the chest wall with expression of estrogen receptor: a mimic of carcinoma and a potential diagnostic pitfall. J Cutan Pathol, 38, 818–22Google Scholar
Wells, G.C., and Whimster, I.W. (1969). Subcutaneous angiolymphoid hyperplasia with eosinophilia. Br J Dermatol, 81, 114Google Scholar
Wilson Jones, E., and Bleehen, S.S. (1969). Inflammatory angiomatous nodules with abnormal blood vessels occurring about the ears and scalp (pseudo or atypical pyogenic granuloma). Br J Dermatol, 81, 804–16Google Scholar
Olsen, T.G., and Helwig, E.B. (1985). Angiolymphoid hyperplasia with eosinophilia. J Am Acad Dermatol, 12, 781–96Google Scholar
Zamecnik, M. (2004). Relationship between cutaneous epithelioid angiomatous nodule and epithelioid hemangioma. Am J Dermatopathol, 26, 351–2Google Scholar
Anthony, F.C., Miller, J.A., Calonje, E., et al. (2005). Epithelioid haemangioma in association with a deep arteriovenous malformation. Clin Exp Dermatol, 30, 238–40Google Scholar
Hashimoto, T., Takenouchi, T., Ito, M. et al. (1998). Angiolymphoid hyperplasia with eosinophilia presenting multinucleated cells in histology: an ultrastructual study. J Cutan Pathol, 25, 322–6Google Scholar
Koubaa, W., Verdier, M., Perez, M., and Wechsler, J. (2008). Intra-arterial angiolymphoid hyperplasia with eosinophilia. J Cutan Pathol, 35, 495–8Google Scholar
Morton, K., Robertson, A.J., and Hadden, W. (1987). Angiolymphoid hyperplasia with eosinophilia: report of a case arising from the radial artery. Histopathology, 11, 963–9Google Scholar
Chan, J.K., Hui, P.K., Ng, C.S., et al. (1989). Epithelioid haemangioma (angiolymphoid hyperplasia with eosinophilia) and Kimura's disease in Chinese. Histopathology, 15, 557–74Google Scholar
Chan, J.K.C., Fletcher, C.D.M., and Hicklin, G.A. (1990). Glomeruloid hemangioma. A distinctive cutaneous lesion of multicentric Castleman's disease associated with POEMS syndrome. Am J Surg Pathol, 14, 1036–46Google Scholar
Rongioletti, F., Gambina, C., and Lerza, R. (1994). Glomeruloid hemangioma: a cutaneous marker of POEMS syndrome. Am J Dermatopathol, 16, 175–8Google Scholar
Pina-Oviedo, S., Lopez-Patino, S., and Ortiz-Hidalgo, C. (2006). Glomeruloid hemangiomas localized to the skin of the trunk with no clinical features of POEMS syndrome. Int J Dermatol, 45, 1449–50Google Scholar
Velez, D., Delgado-Jimenez, Y., and Fraga, J. (2005). Solitary glomeruloid haemangioma without POEMS syndrome. J Cutan Pathol, 32, 449–52Google Scholar
Kishimoto, S., Takenaka, H., Shibagaki, R., et al. (2000). Glomeruloid hemangioma in POEMS syndrome shows two different immunophenotypic endothelial cells. J Cutan Pathol, 27, 8792Google Scholar
Dispenzieri, A., Kyle, R.A., Lacy, M.Q., et al. (2003). POEMS syndrome: definitions and long-term outcome. Blood, 101, 2496–506Google Scholar
Ishikawa, O., Nihei, Y., and Ishikawa, H. (1987). The skin changes of POEMS syndrome. Br J Dermatol, 117, 523–6Google Scholar
Puig, L., Moreno, A., Domingo, P., et al. (1985). Cutaneous angiomas in POEMS syndrome. J Am Acad Dermatol, 112, 961–4Google Scholar
LeBoit, P.E., Salomon, A.R., Santa Cruz, D.J., and Wick, M.R. (1992). Angiomatosis with luminal cryoprotein deposition. J Am Acad Dermatol, 27, 969–73Google Scholar
Yamamoto, T., and Yokozeki, H. (2007). Increased expression of vascular endothelial growth factor and its receptor Flt-1 in glomeruloid haemangioma associated with Crow-Fukase syndrome. J Eur Acad Dermatol Venereol, 21, 417–19Google Scholar
Naversen, D.N., Trask, D.M., Watson, F.H., and Burket, J.M.(1993). Painful tumors of the skin: “LEND AN EGG”. J Am Acad Dermatol, 28, 298300Google Scholar
Nuovo, M.A., Grimes, M.M., and Knowles, D.M.(1990). Glomus tumors: clinicopathologic and immunohistochemical analysis of forty cases. Surg Pathol, 3, 31Google Scholar
Mentzel, T., Hügel, H., and Kutzner, H.(2002). CD34-positive glomus tumor: clinicopathologic and immunohistochemical analysis of six cases with myxoid stromal changes. J Cutan Pathol, 29, 421–5Google Scholar
Vigovich, F.A., Hurt, M.A., and Santa Cruz, D.J. (2010). Sclerotic glomus tumor. Am J Dermatopathol, 32, 76–8Google Scholar
Folpe, A.L., Fanburg-Smith, J.C., Miettinen, M., and Weiss, S.W. (2001). Atypical and malignant glomus tumors: analysis of 52 cases, with a proposal for the reclassification of glomus tumors. Am J Surg Pathol, 25, 112Google Scholar
Acebo, E., Val-Bernal, J.F., and Arce, F. (1997). Giant intravenous glomus tumor. J Cutan Pathol, 24, 384–9Google Scholar
Calonje, E., and Fletcher, C.D.(1995). Cutaneous intraneural glomus tumor. Am J Dermatopathol, 17, 395–8Google Scholar
Pulitzer, D.R., Martin, P.C., and Reed, R.J. (1995). Epithelioid glomus tumor. Hum Pathol, 26, 1022–7Google Scholar
Slater, D.N., Cotton, D.W., and Azzopardi, J.G. (1987). Oncocytic glomus tumor: a new variant. Histopathology, 11, 523–31Google Scholar
Albrecht, S., and Zbiernowski, I. (1990). Incidental glomus coccygeum. When a normal structure looks like a tumor. Am J Surg Pathol, 14, 922–4Google Scholar
Santa Cruz, D.J., and Aronberg, J. (1988). Targetoid hemosiderotic hemangioma. J Am Acad Dermatol, 19, 550–8Google Scholar
Guillou, L., Calonje, E., Speight, P., et al. (1999). Hobnail hemangioma. A pseudomalignant vascular lesion with a reappraisal of targetoid hemosiderotic hemangioma. Am J Surg Pathol, 23, 97105Google Scholar
Mentzel, T., Partanen, T.A., and Kutzner, H. Hobnail hemangioma (“targetoid hemosiderotic hemangioma”): clinicopathologic and immunohistochemical analysis of 62 cases. (1999). J Cutan Pathol, 26, 279–86Google Scholar
Al Dhaybi, R., Lam, C., Hatami, A., et al. (2012). Targetoid hemosiderotic hemangiomas (hobnail hemangiomas) are vascular lymphatic malformations: a study of 12 pediatric cases. J Am Acad Dermatol, 66, 116–20Google Scholar
Chiller, K.G., Passarn, D., Frieden, L.L. (2002). Hemangiomas of infancy: clinical characteristics, morphologic subtypes, and their relationship to race, ethnicity, and sex. Arch Dermatol, 138, 1567–76Google Scholar
González-Crussi, F., and Reyes-Mugica, M. (1991). Cellular hemangiomas ‘hemangioendothelioma’ in infants. Light microscopic, immunohistochemical and ultrastructural observations. Am J Surg Pathol, 15, 769–78Google Scholar
Smoller, B.R., and Apfelberg, D.M. (1993). Infantile (juvenile) capillary hemangioma: a tumor of heterogenous cellular elements. J Cutan Pathol, 20, 330–6Google Scholar
Calonje, E., Mentzel, T., and Fletcher, C.D.M. (1995). Pseudomalignant perineural invasion in cellular (‘infantile’) capillary hemangiomas. Histopathology, 26, 159–64Google Scholar
North, P.E., Waner, M., Mizeracki, A., and Mihm, M.C. (2000). GLUT1: a newly discovered immunohistochemical marker for juvenile hemangiomas. Hum Pathol, 31, 1122Google Scholar
Clearkin, K.P., and Enzinger, F.M. (1976). Intravascular papillary endothelial hyperplasia. Arch Pathol Lab Med, 100, 441–4Google Scholar
Hashimoto, H., Daimaru, Y., and Enjoji, M. Intravascular papillary endothelial hyperplasia. A clinicopathologic study of 91 cases. Am J Dermatopathol, 5, 539–46Google Scholar
Harria, M.N., Desai, R., Chuang, T.Y., et al. (2000). Lobular capillary hemangiomas: An epidemiologic report, with emphasis on cutaneous lesions. J Am Acad Dermatol, 42, 1012–16Google Scholar
Cooper, P.H., McAllister, H.A., and Helwig, E.B. (1979). Intravenous pyogenic granuloma. Am J Surg Pathol, 3, 221–8Google Scholar
Fortna, R.R., and Junkins-Hopkins, J.M. (2007). A case of lobular capillary hemangioma (pyogenic granuloma), localized to the subcutaneous tissue, and a review of the literature. Am J Dermatopathol, 29, 408–11Google Scholar
Peachey, R.D., Lim, C.C., and Whimster, I.W. (1970). Lymphangioma of skin. A review of 65 cases. Br J Dermatol, 83, 519–27Google Scholar
Garzon, M.C., Huang, J.T., Enjolras, O., and Frieden, I.J. (2007). Vascular malformations: Part 1. J Am Acad Dermatol, 56, 353–70Google Scholar
Patel, G.A., and Schwartz, R.A. (2009). Cutaneous lymphangioma circumscriptum: frog spawn on the skin. Int J Dermatol, 48, 1290–5Google Scholar
Bhawan, J., Silva, C., and Taungjaruwinai, W.M. (2013). Inconsistent immunohistochemical expression of lymphatic and blood endothelial cell markers in cutaneous lymphangiomas. J Cutan Pathol, 40, 801–6Google Scholar
ISSVA classification for vascular anomalies. issva.org/classification. Accessed 1 February 2015Google Scholar
Requena, L., and Sangueza, O.P. (1997). Cutaneous vascular anomalies. Part 1. Hamartomas, malformations, and dilatation of pre-existing vessels. J Am Acad Dermatol, 37, 523–49Google Scholar
Gupta, A., and Kozakewich, H. (2011). Histopathology of vascular anomalies. Clin Plast Surg, 38, 3144Google Scholar
Boon, L.M., Mulliken, J.B., Enjolras, O., and Vikkula, M. (2004). Glomuvenous malformation (glomangioma) and venous malformation. Arch Dermatol, 140, 971–6Google Scholar
Boon, L.M., Mulliken, J.B., Enjolras, O., and Vikkula, M. (2004). Glomuvenous malformation (glomangioma) and venous malformation. Arch Dermatol, 140, 971–6Google Scholar
Brouillard, P., Boon, L.M., Revencu, N., et al; GVM Study Group. (2013). Genotypes and phenotypes of 162 families with a glomulin mutation. Mol Syndromol, 4, 157–64Google Scholar
ISSVA classification for vascular anomalies. issva.org/classification. Accessed 1 February 2015Google Scholar
Requena, L., and Sangueza, O.P. (1997). Cutaneous vascular anomalies. Part 1. Hamartomas, malformations, and dilatation of pre-existing vessels. J Am Acad Dermatol, 37, 523–49Google Scholar
Gupta, A., and Kozakewich, H. (2011). Histopathology of vascular anomalies. Clin Plast Surg, 38, 3144Google Scholar
Larralde, M., Abad, M.E., Luna, P.C., and Hoffner, M.V. (2014). Capillary-malformation-arteriovenous malformation: a clinical review of 45 patients. Int J Dermatol, 53, 458–61Google Scholar
Revencu, N., Boon, L.M., and Mendola, A. (2013). RASA1 mutations and associated phenotypes in 68 families with capillary malformation-arteriovenous malformation. Hum Mutat, 34, 1632–41Google Scholar
Salama, S.S. (2014). Cutaneous collagenous vasculopathy: a new case series with clinicopathologic and ultrstructural correlation, literature review and insight into pathogenesis. Am J Dermatopathol [Epub ahead of print].Google Scholar
Wilson Jones, E., Winkelmann, R.K., Zachary, C.B.,et al. (1990). Benign lymphangioendothelioma. J Am Acad Dermatol, 23, 229Google Scholar
Guillou, L., and Fletcher, C.D. (2000). Benign lymphangioendothelioma (acquired progressive lymphangioma): a lesion not to be confused with well-differentiated angiosarcoma and patch stage Kaposi's sarcoma: clinicopathologic analysis of a series. Am J Surg Pathol, 24, 1047–57Google Scholar
Recelles, J.M., Diaz, J.L., Angulo, J., et al. (2012). Giant benign lymphangioendothelioma. J Cutan Pathol, 39, 950–6Google Scholar
Wang, L., Chen, L., Yang, X., et al. (2013). Benign lymphangioendothelioma: a clinical, histopathologic and immunohistochemical analysis of four cases. J Cutan Pathol, 40, 945–9Google Scholar
Hunt, S.J., Santa Cruz, D.J., and Barr, R.J. (1991).Microvenular hemangioma. J Cutan Pathol, 18, 235–40Google Scholar
Bantel, E., Grosshans, E., and Ortonne, J.P. (1989). Understanding microcapillary angioma, observations in pregnant patients and in females treated with hormonal contraceptives. Z Hautkr, 64, 1071–4.Google Scholar
Aloi, F., Tomasini, C., and Pippione, M. Microvenular hemangioma. (1993). Am J Dermatopathol, 15, 534–8Google Scholar
Ai, D.F., Li, Y., and Li, P. (2014). Multiple microvenular hemangiona: A case report. Oncol Lett, 7, 275–7Google Scholar
Xu, X.L., Xu, C.R., Chen, H., et al. (2010). Eruptive microvenular hemangiomas in 4 Chinese patients: clinicopathologic correlation and review of the literature. Am J Dermatopathol, 32, 837–40Google Scholar
Rikihisa, W., Yamamoto, O., Kohda, F., et al. (1999). Microvenular haemangioma in a patient with Wiskott‐Aldrich syndrome. Br J Dermatol, 141, 752–4Google Scholar
Chang, S.E., Roh, K.H., Lee, M.W., et al. (2003). Microvenular hemangioma in a boy with acute myelogenous leukemia. Pediatr Dermatol, 20, 266–7Google Scholar
Trindade, F., Kutzner, H., Requena, L., et al. (2012). Microvenular hemangioma-an immunohistochemical study of 9 cases. Am J Dermatopathol, 34, 810–12Google Scholar
Fernandez-Flores, A. (2008). Lack of expression of podoplanin by microvenular hemangioma. Pathol Res Pract, 204, 817–21Google Scholar
Granter, S.R., Badizadegan, K., and Fletcher, C.D. (1998). Myofibromatosis in adults, glomangiopericytoma, and myopericytoma: a spectrum of tumors showing perivascular myoid differentiation. Am J Surg Pathol, 22, 513–25Google Scholar
Mentzel, T., Dei Tos, A.P., Sapi, Z., and Kutzner, H. (2006). Myopericytoma of skin and soft tissues. Clinicopathologic and immunohistochemical study of 54 cases. Am J Surg Pathol, 30, 104–13Google Scholar
Dray, M.S., McCarthy, S.W., Palmer, A.A., et al. (2006). Myopericytoma: a unifying term for a spectrum of tumors that show overlapping features with myofibroma. A review of 14 cases. J Clin Pathol, 59, 6773Google Scholar
McMenamin, M.E., and Calonje, E. (2002). Intravascular myopericytoma. J Cutan Pathol, 29, 557–61Google Scholar
Díaz-Flores, L., Gutiérrez, R., Alvarez-Argüelles, H., et al. (2011). Myopericytoma and arterial intimal thickening: the relationship between myopericytes and myointimal cells. J Cutan Pathol, 38, 857–64Google Scholar
McMenamin, M.E., and Fletcher, C.D.M. (2002). Malignant myoperciytoma: expanding the spectrum of tumors with myopericytic differentiation. Histopathology, 41, 450–60Google Scholar
Lau, P.P., Wong, O.K., Lui, P.C., et al. (2009). Myopericytoma in patients with AIDS: a new class of Epstein-Barr virus-associated tumor. Am J Surg Pathol, 33, 1666–72Google Scholar
Matsuyama, A., Hisaoka, M., and Hashimoto, H. (2007). Angioleiomyoma: a clinicopathologic and immunohistochemical reappraisal with special reference to the correlation with myopericytoma. Hum Pathol, 38, 645–51Google Scholar
Suurmeijer, A.J., and Fletcher, C. (2007). Papillary hemangioma. Distinct cutaneous hemangiomas of the head and neck area containing eosinophilic hyaline globules. Histopathology, 51, 638–48Google Scholar
Suurmeijer, A.J.H. (2010). Papillary hemangiomas and glomeruloid hemangiomas are distinct clinicopathologic entities. Int J Surg Pathol, 18, 4854Google Scholar
Martin, S., Pitcher, D., Tschen, J., et al. (1980). Reactive angioendotheliomatosis. J Am Acad Dermatol, 2, 117–23Google Scholar
McMenamin, M.E., and Fletcher, C.D. (2002). Reactive angioendotheliomatosis: a study of 15 cases demonstrating a wide clinicopathologic spectrum. Am J Surg Pathol, 26, 685–97Google Scholar
Krell, J.M., Sanchez, R.L., and Solomon, A.R. (1994). Diffuse dermal angiomatosis: a variant of reactive cutaneous angioendotheliomatosis. J Cutan Pathol, 21, 363–70Google Scholar
Calonje, E., and Fletcher, C.D.M. (1991). Sinusoidal hemangioma. Am J Surg Pathol, 15, 1130–5Google Scholar
Nakamura, M., and Miyachi, Y. (1999). Calcifying sinusoidal hemangioma on the back. Br J Dermatol, 141, 350–92Google Scholar
Ban, M., Kamiya, H., and Kitajima, Y. (2010). Giant sinusoidal hemangioma revealing diffuse ancient change: hyalinization and organized thrombi. Int J Dermatol, 49, 589–90Google Scholar
Weiss, S.W., and Enzinger, F.M. (1986). Spindle cell hemangioendothelioma. A low-grade angiosarcoma resembling a cavernous hemangioma and Kaposi's sarcoma. Am J Surg Pathol, 10, 521–30Google Scholar
Scott, G.A., and Rosai, J. (1988). Spindle cell hemangioendothelioma. Report of seven additional cases of a recently described vascular neoplasm. Am J Dermatopathol, 10, 281–8Google Scholar
Fletcher, C.D., Beham, A., and Schmid, C. (1991). Spindle cell haemangioendothelioma: a clinicopathologic and immunohistochemical study indicative of a non-neoplastic lesion. Histopathology, 18, 291301Google Scholar
Perkins, P., and Weiss, S.W. (1996). Spindle cell hemangioendothelioma. An analysis of 78 cases with reassessment of its pathogenesis and biologic behavior. Am J Surg Pathol, 20, 1196–204Google Scholar
Requena, L., and Kutzner, H. (2013). Hemangioendothelioma. Semin Diagn Pathol, 30, 2944.Google Scholar
Terada, T. (2010). Spindle cell hemangioma of the calf with myxoid stroma and pseudolipoblasts. J Dermatol, 37, 926–8.Google Scholar
Wang, L., Gao, T., and Wang, G. (2014). Expression of Prox1, D2–40, and WT1 in spindle cell hemangioma. J Cutan Pathol, 41, 447–50Google Scholar
Pansuriya, T.C., van Eijk, R., d'Adamo, P., et al. (2011). Somatic mosaic IDH1 and IDH2 mutations are associated with enchondroma and spindle cell hemangioma in Ollier disease and Maffucci syndrome. Nat Genet, 43, e1256-e1261Google Scholar
Kurek, K.C., Pansuriya, T.C., van Ruler, M.A., et al. (2013). R132C IDH1 mutations are found in spindle cell hemangiomas and not in other vascular tumors or malformations. Am J Pathol, 182, 1494–500Google Scholar
Tsang, W.Y.W., Chan, J.K.C., Fletcher, C.D.M., et al. (1994). Symplastic hemangioma: a distinctive vascular neoplasm featuring bizarre stromal cells. Int J Surg Pathol, 1, 202Google Scholar
Kutzner, H., Winzer, M., and Mentzel, T. (2000). Symplastic hemangioma. Hautarzt, 51, 327–31Google Scholar
Goh, S.G., Dayrit, J.F., and Calonje, E. (2006). Symplastic hemangioma: report of two cases. J Cutan Pathol, 33, 735–40Google Scholar
Macmillan, A., and Champion, R.M. (1971). Progressive capillary haemangioma. Br J Dermatol, 85, 492.Google Scholar
Padilla, R.S., Orkin, M., and Rosai, J. (1987). Acquired “tufted” angioma (progressive capillary hemangioma). A distinctive clinicopathologic entity related to lobular capillary hemangioma. Am J Dermatopathol, 9, 292300Google Scholar
Wilson Jones, E., and Orkin, M. (1989). Tufted angioma (angioblastoma). J Am Acad Dermatol, 20, 214–25Google Scholar
Osio, A., Fraitag, S., Hadj-Rabia, S., et al. (2010). Clinical spectrum of tufted angiomas in childhood: a report of 13 cases and a review of the literature. Arch Dermatol, 146, 758–63Google Scholar
Lam, W.Y., Mac-Moune, , Lai, F., et al. (1994). Tufted angioma with complete regression. J Cutan Pathol, 21, 461–6Google Scholar
Kumakiri, M., Muramoto, F., Tsukinaga, I., et al. (1983). Crystalline lamellae in the endothelial cells of a type of hemangioma characterized by the proliferation of immature endothelial cells and pericytes-angioblastoma (Nakagawa). J Am Acad Dermatol, 8, 6875Google Scholar
Fukunaga, M. (2000). Intravenous tufted angioma. APMIS, 108, 287–92Google Scholar
Bam, M., Kamiya, H., and Kitajima, Y. (2000). Tufted angioma of adult onset, revealing abundant eccrine glands and central regression. Dermatology, 201, 6870Google Scholar
Sadeghpour, M., Antaya, R.J., Lazova, R., et al. (2012). Dilated lymphatic vessels in tufted angioma: a potential source of diagnostic confusion. Am J Dermatopathol, 34, 400–3Google Scholar
Le Huu, A.R., Jokinen, C.H., Rubin, B.P., et al. (2010). Expression of prox1, lymphatic endothelial nuclear transcription factor, in Kaposiform hemangioendothelioma and tufted angioma. Am J Surg Pathol, 34, 1563–73.Google Scholar
Imperial, R., Helwig, E.B. (1967). Verrucous hemangioma. A clinicopathologic study of 21 cases. Arch Dermatol, 96, 247–53Google Scholar
Trindade, F., Torreleo, A., Requena, L., et al. (2013). An immunohistochemical study of verrucous hemangiomas. J Cutan Pathol, 40, 472–6Google Scholar
Wang, L., Gao, T., and Wang, G. (2014). Verrucous hemangioma: a clinicopathologic and immunohistochemical analysis of 74 cases. J Cutan Pathol, 41, 823–30Google Scholar
Nayler, S.J., Rubin, B.P., Calonje, E., et al. (2000). Composite hemangioendothelioma: a complex, low-grade vascular lesion mimicking angiosarcoma. Am J Surg Pathol, 24, 352–61Google Scholar
Fukunaga, M., Suzuki, K., Saegusa, N., and Folpe, A.L. (2007). Composite hemangioendothelioma: report of 5 cases including one with associated Maffucci syndrome. Am J Surg Pathol, 31, 1567–72Google Scholar
Requena, L., Luis Diaz, J., Manzarbeitia, F., et al. (2008). Cutaneous composite hemangioendothelioma with satellitosis and lymph node metastases. J Cutan Pathol, 35, 225–30Google Scholar
Tsai, J.W., Huang, H.Y., Lee, J.C., et al. (2011). Composite haemangioendothelioma: report of four cases with emphasis on atypical clinical presentation. Pathology, 43, 176–80Google Scholar
McNab, P.M., Quigley, B.C., Glass, L.F., and Jukic, D.M. (2013). Composite hemangioendothelioma and its classification as a low-grade malignancy. Am J Dermatopathol, 35, 517–22Google Scholar
Billings, S.D., Folpe, A.L., and Weiss, S.W. (2003). Epithelioid sarcoma-like hemangioendothelioma. Am J Surg Pathol, 27, 4857Google Scholar
Hornick, J.L., and Fletcher, C.D. (2011). Pseudomyogenic hemangioendothelioma: a distinctive often multicentric tumor with indolent behavior. Am J Surg Pathol, 35, 190201Google Scholar
Requena, L., Santonja, C., Martinez-Amo, J.L., et al. (2013). Cutaneous epithelioid sarcomalike (pseudomyogenic) hemangioendothelioma: a little-known low-grade cutaneous vascular neoplasm. JAMA Dermatol, 149, 459–65Google Scholar
Mirra, J.M., Kessler, S., Bhuta, S., and Eckardt, J. (1992). The fibroma-like variant of epithelioid sarcoma: a fibrohistiocytic/myoid cell lesion often confused with benign and malignant spindle cell tumors. Cancer, 69, 1382–95Google Scholar
Tan, S.H., and Ong, B.H. (2001). Spindle cell variant of epithelioid sarcoma: an easily misdiagnosed tumor. Australas J Dermatol, 42, 139–41Google Scholar
Requena, L., and Kutzner, H. (2013). Hemangioendothelioma. Semin Diagn Pathol, 30, 2944Google Scholar
Radu, O., and Pantanowitz, L. (2013). Kaposi sarcoma. Arch Pathol Lab Med, 137, 289–94Google Scholar
Grayson, W., and Pantanowitz, L. (2008). Histologic variants of cutaneous Kaposi sarcoma. Diagn Pathol, 3, 31Google Scholar
O'Donnell, P.J., Pantanowitz, L., and Grayson, W. (2010). Unique histologic variants of cutaneous Kaposi sarcoma. Am J Dermatopathol, 32, 244–50Google Scholar
Konstantinopoulos, P.A., Dezube, B.J., and Pantanowitz, L. (2006). Morphologic and immunophenotypic evidence of in situ Kaposi's sarcoma. BMC Clin Pathol, 6, 7Google Scholar
Luzar, B., Antony, F., Ramdial, P.K., and Calonje, E. (2007). Intravascular Kaposi's sarcoma – a hitherto unrecognised phenomenon. J Cutan Pathol, 34, 861–4.Google Scholar
Cossu, S., Satta, R., Cottoni, F., et al. (1997). Lymphangioma-like variant of Kaposi's sarcoma: clinicopathologic study of seven cases with review of the literature. Am J Dermatopathol, 19, 1622Google Scholar
Pantanowitz, L., and Duke, W.H. (2008). Lymphoedematous variants of Kaposi's sarcoma. J Eur Acad Dermatol Venereol, 22, 118–20Google Scholar
Pantanowitz, L., Dezube, B.J., Pinkus, G.S., and Tahan, S.R. (2004). Histologic characterization of regression in acquired immunodeficiency syndrome-related Kaposi's sarcoma. J Cutan Pathol, 31, 2634Google Scholar
Ramdial, P.K., Sing, Y., Naicker, S., et al. (2011). Langerhans cells in anaplastic Kaposi sarcoma with a paucivascular phenotype: a potential diagnostic pitfall. Pathol Int, 61, 221–7.Google Scholar
Ramdial, P.K., Sing, Y., Subrayan, S., et al. (2010). Granulomas in acquired immunodeficiency syndrome-associated cutaneous Kaposi sarcoma: evidence for a role for Mycobacterium tuberculosis. J Cutan Pathol, 37, 827–34.Google Scholar
Tsang, W.Y., and Chan, J.K. (1991). Kaposi-like hemangioendothelioma. A distinctive vascular neoplasm of the retroperitoneum. Am J Surg Pathol, 15, 982–9Google Scholar
Zukerberg, L.R., Nickoloff, B.J., and Weiss, S.W. (1993). Kaposiform hemangioendothelioma of infancy and childhood. An aggressive neoplasm associated with Kasabach-Merritt syndrome and lymphangiomatosis. Am J Surg Pathol, 17, 321–8Google Scholar
Nakaya, T., Morita, K., Kurata, A., et al. (2014). Multifocal kaposiform hemangioendothelioma in multiple visceral organs: an autopsy of 9-day-old female baby. Hum Pathol, 45, 1773–7Google Scholar
Lyons, L.L., Mac-Moune Lai, P.E., North, F., et al. (2004). Kaposiform hemangioendothelioma: a study of 33 cases emphasizing its pathologic, immunophenotypic, and biologic uniqueness from juvenile hemangioma. Am J Surg Pathol, 28, 559–68Google Scholar
Croteau, S.E., Liang, M.G., Kozakewich, H.P., et al. (2013). Kaposiform hemangioendothelioma: atypical features and risks of Kasabach-Merritt phenomenon in 107 referrals. J Pediatr, 162, 142–7Google Scholar
Mendez, R., Capdevila, A., Tellado, M.G., et al. (2003). Kaposiform hemangioendothelioma associated with Milroy's disease (primary hereditary lymphedema). J Pediatr Surg, 38, E9E12Google Scholar
Vin-Christian, K., McCalmont, T.H., and Frieden, I.J. (1997). Kaposiform hemangioendothelioma. An aggressive, locally invasive vascular tumor that can mimic hemangioma of infancy. Arch Dermatol, 133, 1573–8Google Scholar
Brasanac, D., Janic, D., Boricic, I., et al. (2003). Retroperitoneal kaposiform hemangioendothelioma with tufted angioma-like features in an infant with Kasabach-Merritt syndrome. Pathol Int, 53, 627–31Google Scholar
Le Huu, A.R., Jokinen, C.H., Rubin, B.P., et al. (2010). Expression of prox1, lymphatic endothelial nuclear transcription factor, in Kaposiform hemangioendothelioma and tufted angioma. Am J Surg Pathol, 34, 163–73. Erratum in Am J Surg Pathol 2011; 35(2): 314, Ruben, Brian P (corrected to Rubin, Brian P).Google Scholar
Arai, E., Kuramochi, A., Tsuchida, T., et al. (2006). Usefulness of D2–40 immunohistochemistry for differentiation between kaposiform hemangioendothelioma and tufted angioma. J Cutan Pathol, 33, 492–7Google Scholar
Weiss, S.W., and Enzinger, F.M. (1982). Epithelioid hemangioendothelioma: a vascular tumor often mistaken for a carcinoma. Cancer, 50, 970–81Google Scholar
Dabska, M. (1969). Malignant endovascular papillary angioendothelioma of the skin in childhood. Clinicopathologic study of 6 cases. Cancer, 24, 503–10Google Scholar
Schwartz, R.A., Dabska, C., and Dabska, M. (2000). The Dabska tumor: a thirty year retrospect. Dermatology, 201, 15Google Scholar
Fanburg-Smith, J.C., Michal, M., Partanen, T.A., et al. (1999). Papillary intralymphatic angioendothelioma (PILA): a report of twelve cases of a distinctive vascular tumor with phenotypic features of lymphatic vessels. Am J Surg Pathol, 23, 1004–10Google Scholar
Goh, S.G.N., and Calonje, E. (2008). Cutaneous vascular tumors: an update. Histopathology, 52, 661–73Google Scholar
Requena, L., and Kutzner, H. (2013). Hemangioendothelioma. Semin Diagn Pathol, 30, 2944Google Scholar
Quecedo, E., Martinez-Escribano, J.A., Febrer, I., et al. (1996). Dabska tumor developing within a preexisting vascular malformation. Am J Dermatopathol, 18, 302–7Google Scholar
Emanuel, P.O., Lin, R., Silver, L., et al. (2008). Dabska tumor arising in lymphangioma circumscriptum. J Cutan Pathol, 35, 65–9Google Scholar
Folpe, A.L., Veikkola, T., Valtola, R., et al. (2000). Vascular endothelial growth factor receptor-3 (VEGFR-3): a marker of vascular tumors with presumed lymphatic differentiation, including Kaposi's sarcoma, kaposiform and Dabska-type hemangioendotheliomas, and a subset of angiosarcomas. Mod Pathol, 13, 180–5Google Scholar
Fukunaga, M. (2005). Expression of D2–40 in lymphatic endothelium of normal tissues and in vascular tumors. Histopathology, 46, 396402Google Scholar
Calonje, E., Fletcher, C.D., Wilson-Jones, E., et al. (1994). Retiform hemangioendothelioma. A distinctive form of low-grade angiosarcoma delineated in a series of 15 cases. Am J Surg Pathol, 18, 115–25Google Scholar
Requena, L., and Kutzner, H. (2013). Hemangioendothelioma. Semin Diagn Pathol, 30, 2944Google Scholar
Sanz-Trelles, A., Rodrigo-Fernandez, I., Ayala-Carbonero, A., and Contreras-Rubio, F. (1997). Retiform hemangioendothelioma. A new case in a child with diffuse endovascular papillary endothelial proliferation. J Cutan Pathol, 24, 440–4Google Scholar
Albertini, A.F., Brousse, N., Bodemer, C., et al. (2011). Retiform hemangioendothelioma developed on the site of an earlier cystic lymphangioma in a six-year-old girl. Am J Dermatopathol, 33, e84–7Google Scholar
Schommer, M., Herbst, R.A., Brodersen, J.P., et al. (2000). Retiform hemangioendothelioma: another tumor associated with human herpes virus type 8. J Am Acad Dermatol, 42, 290–2Google Scholar
Weiss, S.W., and Enzinger, F.M. (1982). Epithelioid hemangioendothelioma: a vascular tumor often mistaken for a carcinoma. Cancer, 50, 970–81Google Scholar
Requena, L., and Kutzner, H. (2013). Hemangioendothelioma. Semin Diagn Pathol, 30, 2944Google Scholar
Mentzel, T., Beham, A., Calonje, E., et al. (1997). Epithelioid hemangioendothelioma of skin and soft tissues: clinicopathologic and immunohistochemical study of 30 cases. Am J Surg Pathol, 21, 366–74Google Scholar
Quante, M., Patel, N.K., Hill, S., et al. (1998). Epithelioid hemangioendothelioma presenting in the skin: a clinicopathologic study of eight cases. Am J Dermatopathol, 20, 541–6Google Scholar
Deyrup, A.T., Tighiouart, M., Montag, A.G., and Weiss, SW. (2008). Epithelioid hemangioendothelioma of soft tissue: a proposal for risk stratification based on 49 cases. Am J Surg Pathol, 32, 924–7Google Scholar
Buehler, D., Rice, S.R., Moody, J.S., et al. (2014). Angiosarcoma outcomes and prognostic factors: a 25-year single institution experience. Am J Clin Oncol, 37, 473–9Google Scholar
Stewart, F.W., and Treves, N. (1948). Lymphangiosarcoma in post-mastectomy lymphedema. Cancer, 13, 97106Google Scholar
Suchak, R., Thway, K., Zelger, B., et al. (2011). Primary cutaneous epithelioid angiosarcoma: a clinicopathologic study of 13 cases of a rare neoplasm occurring outside the setting of conventional angiosarcomas and with predilection for the limbs. Am J Surg Pathol, 35, 60–9Google Scholar
Deyrup, A.T., Miettinen, M., North, P.E., et al. (2011). Pediatric cutaneous angiosarcomas: a clinicopathologic study of 10 cases. Am J Surg Pathol, 35, 70–5Google Scholar
Lazova, R., McNiff, J.M., Glusac, E.J., and Godic, A. (2009). Promontory sign – present in patch and plaque stage of angiosarcoma! Am J Dermatopathol, 31, 132–6Google Scholar
Wood, A., Mentzel, T., van Gorp, J., et al. (2014). The spectrum of rare morphologic variants of cutaneous epithelioid angiosarcoma. Histopathology [Epub ahead of print]Google Scholar
Liu, Y.C., and Fung, M.A. (2011). Angiosarcoma with pseudoepidermotropism in a patient with breast cancer: a mimic of epidermotropic metastatic adenocarcinoma. Am J Dermatopathol, 33, 400–2Google Scholar
Requena, L., Santonja, C., Stutz, N., et al. (2007). Pseudolymphomatous cutaneous angiosarcoma: a rare variant of cutaneous angiosarcoma readily mistaken for cutaneous lymphoma. Am J Dermatopathol, 29, 342–50Google Scholar
Brightman, L.A., Demierre, M.F., and Byers, H.R. (2006). Macrophage-rich epithelioid angiosarcoma mimicking malignant melanoma. J Cutan Pathol, 33, 3842Google Scholar
McKay, K.M., Doyle, L.A., Lazar, A.J., and Hornick, J.L. (2012). Expression of ERG, and Ets family transcription factor, distinguishes cutaneous angiosarcoma from histologic mimics. Histopathology, 61, 989–91Google Scholar
Antonescu, C.R., Yoshida, A., Guo, T., el al. (2009). KDR activating mutations in human angiosarcomas are sensitive to specific kinase inhibitors. Cancer Res, 69, 7175–9Google Scholar
Manner, J., Radlwimmer, B., Hohenberger, P., et al. (2010). MYC high level gene amplification is a distinctive feature of angiosarcomas after irradiation or chronic lymphedema. Am J Pathol, 176, 34–9.Google Scholar
Guo, T., Chang, N.E., Singer, S., et al. (2011). Consistent MYC and FLT4 gene amplification in radiation-induced angiosarcoma but not in other radiation-associated atypical vascular lesions. Genes Chromosomes Cancer, 50, 2533.Google Scholar
Fernandez, A.P., Sun, Y., Tubbs, R.R., et al. (2012). FISH for MYC amplification and anti-MYC immunohistochemistry: useful diagnostic tools in the assessment of secondary angiosarcoma and atypical vascular proliferations. J Cutan Pathol, 39, 234–42Google Scholar
Mentzel, T., Schildhaus, H.U., Palmedo, G., et al. (2012). Postradiation cutaneous angiosarcoma after treatment of breast carcinoma is characterized by MYC amplification in contrast to atypical vascular lesions after radiotherapy and control cases: clinicopathological, immunohistochemical and molecular analysis of 66 cases. Mod Pathol, 25, 7585Google Scholar
Thum, C., Husain, E.A., Mulholland, K., et al. (2013). Atypical fibroxanthoma with pseudoangiomatous features: a histologic and immunohistochemical mimic of cutaneous angiosarcoma. Ann Diagn Pathol, 17, 502–7Google Scholar
Val-Bernal, J.F., Figols, J., Arce, F.P., and Sanz-Ortiz, J. (2001). Cardiac epithelioid angiosarcoma presenting as cutaneous metastases. J Cutan Pathol, 28, 265–70Google Scholar
Rudd, R.J., Fair, K.P., and Patterson, J.W. (2000). Aortic angiosarcoma presenting with cutaneous metastasis: case report and review of the literature. J Am Acad Dermatol, 43, 930–3Google Scholar
Fineberg, S., and Rosen, P.P. (1994). Cutaneous angiosarcoma and atypical vascular lesions of the skin and breast after radiation therapy for breast carcinoma. Am J Clin Pathol, 102, 757–63Google Scholar
Brenn, T., and Fletcher, C.D.M. (2006). Postradiation vascular proliferations: an increasing problem. Histopathology, 48, 106–14Google Scholar
Fisher, C. (2013). Unusual myoid, perivascular, and postradiation lesions, with emphasis on atypical vascular lesion, postradiation cutaneous angiosarcoma, myoepithelial tumors, myopericytoma, and perivascular epithelioid cell tumor. Semin Diagn Pathol, 30, 7384Google Scholar
Patton, K.T., Deyrup, A.T., and Weiss, S.W. (2008). Atypical vascular lesions after surgery and radiation of the breast: a clinicopathologic study of 32 cases analysing histologic heterogeneity and association with angiosacoma. Am J Surg Pathol, 32, 943–50Google Scholar
Ginter, P.S., Mosquera, J.M., MacDonald, T.Y., et al. (2014). Diagnostic utility of MYC amplification and anti-MYC immunohistochemistry in atypical vascular lesions, primary or radiation-induced mammary angiosarcomas, and primary angiosarcomas of other sites. Hum Pathol, 45, 709–16Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×